Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 2, due in class, Friday, January 31, 2003

The convex hull of a set $\{P_1, P_2, \ldots, P_k\}$ of points in \mathbb{R}^3 is the set of all points Q such that $\vec{q} = c_1 \vec{p}_1 + c_2 \vec{p}_2 + \cdots + c_k \vec{p}_k$ for some scalars c_1, \ldots, c_k that are ≥ 0 and add up to 1. So $(2, 0, 4) = \frac{1}{2}(2, -2, 2) + \frac{1}{3}(3, 0, 6) + \frac{1}{6}(0, 6, 6)$ is in the convex hull of $\{(2, -2, 2), (3, 0, 6), (0, 6, 6)\}$, since $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$. (Here \vec{p}_j is the vector \vec{OP}_j and \vec{q} is \vec{OQ} .)

- 1. Show that the convex hull of a pair $\{P_1, P_2\}$ of points is the line segment $\overline{P_1P_2}$.
- 2. Show that, if P_1 , P_2 and P_3 are not collinear, then the convex hull of $\{P_1, P_2, P_3\}$ is the set of all points Q on or inside the triangle $\Delta P_1 P_2 P_3$.

[Hint for (b). Notice that Q is on or in $\triangle P_1 P_2 P_3$ if and only if there is a point A on $\overline{P_1 P_2}$ such that Q is on $\overline{AP_3}$.]