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Abstract
This paper is concerned with the convergence to sharp traveling waves of solutions
with semi-compactly supported initial data for Burgers-Fisher-KPP equations with
degenerate diffusion.We characterize the motion of the free boundary in the long-time
asymptotic of the solution to Cauchy problem and the convergence to sharp traveling
wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic
presence of nonlinear advection effect. After providing the analysis of the nonlinear
advection effect on the asymptotic propagation speed of the free boundary, we con-
struct sub- and super-solutions with semi-compact supports to estimate the motion of
the free boundary. The new method overcomes the difficulties of the non-integrability
of the generalized derivatives of sharp traveling waves at the free boundary.
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1 Introduction andMain Results

We consider the Cauchy problem for the following Burgers-Fisher-KPP equations
with degenerate diffusion

ut + f (u)x = (um)xx + g(u), (1.1)

with initial data

u(x, 0) = u0(x) ∈ A . (1.2)

Here, A is the function class with semi-compact supports such that

A := {u0 ∈ L∞(R); u0(x) ≥ 0, u0 is piecewise continuous,

supp u0 ⊂ (−∞, x0] for some x0 ∈ R, lim inf
x→−∞ u0(x) > 0}.

The degenerate diffusion in (1.1) is of porous medium type with m > 1, which arises
fromadensity-dependent dispersal in biological dynamics (Aronson 1980; Shiguesada
et al. 1979; Murray 2002) or a temperature-dependent thermal conductivity (Mendez
and Fort (2001)), etc. The advection in (1.1) is Burgers type and the reaction in (1.1)
is Fisher-KPP type such that

f ∈ C2, g ∈ C1, g(0) = g(1) = 0, g(u) > 0, ∀u ∈ (0, 1),

g(u) < 0, ∀u > 1, g′(0) ≥ 0, g′(1) < 0. (1.3)

We further assume that g(s) satisfies the following growth condition

sup
s∈(0,1)

g′(s)s
g(s)

< m. (1.4)

The growth condition (1.4) is compatible with the degenerate diffusion and is fulfilled
by the classical Fisher-KPP type source such that g′′(s) < 0.

The direction of the advection has influence on the propagation properties and
certainly on the minimal admissible wave speed of traveling waves. For the sake of
simplicity, we focus on the case that the traveling wave φc(ξ)with ξ = x −ct connects
1 at−∞ and 0 at+∞, i.e., φc(−∞) = 1 and φc(+∞) = 0. Other cases can be treated
via changes of variables in a similar way.

Comparedwith the extensive studies on the attractiveness of smooth travelingwaves
for degenerate diffusion equations (see, for example, Liu and Yu (1997); Fife and
McLeod (1980); Mellet et al. (2009); Sattinger (1976); Kienzler (2016); Gnann et al.
(2019)), the convergence results to sharp traveling waves are rarely studied. These
attractiveness property of sharp traveling waves are proved for reaction diffusion
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equations without convection for initial data with compact (or semi-compact) sup-
ports by Biró (1997, 2002) and for initial data with exponentially decaying in Díaz
and Kamin (2012); Kamin and Rosenau (2004, ?). Even without advection effect,
developing the convergence theory for traveling waves of degenerate diffusion equa-
tions has been proved challenging: It was Du et al. (2020) who studied the large time
behavior of solutions for Fisher-KPP equations with degenerate diffusion in higher
dimension ut = �um + u(1 − u), and show the logarithmic shift phenomenon (see
also Medvedev et al. (2003)) for one-dimensional case.

Related to the attractiveness property of sharp fronts, the stability results (spectral
or nonlinear) of traveling waves for degenerate diffusion equations with reaction under
small perturbations are very scarce. As far as we know, it was Hosono (1986) who first
formulated the rigorous stability analysis of a sharp traveling front for a degenerate
diffusion equation of Nagumo or bistable reaction in 1986. The spectral stability of
non-critical smooth traveling waves for (1.1) without the advection term f (u)x has
only been shown recently by Leyva and Plaza (2020), which is a key further step
in the study of nonlinear stability of traveling waves for degenerate diffusion equa-
tions. Then Leyva et al. (2022) extended the previous spectral theory to the bistable
case, contributing to the stability analysis for more general density-dependent degen-
erate diffusions. Recently, Dalibard et al. (2023) established the nonlinear stability of
degenerate diffusion sharp traveling fronts in the porous medium case.

The attractiveness property and the corresponding convergence rate of sharp trav-
eling waves for the Burgers-Fisher-KPP equations with degenerate diffusion remain
open due to some technical issues. The effect of advection to the degenerate diffusion
equations (1.1) is essential, which causes the study on the convergence results of sharp
traveling waves to be difficult and challenging. The main purpose of the present paper
is to give a rigorous proof of convergence result of sharp travelingwaves corresponding
to the degenerate Burgers-Fisher-KPP equations (1.1).

Regarding the degenerate diffusion equations, the existence of sharp traveling
waves has been well-studied in Aronson (1980, 1985); De Pablo and Vázquez (1991);
Sánchez-Garduño and Maini (1994a, b, 1995, 1997); Malaguti and Marcelli (2003)
for the porousmedium equationwith Fisher-KPP source or other reactions, and further
investigated for the Burgers-Fisher-KPP equations byMa andOu (2021) andMendoza
and Muriel (2021) in the linear diffusion case m = 1, and by Gilding and Kersner
(2005) in the degenerate diffusion case m > 1.We summarize these results as follows.

