
Mathematics 189-133B, Winter 2003
Vectors, Matrices and Geometry

A proof (in one place) of the Fundamental Theorem of Invertible Matrices,
(version 3 on p. 290 of Poole, and then some). This proof is not entirely
self-contained, but we try to make explicit what is used.

We will, in particular, be using without further mention the basic properties
of matrix operations (associativity of multiplication and distributivity espe-
cially). We will also use the basic rules for row-reduction: a solution to A~x = ~b
is the same as a solution to A∗~x = ~b∗ whenever (A|~b) can be transformed to
(A∗|~b∗) by row operations (in case ~b = ~0, we must then have ~b∗ = ~0, too); there
is a unique reduced row-echelon form matrix R which can be obtained from A
by the usual row operations and it is either the identity matrix, or has at least
one row of zeroes (as it will be square); A∗ (or (A∗|~b∗)) is obtained from A (or
(A|~b)) by a single row operation if and only if there is an elementary matrix E
such that EA = A∗ (or E(A|~b) = (A∗|~b∗)).

In the following, A is an n×n matrix, and any vectors mentioned are vectors
in Rn. Of course, in all parts especially (8), (9) and (10) we are thinking of Rn

as consisting of column vectors (as usual), but in (11), (12) and (13) we imagine
the elements of Rn are row vectors.

The following are equivalent:

1. A is invertible;

2. A~x = ~b has a unique solution for each ~b ∈ Rn;

(a) A~x = ~b has at least one solution for each ~b ∈ Rn;

(b) A~x = ~b has at most one solution for each ~b ∈ Rn;

3. Ax̄ = 0̄ has only the trivial solution;

4. the reduced row-echelon form of A is In;

5. A is a product of elementary matrices;

6. rank(A) = n;

7. nullity(A)=0;

8. the column vectors of A are linearly independent;

9. the column vectors of A span Rn;

10. the column vectors of A form a basis for Rn;

11. the row vectors of A are linearly independent;

12. the row vectors of A span Rn;

13. the row vectors of A form a basis for Rn;
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14. det(A) 6= 0;

15. 0 is not an eigenvalue of A;

16. A has a right inverse — that is, there is an n × n matrix B such that
AB = In;

17. A has a left inverse — that is, there is an n × n matrix C such that
CA = In;

18. AT is invertible.

We start the proof with (1)⇒(2)⇒(2(b))⇒(3)⇒(4)⇒(5)⇒(1).
(1)⇒(2). Suppose that A is invertible. Consider any ~x0 such that A~x0 = b̄;

multiplying on the left by A−1 gives that A−1(A~x0) = A−1~b, so ~x0 = I~x0 =
(A−1A)~x0 = A−1~b. This implies that the only possible solution is A−1~b. But if
~x0 = A−1~b, then A~x0 = A(A−1~b) = (AA−1)~b = I~b = ~b, so that ~x0 = A−1~b is a
solution.

(2)⇒(2(b)) is obvious.
(2(b))⇒(3) is clear, taking the special case ~b = ~0 of (2(b)) (and noting that

the trivial solution ~x = ~0 is indeed a solution).
(3)⇒(4). Let R be the RREF form of A. So any solution to R~x = ~0 is a

solution to A~x = ~0. If R is not In, it must have at least one row of zeroes and
a column corresponding to a parameter; say it is the kth column. By choosing
that parameter equal to 1 and any others equal to 0 (say) we can solve for a
solution x̄ with xk = 1. In (3), we assume that the only solution to A~x = ~0 is
trivial, so the same is true of R~x = ~0. Thus we have to have R = In, which is
what (4) says.

(4)⇒(5). Row-reducing a matrix amounts to repeated multiplying it on the
left by elementary matrices; in row-reducing A we get a sequence

A, E1A,E2(E1A), E3(E2E1A), . . . , Ek(Ek−1 · · ·E1A) = R,

where R is the RREF of A. In case R = In, which (4) asserts, we use associa-
tivity repeatedly to get (EkEk−1 · · ·E1)A = I.

Now each Ej is not only invertible, but its inverse E−1
j is also elementary.

(Details later.) E−1
1 E−1

2 · · ·E−1
k is then a product of elementary matrices, and

A = IA = (E−1
1 E−1

2 · · ·E−1
k )((Ek · · ·E2E1)A) = (E−1

1 E−1
2 · · ·E−1

k )I = E−1
1 E−1

2 · · ·E−1
k .

Those details: If Ej is like the identity matrix, except that there is an entry
c 6= 0 in the (r, s)-place with r 6= s, then E−1

j is almost identical, except that
its (r, s)-entry is −c; if Ej is like the identity with two rows switched, then
E−1

j = Ej ; finally, if Ej looks like the identity except one diagonal entry (say
the (r, r)-entry) is c 6= 0 rather than 1 — in this case E−1

j is like the identity
except its (r, r)-entry is c−1.
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(5)⇒ (1). A = E1E2 · · ·Ek is a product of elementary matrices, then A
is a product of invertible matrices, and hence is itself invertible, with inverse
E−1

k · · ·E−1
2 E−1

1 . (Note the reversal of order.)
(2)⇒(2(a)) is clear.
(2(a))⇒(4). Let E1 be any invertible matrix (maybe an elementary matrix).

Then (2(a)) implies that we can always solve (E1A)~x = ~b for any ~b ∈ Rn. To
see this, apply (2(b)) to find a solution ~x0 to A~x = E−1

1
~b; then

(E1A)~x0 = E1(A~x0) = E1(E−1
1

~b) = (E1E−1
1 )~b = ~b.

