
TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN

PLANE

TAUGHT BY PIOTR PRZYTYCKI.

NOTES BY DYLAN CANT.

1. Introduction

The Euclidean plane is a collection of points. Lines are subsets of the Euclidean plane.

We will typically refer to points by capital letters A,B,C etc and lines by lower case letters

l, k,m etc.

k

C

A
B

In the figure above, the point C lies on the line k, and we have drawn the line segment

AB between the points A and B. If a point X lies on the segment AB, then we say X is

between A and B.

X
A

B

We take the point of view that lines, circles, and any other geometric figures are sets of

points. Consequently, we will often use the notation X ∈ k (read: X is in/on k) when X is

a point and k is a geometric figure.

Another important concept is the notion of a transformation of the plane. A transfor-

mation of the plane should be thought of as a “movement” of points. The first chapter is

devoted to exploring reflections, and the second chapter explores rotations, both of which

are transformations of the plane.

Definition 1.1. Parallel lines Two lines l and l′ are parallel if they do not intersect

l

l′

Before we begin proving theorems, let us note a two intuitive facts:
1
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Fact 1.2. For any two distinct points A and B there exists one and only one line k = AB

which contains these two points.

Fact 1.3. For any line k there is at least one point P not contained in that line.

Given a pair of points A,B we denote the distance between them as |AB|. The next

fact about Euclidean geometry is less obvious then the previous facts, so take some time to

convince yourself that it is reasonable.

Fact 1.4 (Triangle Inequality). If A,B,C are three points in the plane, then their distances

satisfy

|AC| ≤ |AB|+ |BC| ,

and equality holds if and only if B lies on the line segment AC.

A |AB| B

|BC|

C

|AC|

Definition 1.5 (angles). If A,B,C are three distinct points in the plane, then we may

construct the angle ∠ABC, which has a degree-measure in between 0◦ and 180◦.

B CA

∠ABC = 0◦ a right angle 90◦

B CA

∠ABC = 180◦

For now we are only considering unoriented angles (when we consider oriented angles, we

will need to allow angles with degree-measure in between 180◦ and 360◦).

Given three points A,B,C, we say they form a triangle if they do not lie on a common

line L. If three points A,B,C lie on a straight line then we say they form a degenerate

triangle or are collinear.

Exercise 1.6. Let ABC be a triangle. Using the triangle inequality, prove that

|AB| − |BC| < |AC| < |AB|+ |BC| ;

why is this inequality strict? Hint : non-degeneracy of the triangle ABC implies that the

above inequalities are strict.

Given two lines k, l and points A,C on k and B,D on l such that line segments AC and

BD intersect in a point E, we can form the four angles ∠AEB, ∠BEC, ∠CED, and ∠DEA.
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If all four of these angles are equal, then the lines l, k are perpendicular.

l

k

E
D

B

C

A

Remark. When any two lines AC and BD intesect in a point E as shown above, four

angles are formed. Even if the lines are not perpendicular, we still have two equalities

∠AEB = ∠CED and ∠AED = ∠CEB. What distinguishes a perpendicular pair of lines

is that all four angles are equal; one might say that a perpendicular pair of lines has more

symmetry than an arbitrary pair of lines.

Fact 1.7. Given a line k, and any point A, there is a unique perpendicular l to k which

contains A. Note: this fact is true whether or not A lies on k (see the figure below).

kA

l

dropping the perpendicular

from A to k

k

A

l

raising the perpendicular

to k from A

1.1. Reflections. Using Fact 1.7, we can define reflections through lines; reflections will

be an indispensable tool when we start proving theorems.

Definition 1.8. Let k be a line. The reflection through k is a transformation of the

Euclidean plane which sends a point A to its reflection A′. This reflection satisfies two

properties.

(i) If A lies on k, then A′ = A (in other words, the reflection fixes the line k).

(ii) If A does not lie on k, then A′ is the point such that the line AA′ is perpendicular to

k in a point O such that |AO| = |OA′| (see figure below).
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k

A

A′

B′

B

C

C ′

O

There is an important fact related to this definition.

Fact 1.9. The reflection through any line k preserves distances and angles. In other words, if

A,B,C are any two points whose reflections through k are A′, B′ and C ′, then |AB| = |A′B′|,
and ∠ABC = ∠A′B′C ′.

Exercise 1.10. Prove that the reflection of a line is a line (hint : use the equality case in

the triangle inequality). Prove that if l is parallel to k, then its reflection l′ through k is also

parallel to k. Prove that l is perpendicular to k if and only if l is its own reflection (through

k).

Example. If we give our plane x and y coordinates (something we will almost never do),

then the reflection of A = (x, y) through the y axis is easily seen to be A′ = (−x, y).

x

y

A′ = (−x, y) A = (x, y)

Definition 1.11. The bisector (or perpendicular bisector) of a segment AB is the line

k perpendicular to AB at its centre.