Proposition 1.1 There exists a constant c∗ = c∗(m, f , g) such that (1.1) has traveling
wave solution φc(x − ct) connecting 1 and 0 (φc(−∞) = 1 and φc(+∞) = 0), if and
only if c ≥ c∗, such that

(i) if c > c∗, then 0 < φc(ξ) < 1 and φ′
c(ξ) < 0 for all ξ ∈ R;

(ii) if c = c∗, then there exists ξ0 ∈ R, such that φc∗(ξ) = 0 for all ξ ≥ ξ0, and
0 < φc∗(ξ) < 1 with φ′

c∗(ξ) < 0 for all ξ < ξ0.

Moreover, c∗ > f ′(0), φc∗ ∈ Cα(R) with α = min{1, 1
m−1 },

φ′
c∗(ξ) ∼ −c∗ − f ′(0)

m
φ2−m

c∗ (ξ),
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as φc∗(ξ) → 0+ or equivalently ξ → ξ−
0 .

Without loss of generality, we always assume that ξ0 = 0.

Main results. The main results of this paper are the following convergence theo-
rems.

Theorem 1.1 For any solution u(x, t) of the Cauchy problem (1.1)–(1.2) with initial
data u0 ∈ A , there exists a x0 ∈ R such that u(x, t) converges in form and in speed
to φc∗(x − c∗t − x0):

lim
t→+∞ sup

x∈R
|u(x, t) − φc∗(x − c∗t − x0)| = 0, (1.5)

where φc∗(x − c∗t) is the sharp traveling wave with critical wave speed c∗ in Propo-
sition 1.1 (with ξ0 = 0).

Theorem 1.1 implies the motion of the free boundary of the solution to Cauchy
problem and presents a sharp traveling wave type asymptotic profile of the solution.

Corollary 1.1 Let u(x, t) be the solution of the Cauchy problem (1.1)–(1.2) with initial
data u0 ∈ A , and let ζ(t) be the free boundary of the semi-compact support of the
solution u(x, t), i.e., ζ(t) := sup{x ∈ R; u(x, t) > 0}. Then there exists a x0 ∈ R

such that

lim
t→+∞(ζ(t) − c∗t) = x0,

and u(x, t) = 0 for all x ≥ ζ(t),

lim
t→+∞ sup

y∈R
|u(ζ(t) + y, t) − φc∗(y)| = 0.

Then our theorem on almost exponential convergence rate to sharp traveling waves
is given as follows.

Theorem 1.2 Let u(x, t) and x0 be as stated in Theorem 1.1. For any ε > 0, there
exists σ = σ(ε) > 0 such that

sup
|x−c∗t−x0|≥ε

|u(x, t) − φc∗(x − c∗t − x0)| ≤ Ce−σ t , ∀t > 0, (1.6)

for some positive constant C > 0.

Background of studies. For the regular Fisher-KPP equations without advection
effect and degeneracy of diffusion,

ut = uxx + g(u),

where g(u) satisfies the mono-stable condition (1.3) (the Fisher-KPP type), the sta-
bility of the traveling waves has been a quite hot and attractive topic (see Bramson
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(1983); Chen (1997); Chern et al. (2015); Fife and McLeod (1980); Gallay (1994);
Kirchgassner (1992); Lau (1985); Lin et al. (2014); Mei et al. (2009a, b); Moet (1979);
Mei et al. (2012); Sattinger (1976); Uchiyama (1978), the monograph Volpert et al.
(1994), and the references therein). The first study addressing the stability of non-
critical traveling waves was given by Sattinger (1976) by the spectral analysis method
in 1976 for the 1-D Fisher-KPP equation. Two years later, Uchiyama (1978) showed
the local stability for the traveling waves including the critical waves by the maximum
principle method, but no convergence rate for the critical waves case was related.
Then Bramson (1983) derived the sufficient and necessary condition for the stability
of non-critical and critical waves without convergence rates. The same results were
also obtained by Lau (1985) later in a different way. InMoet (1979), Moet showed that
the criticalwaves are algebraically stable in the formof O(t−1/2) by theGreen function
method. Kirchgassner (1992) also obtained the stability for the critical waves in the
form O(t−1/4) by the spectral method, which was further improved to be O(t−3/2)

by Gallay (1994) by using the renormalization group method, with a much faster
decay for the initinal perturbations. For the n-D Fisher-KPP equations, the stability
of planar faster traveling waves with c > c∗ was obtained by Mallordy and Roque-
joffre in Mallordy and Roquejoffre (1995). For the mono-stable reaction-diffusion
equations with or without time-delay, including the regular Fisher-KPP equations, by
using the weighted energy method, Mei and his collaborators Chern et al. (2015); Lin
et al. (2014); Mei et al. (2009a, b, 2012) showed the time-exponential stability for the
non-critical traveling waves, and the time-algebraic stability for the critical traveling
waves, including the oscillating waves caused by the large time-delay.

