Geometric group theory, homework 4.

Problem 1. Show that a Möbius transformation of the unit disc preserving the center is a Euclidean rotation or reflection. Hint: use the fact that inversions carry circles and lines to circles and lines and that they preserve angles.

Problem 2. Show that a Möbius transformation g of the unit disc preserves the hyperbolic metric. Hint: use Problem 1 to show that it suffices to consider g an inversion and to compare the scaling factor at the center of the disc with the scaling factor at its image under g.

Definition. The halfspace model for the hyperbolic plane \mathbf{H}^2 consists of the subset of the complex plane $\{z: \operatorname{Im} z > 0\}$ with scaling factor $\frac{1}{\operatorname{Im} z}$ at each point z. Note that homotheties centred at the real axis are obviously isometries, and from Problem 3 it will follow that any Möbius transformation of the halfspace model is an isometry.

Problem 3. Show that the Poincaré disc model and the halfspace model for \mathbf{H}^2 are isometric. Hint: consider an inversion in the circle of radius $\sqrt{2}$ centred at -i. By Problem 2 it suffices to compare the scaling factors in the two models at the fixed point $(\sqrt{2} - 1)i$.

Problem 4. Compute the area of an ideal hyperbolic triangle.

Problem 5. Show that in the halfspace model the group of orientation preserving isometries can be identified with $PSL(2, \mathbf{R})$ acting by homographies.

Problem 6. Show that an isometry of \mathbf{H}^2 distinct from the identity is elliptic, parabolic or hyperbolic, depending on whether the absolute value of its trace in $PSL(2, \mathbf{R})$ is < 2, equal 2, or > 2.

Problem 7. Realise the group presented by

 $\langle p,r,s,t,u \mid p^2 = r^2 = s^2 = t^2 = u^2 = [p,r] = [r,s] = [s,t] = [t,u] = [u,p] = 1 \rangle$

as a subgroup of isometries of \mathbf{H}^2 .

Problem 8. Compute the area of a right-angled pentagon in \mathbf{H}^2 .

Problem 9. Let P be a polygon homeomorphic to a disc in the tessellation of \mathbf{H}^2 by right-angled pentagons. Estimate the number of pentagons in P by the number of edges on the perimeter of P.