Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 6, due in class, March 21, 2003

Let W_1 and W_2 be subspaces of \mathbb{R}^n .

- 1. Show that the intersection $W_1 \cap W_2$ is a subspace of \mathbb{R}^n .
- 2. Show that, if neither W_1 nor W_2 is a subspace of the other, then the union $W_1 \cup W_2$ is not a subspace of \mathbb{R}^n .
- 3. We define the *sum* of the susbspaces as $W_1 + W_2 = \{\vec{w}_1 + \vec{w}_2 : \vec{w}_1 \in W_1, \vec{w}_2 \in W_2\}$. Show that $W_1 + W_2$ is a subspace of \mathbb{R}^n .
- 4. Show that $dim(W_1 + W_2) + dim(W_1 \cap W_2) = dim(W_1) + dim(W_2)$. This result is known as the modular law, or lunch in Chinatown.
- 1. Since $\vec{0} \in W_1$ and $\vec{0} \in W_2$ (as both are subspaces), $\vec{0} \in W_1 \cap W_2$.

 To show that $W_1 \cap W_2$ is closed under +, suppose that $\vec{v}_1 \in W_1 \cap W_2$ and $\vec{v}_2 \in W_1 \cap W_2$. Then \vec{v}_1 and \vec{v}_2 are both in W_1 , so $\vec{v}_1 + \vec{v}_2 \in W_1$ (as W_1 is a subspace); for the same reason $\vec{v}_1 + \vec{v}_2 \in W_2$. Hence $\vec{v}_1 + \vec{v}_2 \in W_1 \cap W_2$.

 To show that $W_1 \cap W_2$ is closed under scalar multiplication, suppose that $\vec{v} \in W_1 \cap W_2$ and c is a scalar. Then $\vec{v} \in W_1$ and as W_1 is a subspace, $c\vec{v} \in W_1$; for the same reason $c\vec{v} \in W_2$. So $c\vec{v} \in W_1 \cap W_2$. This does it.
- 2. Let vecw₁ be a vector in W₁ which is not in W₂; there is such a monster by our assumptions. Similarly, there is w₂ ∈ W₂, w₂ ∉ W₁. Now both w₁ and w₂ are in W₁ ∪ W₂, but their sum w₁ + w₂ is not.
 To see this, suppose that it is; then it's either in W₁ or it's in W₂. If it were in W₁, then as W₁ is a subspace, (w₁ + w₂) w₁ ∈ W₁. But that contradicts our choice of w₂ ∉ W₁. Similarly (great proof word!) w₁ + w₂ ∉ W₂. So W₁ ∪ W₂ is not closed under + and is not a subspace. It may be worth noting that W₁ ∪ W₂ will have the zero vector and it will
- 3. $\vec{0} \in W_1 + W_2$ since $\vec{0} = \vec{0} + \vec{0}$ and $\vec{0}$ is in both W_1 and W_2 . (You might note that by taking one side zero, we get $W_1 \cup W_2 \subseteq W_1 + W_2$.)

be closed under scalar multiplication.

To show $W_1 + W_2$ is closed under +, pick any two vectors in there, which are $\vec{w}_1 + \vec{w}_2$ and $\vec{w}_1' + \vec{w}_2'$ for some \vec{w}_1 , \vec{w}_1' in W_1 and \vec{w}_2 , \vec{w}_2' in W_2 . Now $(\vec{w}_1 + \vec{w}_2) + (\vec{w}_1' + \vec{w}_2') = (\vec{w}_1 + \vec{w}_1') + (\vec{w}_2 + \vec{w}_2') \in W_1 + W_2$ since $\vec{w}_1 + \vec{w}_1' \in W_1$ and $\vec{w}_2 + \vec{w}_2' \in W_2$.

Finally, for closure under scalar multiplication, suppose that $\vec{w}_1 + \vec{w}_2 \in W_1 + W_2$ and that c is a scalar. Then $c(\vec{w}_1 + \vec{w}_2) = c\vec{w}_1 + c\vec{w}_2 \in W_1 + W_2$. This does it.