For the Fisher-KPP equations with degenerate diffusion (i.e., m > 1),

ut = (um)xx + g(u),

the traveling waves usually lose the regularity due to the degeneracy of diffusion, in
particular for the sharp traveling waves in the critical case c = c∗. The study on the
wave stability or attractiveness is quite limited as we know. For the sharp traveling
waves with critical wave speed c = c∗, Biró (2002) first proved their attractiveness
by technically constructing a special pair of sub- and super-solution. For the non-
critical traveling waves with c > c∗, even if the degeneracy of diffusion is strong, the
waves are still C2-smooth. In this case, by using the weighted energy method and the
viscosity vanishing technique, Huang et al. (2018) and Liu et al. (2022) obtained the
stability of these smooth non-critical traveling waves to the local/nonlocal degenerate
diffusion equations with time-delay, respectively.

On the other hand, without the reaction term g(u), the equation (1.1) becomes the
viscous Burgers equation with degenerate diffusion

ut + f (u)x = (um)xx .

When m = 1, the stability of traveling waves (the so-called viscous shocks) has been
intensively studied. In 1960, Il’in and Il’in and Oleinik (1960) first proved the stability
of these viscous shocks by means of maximum principle, once the flux function f (u)

is convex. The same stability results were then obtained by Sattinger (1976) in 1976
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by the spectral analysis method, and by Matsumura and Nishihara (1985) in 1985
and Goodman (1986) in 1986 independently by the energy method, respectively. The
time-algebraic convergence rates were further derived by Kawashima and Matsumura
(1985) and Jones et al. (1993). When the flux function is non-convex, the viscous
shocks may be degenerate if the entropy condition is degenerate to the wave speed at
the constant states. The stability of these degenerate viscous shocks and the optimal
convergence rates were showed by Matsumura and Nishihara (1994) and Mei (1995).
The L1-stability was then obtained by Freistühler and Serre (1998).

For the Burgers equations with degenerate diffusion, Kurganov andRosenau (1997)
proposed and studied a new variant of the Burgers equation with saturating dissipation

ut + f (u)x = νQ(ux )x , ν > 0,

where the flux function satisfies |Q(s)| ≤ 1, Q′(s) > 0 for all s and Q′(s) → 0 as
|s| → ∞. A typical flux limited function is Q(s) = s√

1+s2
. As shown in Kurganov

et al. (1998); Kurganov and Rosenau (1997), compared with the Burgers equation,
traveling waves solutions develop discontinuities within finite time above the critical
threshold,while small solutions remain smooth. The existence of sharp travelingwaves
(sharp viscous shocks) for the degenerate Burgers equations with m > 1 was also
presented in the text book (Gilding and Kersner 2004).

However, it seems that the stability or attractiveness of sharp traveling waves is not
trivial due to the difficulty arising from the flux term and the degeneracy of diffusion.
Regarding the Burgers-Fisher-KPP equations with degenerate diffusion (1.1), we note
that it possesses some good and bad features from both Burgers equations and Fisher-
KPP equations. The stability or attractiveness of sharp traveling waves is also not
treated so far. We observe that, even though there is the bad affect from the advection,
the advantage from the reaction term is enough to allow us to prove the convergence to
sharp traveling waves by the monotonicity techniques. With this motivation, we shall
give a rigorous proof of sharp wave convergence results for (1.1).

Features, difficulties and strategies. Due to the degeneracy and semi-compacted
properties of sharp waves, the technical steps we need to take are different and much
more complex compared to the standard parabolic equations with linear diffusion and
smooth traveling waves. For Burgers-Fisher-KPP equation with degenerate diffusion,
there arise the following distinguishing features.

Both the sharp traveling wave and the solution are generally at most Hölder con-
tinuous near the free boundaries, and any smoothing approximations may destroy the
free boundaries, therefore the energy methods which require regularities are not appli-
cable. In the present work, we resolve these mathematical difficulties and provide a
delicate analysis for relationship between the nonlinear advection and the asymptotic
propagation speed of the free boundary.

The nonlinear advection affects the behavior of solutions for Cauchy problem.
For Burgers-Fisher-KPP equation with degenerate diffusion, the initial disturbances
propagates in a special way: if u0(x) is semi-compact (i.e., supp u0 = (−∞, ζ0]), then
u(x, t) is always semi-compact such that
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supp u(·, t) = (−∞, ζ(t)], ζ(0) = ζ0,

where ζ(t) is a continuous function describing the edge of the support, also called the
free boundary, of the solution u(x, t). Note that the nonlinear advection could lead to
expanding or shrinking of the free boundaries. The free boundary ofCauchy problem is
nonmonotone. However, for the reaction diffusion equations, the solutions of Cauchy
equations always expand. For the Burgers equation with degenerate diffusion, the
asymptotic behaviors of the solution is also unknown. We will prove that the solutions
of these equations converge to sharp traveling waves. Our convergence result is also
the first result on the large time behavior of Cauchy problem for Burgers-Fisher-KPP
equation with degenerate diffusion.

The key step to show the L∞ convergence to sharp traveling wave is to estimate
the motion of the free boundary. Both the sharp traveling wave and the solution are
semi-compact, such that

φc∗(x − c∗t − x0) > 0 for x < x0 + c∗t, φc∗(x − c∗t − x0) = 0 for x ≥ x0 + c∗t,

u(x, t) > 0 for x < ζ(t), u(x, t) = 0 for x ≥ ζ(t),

the difference of the free boundaries has large impact on the difference of the two
solutions. A natural way is to construct sub- and super-solutions with semi-compact
supports, such that the amplitude decreases or increases to the same as sharp traveling
wave, and the free boundaries of sub- and super-solutions converges to some scope.
The new method overcomes the difficulties of the non-integrability of the generalized
derivatives of sharp traveling wave solutions at the free boundary.

