MATH 255: Lecture 14

The Elementary Transcendental Functions: The Circular Functions

The name circular functions is derived from the fact that the points (cosx, sinx) are precisely the points
on the unit circle 2 + 4% = 1. If we think of a point (a,b) in the plane as a complex number, we are led
to introduce the complex-valued function f(z) = cosx + isinx. This function satisfies f'(x) = if(x),
f(0) = 1, where the derivative of a complex-valued function of one variable is defined by componentwise
differentiation. We will show, without using any geometry, that there is a unique such function f(z).

The Picard existence and uniqueness theorem for differential equations holds for complex-valued
functions if the absolute value of a complex number a + ib is defined to be |a + ib| = Va2 + b? and
integration is done componentwise. We thus obtain that there is a unique complex-valued function f(x)
with f'(z) =if(x), f(0) = 1. This function is given by
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If we define cosx and sinz by f(x) = sinz + i cosx and define e = exp(iz), we obtain
e =cosx +isine = (1 —a?/2 + /4 + ) fi(x — 23/3) + 255! + - )

In particular, we obtain that sin’ = cos, cos’ = —sin, sin0 = 0, cos0 = 1. One can also prove that
e +Y) — ¢i%e exactly in the same way as in the real case. This gives the addition laws for sin and
Ccos:

sin(z +y) =sinzcosy + coszsiny, cos(x +y) =coszcosy — sinxsiny.
We also obtain (cosx + isinz)™ = cosnx + i sinz, which is known as DeMoivre’s Theorem.

Since 1 = e~ = cos? & + sin® z, we obtain that e® is a point on the unit circle. We now show
the we get all the points on the unit circle in this way. First note that cos0 =1 and cos2 <1—-2 = —1.
Let 7/2 be the smallest zero of cos x which is > 0. Since cos z is the derivative of sin z, we see that sin x
is a strictly increasing function on the interval [0, 7/2] and that it attains a maximum of 1 at = 7/2.
Since the derivative of cosx is —sinx, we see that cosz strictly decreases from 1 to 0 on the interval

[0,7/2]. Since sin(z + 7/2) = cosz and cos(x + 7/2) = —sinz, sinx strictly decreases from 1 to 0 and
cos z strictly decreases from 0 to —1 on [7/2,7]. In particular, we obtain ™ = —1.
Since sin(x + 7) = —sinx and cos(x + 7) = — cosx, we see that sinz decreases from 0 to —1 and

on the interval [r, 37/2] and increases from —1 t0 0 on [37/2, 27] while cos z increases from —1 to 1 on
the interval [r,27]. Thus, as x increases from 0 to 27 the point e'* goes through all the points of the
unit circle exactly once with the exception that e’* = 1 when x = 0 and = = 2.

Since €'(#+2™) = ¢i* we see that €' and hence sinx, cosz are periodic with period 27. We thus
see that x is determined, up to an integral multiple of 27 by e**. For each non-zero complex number
z = a + bi, there is a unique, up to the addition of an integral multiple of 27, real number x such that
2 = |z|e®®. This number is called the argument of z or the angle that the vector (a,b) makes with the
positive z-axis.

One can avoid the use of the complex numbers to introduce sin and cos by noting that each of these

functions satisfies the differential equation y” = —y. If we set ¢y’ = u, then v/ = —y. Conversely, if
u,y are functions with ¢y’ = u, v’ = —y, then y” = —y. Thus solving y”’ = —y is equivalent to solving
y =u, v = —y for y and u.

Let Y = Lyt] . Then the system 3’ = u, v’ = —y can be written in matrix form as Y’ = AY, where



This system of differential equations, together with the prescribing of an initial value for Y, is equivalent
to solving the integral equation

Y (z) = Y(0) + /0 Ay (@) d,

for a continuous Y, where the integration of a vector valued function is done componentwise and
continuity is componentwise. The theorem of Picard applies in this case with the same proof, if the
absolute value of a column vector is defined by

[5][ = mstal i,

In context of vector spaces, the term "norm” is used instead of absolute value. The term ”absolute
valued” is reserved for rings as the condition |zy| = |z||y| is required. We will have more to say about
this later. The Lipschitz condition is verified for F(x,Y) = AY since |AY — AZ| = |Y — Z|. More
generally, for any 2 x 2 matrix A, we have |[AY — AZ| < |A||X — Y| where |4| is the maximum of the

sums of the absolute values of the rows of A.

Let us carry out the Picard iteration in the case A = {_01 (1)}, Y(0) = [ﬂ The iterations

Y, = Lytn} are defined by

n

Yopi(z) = Y(0) + /0 " AY. (1) dt.

This is equivalent to y,11(2) = [3 un(t) dt, uni1(z) =1 — [ yn(t) dt. One shows inductively that, for
n>1,
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It follows that the unique solution Y = Lﬂ is given by
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which define the sin and cosine functions respectively. To show the addition laws
sin(z +y) =sinzcosy + coszsiny, cos(x + y) = coszcosyy — sinzsiny
we fix y and simply note that

_ [sin(z +y) v — sin(z + y) = sinz cosy + cos T siny
" eos(z+1y)|’ " |cos(z +y) =cosxcosy —sinzsiny

are solutions of the DE Y’ = AY and U(0) = V(0). To show that sin® z + cos? z = 1, simply note that
this holds if x = 0 and that the derivative of the LHS and RHS are both zero.

Exercise 1. Show that the solution space of the system Y’ = AY is a 2-dimensional subspace of
R2-valued functions on R. Hint: Show that the solutions U, V with U(0) = [(1)}, V(0) = {ﬂ are a
basis.

Exercise 2. Show that the DE y” + ay’ + by = 0 is a 2-dimensional subspace of the vector space of
R-valued functions on R.



Exercise 3. If |A] is maximum of the sums of the absolute values of the rows of the matrix A, show
that
lcAl = |c[|A],  [A+ Bl <[A[+[B]|, |AB| < |A]B].

Exercise 4. Show that the unique solution of the Y’ = AY, Y(0) = B is Y = ¢4 B, where
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the convergence being componentwise. Hint: Show that the entries of the partial sums satisfy the
uniform Cauchy criterion on [—a, a] for any a > 0.



