Geometric group theory, homework 3.

Problem 1. Find the Cayley graph of the group

- (i) $\langle s, t | s^3 = t^3 = (st)^3 = 1 \rangle$,
- (ii) $\langle s, t, r | s^2 = t^2 = r^2 = (st)^3 = (tr)^3 = (rs)^3 = 1 \rangle$.

Problem 2. Find the Cayley graph of

- (i) the symmetric group S_3 of permutations of $\{1, 2, 3\}$ with generators (1, 2), (2, 3),
- (ii) the symmetric group S_4 of permutations of $\{1, 2, 3, 4\}$ with generators (1, 2), (2, 3), (3, 4),
- (iii) the Heisenberg group $\langle s, t, r | [s, t] = [s, r] = 1, [t, r] = s \rangle$.

Definition. An isometry g of a tree is

- *elliptic* if g fixes a point,
- *hyperbolic* if g preserves and translates along an isometrically embedded line (called the *axis of* g).

Problem 3. Show that each isometry g of a tree is elliptic or hyperbolic. Hint: consider the set of vertices v with minimal translation length |v, g(v)|.

Problem 4. Show that each finite group has property (FA).

Problem 5. Show that if a finite index subgroup F of G has property (FA), then G has property (FA) as well.

Problem 6. Show that each finite family of pairwise intersecting subtrees of a tree has a point in common.

Problem 7. Show that if a finitely generated group $G = \langle S \rangle$ acts on a tree and the elements s, st for all $s, t \in S$ are elliptic, then G has a global fixed point. Hint: use Problem 6.

Problem 8. Show that the groups from Problem 1 have property (FA), but admit subgroups of finite index without (FA).