2 Proof of themain results

The aim of this paper is to study the convergence results of sharp traveling waves for
Burgers-Fisher-KPP equations with degenerate diffusion. We recall the existence of
criticalwave speed and sharp travelingwaves for porousmediumdiffusion equations in
Proposition 1.1. For the degenerate diffusion equation with Fisher-KPP type reaction
(i.e., without convection), the above statements are proved in many articles, using
phase plane analysis method (see Huang et al. (2018); Audrito and Vázquez (2017);
Xu et al. (2020a, b)). For the case with advection, we refer to Sánchez-Garduño and
Pérez-Velázquez (2016); Gilding and Kersner (2005).

Noticing that the sharp traveling wave φc∗(x − c∗t) is the unique (up to translation)
traveling wavewith semi-finite support, it is natural to imagine that the solution u(x, t)
time asymptotically converges to a shift of the unique sharp traveling wave, φc∗(x −
c∗t − x0) with some x0 ∈ R. The solutions to Cauchy problem with compact (or
semi-compact) initial data always remain compact (or semi-compact), and therefore
the propagation property of compactly supported initial data behaves similarly not
only in speed but also in form as the traveling wave with the critical wave speed.

The first step to show the L∞ convergence to sharp traveling wave is to estimate the
evolution of the free boundary. A natural way is to construct sub- and super-solutions
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with semi-compact supports, such that the amplitude decreases or increases to the
same as sharp traveling wave, and the free boundaries of sub- and super-solutions
converges to some scope. This is achieved by Biró (2002) for the case of f (u) = 0
and g(u) = u p −uq in a delicate manner. We extend these precise estimates to a more
general case in this paper.

Lemma 2.1 Let F(t) and G(t) be the solutions to the following ordinary differential
system

⎧
⎪⎨

⎪⎩

F ′(t) = ε1A(F(t), G(t), t)F(t)(1 − F(t)),

G ′(t) = c∗Fm−1(t) − ε2B(F(t), G(t), t)(1 − F(t)),

F(0) = F0 > 0, G(0) = G0,

(2.1)

where ε1 and ε2 are positive constants, A(F, G, t) and B(F, G, t) are bounded func-
tions with positive infimum. Then

(i) limt→+∞ F(t) = 1, and the convergence rate is exponential;
(ii) if F0 < 1, then F(t) is strictly decreasing; while if F0 > 1, then F(t) is strictly

increasing. Therefore F(t) ∈ [min{F0, 1},max{F0, 1}];
(iii) limt→+∞ G ′(t) = c∗;
(iv) there exists x0 ∈ R such that limt→+∞(G(t) − c∗t) = x0, and the convergence

rate is exponential.

The conditions on A(F, G, t) and B(F, G, t) can be relaxed to be locally satisfied
with respect to F:

0 < inf
F∈[F1,F2],G∈R,t>0

A(F, G, t) ≤ sup
F∈[F1,F2],G∈R,t>0

A(F, G, t) < +∞,

and

sup
F∈[F1,F2],G∈R,t>0

B(F, G, t) < +∞,

for any 0 < F1 < F2 < +∞.

Proof Thepositivity of ε1A(F, G, t) shows themonotonicity of F(t) as (ii). Therefore,
F(t) ∈ [min{F0, 1},max{F0, 1}], and A(F(t), G(t), t) has positive infimum. This
yields (i) and further (iii). According to (2.1), we have

G ′(t) − c∗

F ′(t)
= c∗(Fm−1(t) − 1) − ε2B(F, G, t)(1 − F(t))

ε1A(F, G, t)F(t)(1 − F(t))
,

where the right hand side is uniformly bounded by some positive constant L (using
L’Hospital’s rule as F tends to 1). Therefore, |G ′(t) − c∗| ≤ L|F ′(t)|. Noticing that
F(t) is monotone and exponentially converges to 1, we find that |F ′(t)| and then
|G ′(t) − c∗| are integrable. This implies (iv). �
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Lemma 2.2 Under the growth condition (1.4), there holds

g(λu) < λm g(u), ∀λ > 1, ∀u ∈ (0, 1). (2.2)

Furthermore, define the monotone increasing part of g(u) as

g∗(u) := max
s≤u

g(s), ∀u ≥ 0, (2.3)

and define the following function for λ ∈ (0,+∞) and u ∈ (0, 1)

H(λ, u) :=

⎧
⎪⎪⎨

⎪⎪⎩

λm g(u) − g(λu)

(λ − 1)g∗(u)
, λ �= 1,

mg(u) − g′(u)u

g∗(u)
, λ = 1.

Then H(λ, u) is positive and continuous on the open set (λ, u) ∈ (0,+∞) × (0, 1).