Repeating this, we see that (Ek · · ·E1)A)~x = ~b always has a solution for any
~b ∈ Rn where the Ej ’s are elementary. If R is the RREF of A, R = (Ek · · ·E1)A
for some elementary matrices E1,. . . ,Ek. But the only matrix in RREF that
satisfies condition (2(a)) is In since any other R has a row of zeroes and there’s
no solution to R~x = ~en.

Now we have (1)⇔(2)⇔(2(a))⇔(2(b)) ⇔(3)⇔(4) ⇔(5).
Since the only RREF square matrix without a row of zeroes is the identity

(4)⇔(6).
(3) and (7) are also restatements of each other. The nullity of A is just the

dimension of the subspace {~x : A~x = ~0} of Rn. This dimension is 0 if and only
if ~0 is all alone in the subspace. So (3)⇔(7).

(3)⇒(8). Let ~c1,. . . ,~cn be the columns of A and suppose that ~c1x1 + · · · +

~cnxn = ~0. Then for ~x =







x1
...

xn





 we have A~x = ~0. Then (3) tells us that ~x = 0.

We conclude that{~c1, . . . ,~cn} is independent, which is (8).
(8)⇒(3). Again, let ~c1,. . . ,~cn be the columns of A. If A~x = ~0, where ~x =







x1
...

xn





, then ~c1x1 + · · ·+ ~cnxn = ~0. By (8), we must have x1 = · · · = xn = 0

and so ~x = ~0; this is (3).
(2(a))⇒(9). Let~b ∈ Rn be arbitrary and let ~c1,. . . , ~cn be the columns of A. If

~x =







x1
...

xn





 solves A~x = ~b, which is possible by (2(a)), then ~c1x1+· · ·+~cnxn =

~b and ~b ∈ span({~c1, . . . ,~cn}. Since ~b is arbitrary, Rn = span({~c1, . . . ,~cn}.
(9)⇒(2(a)). Let ~b ∈ Rn be arbitrary and let ~c1,. . . , ~cn be the columns

of A. Since span({~c1, . . . ,~cn}) = Rn, there are x1,. . . , xn in R such that

~c1x1 + · · ·+ ~cnxn = ~b. Then ~x =







x1
...

xn





 solves A~x = ~b, verifying (2(a)).

Clearly, (10)⇒(8), and (10)⇒(9). By the above, (8)⇔(3)⇔(2(a)) ⇔(9). So
if one of (8) and/or (9) is true, so is the other, and thus (8) by itself implies
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(10), and (9) by itself also implies (10). At this stage, we have the equivalence
of (1) through (10) proved (including (2(a)) and (2(b)).)

Since the rows of A are the columns of AT , (11) is equivalent to (8), except
for AT instead of A. For the same reason, by what we have done, (11), (12),
and (13) are each equivalent to (18), the statement that AT is invertible. To
show that (11), (12) and (13) are each equivalent to (1), then, it is sufficient to
show that (1)⇔(18).

(1)⇒(18). Assuming (1), There is a matrix M such that AM = MA = I.
So I = IT = (AM)T = MT AT and I = IT = (MA)T = AT MT and MT is an
inverse for AT , which is (18).

(18)⇒(1). Suppose that AT Q = QAT = I. Then I = IT = (AT Q)T =
QT (AT )T = QT A and I = IT = (QAT )T = (AT )T QT = AQT , so that QT is
an inverse for A and (1) is then true.

(It is instructive to prove the equivalence of (11), (12) and (13) to the earlier
conditions on A without going through the transpose. One way is to note
that row-reducing A does not change whether or not A is invertible — if E is
elementary, then EA is invertible if and only if A is — and also row-reducing
doesn’t change the truth or falsity of statements (11), (12) and/or (13). Then
use the fact that the only RREF matrix that is invertible is In, but it is also
the sole square matricein RREF whose rows are independent, and the only one
whose rows span Rn regarded as a collection of row vectors. We leave the
details.)

To prove the equivalence of (4) and (14), we cheat by using some other
properties of determinants. Specifically, we use

1. Row-reducing a matrix does not change whether or not its determinant is
zero. [In more, detail, replacing row ~rj by ~rj +a~rk, where ~rk is some other
row, doesn’t alter the determinant at all; switching two rows changes the
sign fo the determinant; and multiplying ~rj by the nonzero constant c has
the effect of multiplying the determinant by c.]

2. The only n× n matrix in RREF with determinant different from 0 is the
identity matrix.

So det(A) 6= 0 ⇔ the RREF of A has determinant 6= 0 ⇔ the RREF of A is I.
That is, (4)⇔(14).

To finish the proof we need to fit (15), (16) and (17) into the picture. We do
this by proving ¬(3) ⇒ ¬(15), ¬(15) ⇒ ¬(3), (16)⇒(2(a)), and then (17)⇒(3).
This is enough as (1)⇒(16) and (1)⇒(17) are clear.

¬(3) ⇒ ¬(15). Suppose that 0 is an eigenvalue of A. Then there is an
eigenvalue ~v for 0. Necessarily ~v 6= ~0, and A~v = 0~v = ~0, so that there is a
nontrivial solution to A~x = ~0.

¬(15) ⇒ ¬(3). If A~v = ~0 with ~v 6= ~0, then A~v = 0~v and ~v is an eigenvector
for the eigenvlaue 0.

(16)⇒(2(a)). Suppose that AB = I and ~b ∈ Rn; letting ~x = B~b, we have
A~x = A(B~b) = (AB)~b = I~b = ~b, so for any ~b we have a solution to A~x = ~b.
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(17)⇒(3). Suppose that CA = I. If A~x = ~0, then C(A~x) = C(~0) = ~0, so
~x = I~x = (CA)~x = ~0; thus (3) holds.
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