4. Suppose that $dim(W_1 \cap W_2) = k$, $dim(W_1) = k + \ell$ and $dim(W_2) = k + m$; we wish to show that $dim(W_1 + W_2) = k + \ell + m$. To this end, choose a basis $\{\vec{v}_1, \ldots, \vec{v}_k\}$ of $W_1 \cap W_2$ and extend it first to a basis $\{\vec{v}_1, \ldots, \vec{v}_k, \vec{u}_1, \ldots, \vec{u}_\ell\}$ of W_1 and (separately, of course) to a basis $\{\vec{v}_1, \ldots, \vec{v}_k, \vec{z}_1, \ldots, \vec{z}_m\}$ of W_2 . We claim that $\{\vec{v}_1, \ldots, \vec{v}_k, \vec{u}_1, \ldots, \vec{u}_\ell, \vec{z}_1, \ldots, \vec{z}_m\}$ (the union of all three bases) is a basis for $W_1 + W_2$, which will give what we want.

First, all those vectors $(\vec{v}$'s, \vec{u} 's and \vec{z} 's) are in $W_1 + W_2$. Next, we show that any vector in $W_1 + W_2$ is in $span\{\vec{v}_1, \ldots, \vec{v}_k, \vec{u}_1, \ldots, \vec{u}_\ell, \vec{z}_1, \ldots, \vec{z}_m\}$. For if $\vec{w}_1 \in W_1$ and $\vec{w}_2 \in W_2$, then $\vec{w}_1 = a_1\vec{v}_1 + \cdots + a_k\vec{v}_k + b_1\vec{u}_1 + \cdots + b_1\vec{u}_\ell$ and $\vec{w}_2 = c_1\vec{v} + 1 + \cdots + c_k\vec{v}_k + d_1\vec{z}_1 + \cdots + d_m\vec{z}_m$ for some constants labelled a through d with subscripts. Then $\vec{w}_1 + \vec{w}_2 = (a_1 + c_1)\vec{v}_1 + \cdots + (a_k + c_k)\vec{v}_k + b_1\vec{u}_1 + \cdots + b_1\vec{u}_\ell + d_1\vec{z}_1 + \cdots + d_m\vec{z}_m$. This is a linear combo of the supposed basis, so all we need to finish is the independence of the set.

Suppose then

$$\alpha_1 \vec{v}_1 + \dots + \alpha_k \vec{v}_k + \beta_1 u_1 + \dots + \beta_\ell u_\ell + \gamma_1 \vec{z}_1 + \dots + \gamma_m \vec{z}_m = \vec{0}$$

where the α 's β 's and γ 's are scalars. We need to show that all these scalars are zero.

$$\alpha_1 \vec{v}_1 + \dots + \alpha_k \vec{v}_k + \beta_1 u_1 + \dots + \beta_\ell u_\ell = -\gamma_1 \vec{z}_1 - \dots - \gamma_m \vec{z}_m$$

(shifting the stuff not from W_1 to the right-hand side). The left-hand side reveals this to be in W_1 and the left-hand side says it's in W_2 . So it's in $W_1 \cap W_2$. Using the right-hand side, we see that

$$-\gamma_1 \vec{z}_1 - \dots - \gamma_m \vec{z}_m = \delta_1 \vec{v}_1 + \dots + \delta_k \vec{v}_k$$

for some scalars $\delta_1, \ldots, \delta_k$. Now $\delta_1 \vec{v}_1 + \cdots + \delta_k \vec{v}_k + \gamma_1 \vec{z}_1 + \cdots + \gamma_m \vec{z}_m = \vec{0}$ and the independence of our basis for W_2 shows that all the γ 's and δ 's must be zero. So $\alpha_1 \vec{v}_1 + \cdots + \alpha_k \vec{v}_k + \beta_1 u_1 + \cdots + \beta_\ell u_\ell = \vec{0}$, too. By the indepence of our basis for W_1 , all the α 's and β 's are zero into the bargain; this is just what we need.