Proof The continuity of H(λ, u) with respect to λ at λ = 1 is easily obtained by
the L’Hospital’s rule and the positivity of H(λ, u) at λ = 1 is directly shown by the
growth condition (1.4). According to (1.4), we have

(ln g(u))′ < (ln um)′. (2.4)

For any λ > 1, integrating the above inequality (2.4) over (u, λu) yields

g(λu)

g(u)
< λm, ∀λ > 1, ∀u ∈ (0, 1). (2.5)

This implies the positivity of H(λ, u) for λ > 1. Taking μ := λ−1 and û := λu in
(2.5), further, we have

g(û)

g(μû)
< μ−m, ∀μ ∈ (0, 1), ∀û ∈ (0, 1).

That is,

g(λu)

g(u)
> λm, ∀λ ∈ (0, 1), ∀u ∈ (0, 1),

which shows the positivity of H(λ, u) for λ ∈ (0, 1). �
Lemma 2.3 For any positive constants δ0, δ2 > 0, there exists a δ∗

1 > 0 such that for
all 0 < δ1 ≤ δ∗

1 , the following inequality is true

−δ1φc∗(ξ) − δ2φ
′
c∗(ξ) + δ0g∗(φc∗(ξ)) ≥ 0, ∀ξ ∈ R,

where g∗(u) is defined in Lemma 2.2.
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Proof Note that φc∗(ξ) ≡ 0, for all ξ ≥ 0, we only need to consider the case ξ < 0.
According to Proposition 1.1, φc∗(−∞) = 1, φc∗(ξ) decreases to 0 as ξ → 0−,
and more precisely, φ′

c∗(ξ) ∼ − c∗− f ′(0)
m φ2−m

c∗ (ξ), with c∗ > f ′(0). Therefore, the
function

J (ξ) := −δ2φ
′
c∗(ξ) + δ0g∗(φc∗(ξ))

behaves similarly as δ2
c∗− f ′(0)

m φ2−m
c∗ (ξ) + δ0g∗(φc∗(ξ)) when ξ → 0−. It follows

that

lim inf
ξ→0−

J (ξ)

φc∗(ξ)
≥ lim inf

ξ→0−
δ2

c∗− f ′(0)
m φ2−m

c∗ (ξ)

φc∗(ξ)
≥ lim inf

ξ→0− δ2
c∗ − f ′(0)

m
φ1−m

c∗ (ξ) = +∞,

and

lim inf
ξ→−∞

J (ξ)

φc∗(ξ)
= lim inf

ξ→−∞
δ0g∗(φc∗(ξ))

φc∗(ξ)
= δ0 max

u∈[0,1] g(u) > 0.

The above asymptotic analysis, together with the continuity and positivity of the
function J (ξ)

φc∗ (ξ)
over (−∞, 0), imply the existence of a positive constant δ∗

1 > 0 such
that J (ξ) ≥ δ∗

1φc∗(ξ) for all ξ < 0. �

The following constructions of sub- and super-solutions with semi-compact sup-
ports for degenerate diffusion equations with reaction and convection are useful for
the convergence results.

Lemma 2.4 Define

W (x, t) := F(t)φc∗(x − G(t)), (2.6)

where F(t) and G(t) are the solutions in Lemma 2.1 with A(F, G, t) ≡ 1 ≡
B(F, G, t) and initial data (F0, G0). Further assume that ε1 is sufficiently small
and ε2 is sufficiently large. Then W (x, t) is a sub-solution to (1.1) if F0 < 1; W (x, t)
is a super-solution to (1.1) if F0 > 1. Moreover there exists x0 ∈ R such that

lim
t→+∞ sup

ξ∈R
|W (ξ + c∗t, t) − φc∗(ξ − x0)| = 0,

and the convergence rate is exponential.

Proof Since φc∗(x − c∗t), with ξ = x − c∗t , is the sharp traveling wave, we have (we
write φ = φc∗ in this proof for simplicity)

− c∗φ′ + f ′(φ)φ′ = (φm)′′ + g(φ), ξ < 0. (2.7)
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Note that φ(ξ) ≡ 0 for all ξ ≥ 0, and φ(ξ) > 0 for all ξ < 0. It suffices to prove that
for any t > 0 and x < G(t),

L (F(t)φ(η)) :=F ′(t)φ(η) − F(t)φ′(η)G ′(t) + f ′(F(t)φ(η))F(t)φ′(η)

− Fm(t)(φm)′′(η) − g(F(t)φ(η)) ≤ 0, (2.8)

where η := x − G(t) < 0. Substituting (2.7) into (2.8), we obtain

L (F(t)φ(η)) =F ′(t)φ(η) − (F(t)G ′(t) − c∗Fm(t))φ′(η)

+ ( f ′(F(t)φ(η))F(t) − f ′(φ)Fm(t))φ′(η) + Fm(t)g(φ)

− g(F(t)φ(η)).

According to the differential system (2.1), we further have

L (F(t)φ(η)) =ε1F(t)(1 − F(t))φ(η) + ε2F(t)(1 − F(t))φ′(η)

+ ( f ′(F(t)φ(η))F(t) − f ′(φ)Fm(t))φ′(η) + Fm(t)g(φ)

− g(F(t)φ(η)).

Define

(F, φ) := f ′(Fφ)F − f ′(φ)Fm, �(F, φ) := Fm g(φ) − g(Fφ).

