Geometric group theory, homework 5.

Problem 1. Realise the group presented by

$$\langle p, r, s, t \mid prst = pr^{-1}s^{-1}t^{-1} = 1 \rangle$$

as a subgroup of isometries of \mathbf{H}^2 . Show that for this presentation Dehn's Algorithm (with 5 replaced by 3) gives incorrect output.

Problem 2. Realise the group presented by

$$\langle r, s, t \mid r^2 s^2 t^2 = 1 \rangle$$

as a subgroup of isometries of \mathbf{H}^2 . Show that for this presentation Dehn's Algorithm (with 5 replaced by 4) gives correct output.

Problem 3. Show that the groups in Problem 1 and 2 are isomorphic.

Problem 4. What strongest possible small cancelation conditions are satisfied by groups

- (i) $\langle a_1, a_2, b_1, b_2, c_1, c_2 \mid [a_1, a_2][b_1, b_2][c_1, c_2] = 1 \rangle$,
- (ii) in Problem 1,
- (iii) in Problem 2,
- (iv) $\langle a, t \mid t^{-1}at = a^2 \rangle$,
- (v) $\langle r, s, t \mid rst = tsr \rangle$,
- (vi) $\langle s, t \mid s^2 t^2 = ts \rangle$?

Problem 5. Let X be the presentation complex of a group $G = \langle S|R \rangle$ satisfying $C'(\frac{1}{6})$ such that R does not contain proper powers. Show that X does not admit a homotopically nontrivial map from the 2-sphere.

Definition. Let X be a piecewise Euclidean 2–complex. The vertex link at a vertex $v \in X$ is the metric graph with vertices corresponding to edges issuing from v, and edges corresponding to corners of 2–cells at v with the length equal to the angle at the corner. The girth of a graph is the length of the shortest loop that is not homotopically trivial.

Problem 6. Suppose that in a presentation of G all relators have length six. Equip the presentation complex with the piecewise Euclidean metric where all the 2-cells are regular hexagons. Show that if the girth of all vertex links is $\geq 2\pi$, then G satisfies C(6).

Problem 7. Let |S| = 2 and let $G = \langle S|r \rangle$, where r is a single cyclically reduced word of length L, chosen at random. Show that when $L \to \infty$, the probability that G satisfies $C'(\frac{1}{6})$ tends to 1.