Using L’Hospital’s rule, we find

lim
F→1

(F, φ)

F − 1
= lim

F→1

f ′(Fφ)F − f ′(φ)Fm

F − 1

= lim
F→1

( f ′(Fφ) − f ′′(Fφ)φF − m f ′(φ)Fm−1)

= f ′(φ) − f ′′(φ)φ − m f ′(φ),

and

lim
F→1

�(F, φ)

F − 1
= lim

F→1

Fm g(φ) − g(Fφ)

F − 1

= lim
F→1

(m Fm−1g(φ) − g′(Fφ)φ)

= mg(φ) − g′(φ)φ.

According to Lemma 2.2, the function

H(F, φ) = �(F, φ)

(F − 1)g∗(φ)

is positive and continuous on [min{F0, 1},max{F0, 1}] × (0, 1). The analysis of the
limits as φ → 0+ and φ → 1− shows that H(F, φ) has positive infimum δ0 > 0.

123



   44 Page 12 of 19 Journal of Nonlinear Science            (2024) 34:44 

Similar analysis shows that

∣
∣
∣
(F, φ)

F − 1

∣
∣
∣ ≤ M0, ∀(F, φ) ∈ [min{F0, 1},max{F0, 1}] × (0, 1),

for some M0 > 0. Therefore, we can estimate

L (F(t)φ(η)) = (F(t) − 1) ·
(

− ε1F(t)φ(η) − ε2F(t)φ′(η)

− (F(t), φ(η))

F(t) − 1
φ′(η) + H(F(t), φ(η))g∗(φ)

)

=: (F(t) − 1) · K (F(t), φ(η), t),

where (note that φ′(η) < 0 at η < 0)

K (F(t), φ(η), t) ≥ −ε1F(t)φ(η) − ε2F(t)φ′(η) + M0φ
′(η) + δ0g∗(φ)

≥ −ε1 max{F0, 1}φ(η) − ε2 min{F0, 1}φ′(η) + M0φ
′(η) + δ0g∗(φ)

≥ 0,

provided that ε1 max{F0, 1} is sufficiently small, ε2 min{F0, 1} > M0, according to
Lemma 2.3. Therefore,L (W (x, t)) = L (F(t)φ(η)) has the same sign as F(t) − 1,
and W (x, t) is a sub- or super-solution to (1.1) for F0 > 1 or 0 < F0 < 1 respectively.

The convergence follows from the properties of F(t) and G(t) as proved in Lemma
2.1. In fact,

lim
t→+∞ sup

ξ∈R
|W (ξ + c∗t, t) − φc∗(ξ − x0)|

= lim
t→+∞ sup

ξ∈R
|F(t)φc∗(ξ + c∗t − G(t)) − φc∗(ξ − x0)|

≤ lim
t→+∞ sup

ξ∈R
(|(F(t) − 1)φc∗(ξ + c∗t − G(t))| + |φc∗(ξ + c∗t − G(t)) − φc∗(ξ − x0)|

)

≤ lim
t→+∞ |F(t) − 1| + lim

t→+∞ sup
ξ∈R

|φc∗(ξ + c∗t − G(t)) − φc∗(ξ − x0)|

=0,

since limt→+∞ F(t) = 1 and limt→+∞(G(t)−c∗t) = x0.Moreover, the convergence
is exponential. �
Lemma 2.5 Let u(x, t) be the solution of the Cauchy problem (1.1) and (1.2) with
initial data u0 ∈ A . Assume that u0 satisfies the following profile condition: there
exist 0 < δ1 < 1, δ2 > 1, X1 > 0, X2 > 0, and x0 > 0 such that

δ1φc∗(x − x0 + X1) < u0(x) < δ2φc∗(x − x0 − X2). (2.9)

Then there exist ω1(δ1) ≥ 0 and ω2(δ2) ≥ 0 such that for any t > 0, there holds

δ1φc∗(ξ − x0 + X1 + ω1(δ1)) < u(ξ + c∗t, t) < δ2φc∗(ξ − x0 − X2 − ω2(δ2)),
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where ω1(δ1) > 0, ω2(δ2) > 0, and lim
δ1→1− ω1(δ1) = 0, lim

δ2→1+ ω2(δ2) = 0.

Proof The Lyapunov-type stability results follows from the idea of Biró (2002) for
the case without convection. According to Lemma 2.4, the following two functions
are sub- and super-solutions

W1(x, t) := F1(t)φc∗(x − x0 − G1(t)), W2(x, t) := F2(t)φc∗(x − x0 − G2(t)),

with F1(0) = δ1, G1(0) = −X1, and F2(0) = δ2, G2(0) = X2. The profile condition
(2.9) implies the comparison of the initial data. Thus by the comparison principle of
parabolic equations, we have

F1(t)φc∗(x − x0 − G1(t)) ≤ u(x, t) ≤ F2(t)φc∗(x − x0 − G2(t)).

That is,

F1(t)φc∗(ξ + c∗t − x0 − G1(t)) ≤ u(ξ + c∗t, t) ≤ F2(t)φc∗(ξ + c∗t − x0 − G2(t)).

(2.10)

Lemma 2.1 shows that G2(t) − c∗t and G1(t) − c∗t both converges exponentially. In
fact,

G2(t) − c∗t =X2 +
∫ t

0
(G ′

2(τ ) − c∗)dτ

=X2 +
∫ t

0

(
c∗(Fm−1

2 (τ ) − 1) − ε2(1 − F2(τ ))
)
dτ

=X2 +
∫ t

0

(

c∗(Fm−1
2 (τ ) − 1) − ε2

ε1

F ′
2(τ )

F2(τ )

)

dτ. (2.11)

Note that F2(t) decreases to 1, F2(t) ∈ (1, δ2],

−ε2

ε1

∫ t

0

F ′
2(τ )

F2(τ )
dτ = −ε2

ε1
ln(F2(t))

∣
∣t
0 = −ε2

ε1
ln

F2(t)

δ2
≤ ε2

ε1
ln(δ2).

Further,

∣
∣
∣
∣

∫ t

0
c∗(Fm−1

2 (τ ) − 1)dτ

∣
∣
∣
∣ =

∫ t

0
|c∗| Fm−1

2 (τ ) − 1

F2(t) − 1
(F2(t) − 1)dτ

≤|c∗| max
s∈[1,δ2]

sm−1 − 1

s − 1
·
∫ t

0

−F ′
2(τ )

ε1F2(τ )
dτ

≤ max
s∈[1,δ2]

sm−1 − 1

s − 1
· |c∗|

ε1
ln(δ2).
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Substitute the above two estimates into (2.11),

G2(t) − c∗t ≤ X2 + ε2

ε1
ln(δ2) + max

s∈[1,δ2]
sm−1 − 1

s − 1
· |c∗|

ε1
ln(δ2) =: X2 + ω2(δ2).

Similarly, note that F1(t) increases to 1 and F1(t) ∈ [δ1, 1),

c∗t − G1(t) = X1 +
∫ t

0
(c∗ − G ′

1(τ ))dτ

= X1 +
∫ t

0

(
c∗(1 − Fm−1

1 (τ )) + ε2(1 − F1(τ ))
)
dτ

≤ X1 +
∫ t

0

(

|c∗|1 − Fm−1
1 (τ )

1 − F1(τ )
+ ε2

)

· (1 − F1(τ ))dτ

≤ X1 +
(

|c∗| max
s∈[δ1,1]

1 − sm−1

1 − s
+ ε2

) ∫ t

0

F ′
1(τ )

ε1F1(τ )
dτ

= X1 +
(

|c∗| max
s∈[δ1,1]

1 − sm−1

1 − s
+ ε2

)

· 1

ε1
ln

F1(t)

δ1

≤ X1 +
(

|c∗| max
s∈[δ1,1]

1 − sm−1

1 − s
+ ε2

)

· 1

ε1
ln

1

δ1

=: X1 + ω1(δ1). (2.12)

The proof is completed according to (2.10), the monotonicity of φc∗(ξ), and the esti-
mates (2.11), (2.12). �

Now we are ready to show the convergence results.

Lemma 2.6 Let u(x, t) be the solution of the Cauchy problem (1.1) and (1.2) with
initial data u0 ∈ A . Then there exists a x0 ∈ R such that u(x, t) converges in form
and in speed to φc∗(x − c∗t − x0): for any 0 < ε < 1, there exists T > 0 such that

(1 − ε)φc∗(ξ − x0 + ω1(1 − ε) + ε) ≤ u(ξ + c∗t, t)

≤ (1 + ε)φc∗(ξ − x0 − ω2(1 + ε) − ε),

(2.13)

for all t ≥ T and ξ ∈ R, where ω1 and ω2 are defined in Lemma 2.5.

Proof The case of f (u) ≡ 0 and g(u) = u p − uq with 1 ≤ p < min{m, q} was
proved by Z. Biró in Biró (2002). We show that the attractiveness property holds true
for general convection f (u) and reaction g(u)once the sub- and super-solutions proved
in Lemma 2.4 are constructed. For any u0 ∈ A , there exist sub- and super-solutions
in the form (2.6):

W1(x, t) := F1(t)φc∗(x − x1 − G1(t)), W2(x, t) := F2(t)φc∗(x − x2 − G2(t)),
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such that W1(x, 0) < u0(x) < W2(x, 0). In fact, this is achieved by choosing F2(0) >

supx∈R u0(x) and 0 < F1(0) < lim infx→−∞ u0(x), and then shifting x1 and x2.
Similar to Lemma 2.5, there exist ξ1 and ξ2 such that

F1(0)φc∗(ξ − ξ1) ≤ u(ξ + c∗t, t) ≤ F2(0)φc∗(ξ − ξ2), t > 0, ξ ∈ R, (2.14)

which presents a preliminary outline of the evolution edge of the support.
Denote z(ξ, t) := u(ξ + c∗t, t) in the moving coordinates. For any sequence {tn}

with limn→∞ tn = +∞, denote zn(ξ) := u(ξ + c∗tn, tn). The compact analysis
shows the existence of a function z(ξ) ∈ Cα(R) and a convergent subsequence of
{zn}, denoted by {zn} itself for simplicity, such that

lim
n→∞ sup

ξ∈R
|zn(ξ) − z(ξ)| = 0. (2.15)

Testing the equation zt − c∗zξ + f (z)ξ = (zm)ξξ + g(z) by any smooth function
ϕ(ξ, t), we obtain

∫

R

(
z(ξ, tb)ϕ(ξ, tb) − z(ξ, ta)ϕ(ξ, ta)

)
dξ −

∫ tb

ta

∫

R

z(ξ, t)ϕt (ξ, t)dξdt

=
∫ tb

ta

∫

R

(
zm(ξ, t)ϕξξ (ξ, t) − (

c∗z(ξ, t) − f (z(ξ, t))
)
ϕξ (ξ, t) + g(z(ξ, t))ϕ(ξ, t)

)
dξdt,

for any 0 < ta < tb < +∞. Let ta = tn , tb = tn+1, and choose ϕ(ξ, t) independent
of t . Mean Value Theorem shows the existence of θn ∈ (tn, tn+1), such that

∫

R

(
z(ξ, tn+1) − z(ξ, tn)

)
ϕ(ξ)dξ

=(tn+1 − tn)

∫

R

(
zm(ξ, θn)ϕ′′(ξ) − (

c∗z(ξ, θn) − f (z(ξ, θn))
)
ϕ′(ξ) + g(z(ξ, θn))ϕ(ξ)

)
dξ.

The compactness of {z(ξ, θn)} and its free boundary {ζn}, with ζn := supξ {z(ξ, θn) >

0} ∈ [ξ1, ξ2] according to (2.14), together with the uniform convergence (2.15), imply
the following convergence (passing to subsequences if necessary)

lim
n→∞ ζn = x0, lim

n→∞ z(ξ, θn) = w(ξ), (2.16)

for some x0 ∈ [ξ1, ξ2] and w(ξ) ∈ Cα(R) such that

∫

R

(
wm(ξ)ϕ′′(ξ) − (

c∗w(ξ) − f (w(ξ))
)
ϕ′(ξ) + g(w(ξ))ϕ(ξ)

)
dξ = 0.

Therefore, w(ξ) is the shift of the unique sharp traveling wave φc∗(ξ), i.e.,

w(ξ) = φc∗(ξ − x0).
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According to Lemma 4 of Biró (2002), for any 0 < ε < 1, there exists δ > 0 such
that μ(δ) < ε, let n be sufficiently large in (2.16) such that

|ζn − x0| < δ, |z(ξ, θn) − φc∗(ξ − x0)| < δ.

Take T = θn , using Lemma 4 of Biró (2002) again, we see that

(1 − ε)φc∗(ξ − x0 + ε) < z(ξ, T ) = u(ξ + c∗T , T ) < (1 + ε)φc∗(ξ − x0 − ε).

Applying Lemma 2.5 (starting from time T ), we obtain

(1 − ε)φc∗(ξ − x0 + ε + ω1(1 − ε)) < u(ξ + c∗t, t)

< (1 + ε)φc∗(ξ − x0 − ε − ω2(1 + ε)),

for all t ≥ T . The proof is completed. �
Proof of Theorem 1.1. This is proved in Lemma 2.6. �

We prove the almost exponential convergence rates of the attractiveness of sharp
traveling wave.

Proof of Theorem 1.2. Lemma 2.5 shows that lim
δ1→1− ω1(δ1) = 0, lim

δ2→1+ ω2(δ2) = 0.

For any ε > 0, we choose 0 < ε0 < ε, where ε0 will be determined latter. There exists
0 < ε̂ < ε0 such that ε̂ + ω1(1− ε̂) < ε0 and ε̂ + ω2(1+ ε̂) < ε0. For this ε̂, Lemma
2.6 implies the existence of T > 0 such that

(1 − ε̂)φc∗(ξ − x0 + ω1(1 − ε̂) + ε̂) ≤ u(ξ + c∗t, t)

≤ (1 + ε̂)φc∗(ξ − x0 − ω2(1 + ε̂) − ε̂),

for all t ≥ T and ξ ∈ R. Therefore,

(1 − ε0)φc∗(ξ − x0 + ε0) ≤ u(ξ + c∗t, t) ≤ (1 + ε0)φc∗(ξ − x0 − ε0), ∀t ≥ T .

Starting from time T , we construct sub- and super-solutions

W1(x, t) := F1(t)φc∗(x − x0 − c∗T − G1(t)),

W2(x, t) := F2(t)φc∗(x − x0 − c∗T − G2(t)),

with F1(T ) = 1− ε0, F2(T ) = 1+ ε0, and G1(T ) = −ε0, G2(T ) = ε0. Comparison
principle implies for all t > T ,

F1(t)φc∗(x − x0 − c∗T − G1(t)) ≤ u(x, t) ≤ F2(t)φc∗(x − x0 − c∗T − G2(t)).

Lemma 2.1 tells us that both F1(t) and F2(t) exponentially converge to 1, both G1(t)−
c∗(t − T ) and G2(t) − c∗(t − T ) exponentially converge.
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According to the proof of Lemma 2.5 (see the estimates of (2.11) and (2.12)), both
|G1(t)−c∗(t−T )| and |G2(t)−c∗(t−T )| are O(ε0) as ε0 → 0+.Wemay take ε0 > 0
smaller such that |G1(t) − c∗(t − T )| < ε/2 and |G2(t) − c∗(t − T )| < ε/2. Thus,
both free boundaries of sub- and super-solutions remains in the ε/2 neighborhood
of x0 + c∗t , and exponentially converge to some point within this neighborhood.
Together with the exponential convergence of the altitudes F1(t) and F2(t), the proof
is completed. �
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