A

B

k

k is the bisector of AB
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Exercise 1.12. Let k be the bisector of AB. Prove that the reflection of A through k is B.

Theorem 1.13 (characterization of points on the bisector). A point X lies on the bisector

of a segment AB if and only if |AX| = |XB|.

Proof. Throughout the proof, let k denote the bisector of AB, and let Z ′ denote the reflec-

tion of Z through the bisector of AB:

A B

k

ZZ ′

This theorem is an “if and only if” statement, so we must prove two implications. First

we prove the =⇒ direction, namely, we will prove that if X lies on the bisector of AB then

|AX| = |XB|. Since X lies on the bisector, X = X ′. By the result of Exercise 1.12, B = A′,

and since reflections preserve distances, |AX| = |A′X ′| = |BX|, as desired.

Now we prove the ⇐= direction of the proof. We assume that |AX| = |XB|. We prove

by contradiction, and suppose that X does not lie on k. Then either AX or BX intersects

k, and so without loss of generality, we can assume that AX intersects k at a point Y , as in

the following figure.

A B

k

X

Y

Since Y lies on the bisector through AB, we know from the =⇒ direction of this theorem

(which we already proved) that |AY | = |Y B|. Applying the triangle inequality twice yields

|BX| < |BY |+ |Y X| |AX| = |AY |+ |Y X| ,

where we know the first inequality is strict since Y cannot lie on BX, since X and B lie on

the same half-plane determined by k, while Y lies on k. We also know the second inequality

is actually an equality because Y lies on AX. But since |AY | = |BY |, we conclude that

|BX| < |AX| , which contradicts our assumption. Since we began our argument by assuming
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that X did not lie on k, the contradiction |BX| < |AX| forces us to conclude that X must

lie on k, and this completes the proof. �

For the next proof we require some preliminary results.

Fact 1.14. If l is a line and X is a point not on l, then there is a unique line k containing

X which is parallel to l.

Exercise 1.15. Prove the following:

(a) If l, k are parallel lines, and m intersects k, then m also intersects l. Hint : use the

preceeding fact.

(b) If k is a line containing distinct points A and B, then the perpendiculars to k raised

from A and B are parallel lines. Hint : Let X lie on the perpendiculars to k raised

from A and from B, then use uniqueness of perpendiculars to k dropped from X.

(c) If l, k are parallel, and m is perpendicular to l at A, then there is a point B on k such

that m is perpendicular to k at B. Hint : by (a), m intersects k at some point B, and

by (b) the perpendicular to m raised from B is parallel to l. Then use the fact stated

before this exercise.

(d) If l, k are parallel lines, and m 6= n are such that m is perpendicular to l and n is

perpendicular to k, then m and n are parallel. Hint : use (c) to conclude that m is

perpendicular to k, and so n and m are both perpendicular to k. Then use (b).

l

k
m

n

Theorem 1.16. In any triangle ABC, the bisectors of AB, AC and BC all intersect in a

single point.

Proof. Since AB and BC are not parallel, their perpendicular bisectors are also not parallel

(by Exercise 1.15.d), and so they intersect at some point O. By Theorem 1.13, |OA| = |OB|
and |OB| = |OC|. But then |OC| = |OA|, so O lies on the bisector of AC (using Theorem

1.13 again). Thus O lies on all three bisectors, which is what we wanted to show.

OA

B

C

�
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Remark. From the proof, |AO| = |BO| = |CO|, and so there is circle passing through ABC

centred at O. This circle is unique, since any other circle with centre O′ passing through

ABC would have |AO′| = |BO′| = |CO′|, and so O′ would also lie on all three bisectors of

ABC. Since three lines intersect in (at most) a unique point, we conclude that O′ = O, so

the circle is unique. This circle is called the circumscribed circle of the triangle ABC.

Theorem 1.17. Let X be a point outside the line AB. Then X lies on the bisector of AB

if and only if ∠XAB = ∠XBA.

Remark. The assumption that X lies outside the line AB is crucial, for it is easy to show

that if X is anywhere inside the segment AB, then ∠XAB = ∠XBA (even if it is not on

the bisector).

Proof. Let k be the bisector of AB. We begin with the =⇒ direction of the theorem, so

we assume that X ∈ k. If we reflect in k, then X ′ = X and A′ = B, and since reflections

preserve angles, ∠XAB = ∠X ′A′B′ = ∠XBA, as desired.

Now we prove the ⇐= direction of the theorem. As in the proof of Theorem 1.13, we

prove by contradiction, and so we suppose that ∠XAB = ∠XBA, but X does not lie on k.

Without loss of generality, suppose that X and B lie on the same half plane determined by

k. Let Y be the intersection point of AX and k, as shown below.

A B

Y

X

k

Since the lines AX and AY are equal, the angles ∠XAB and ∠Y AB are equal. By the =⇒
part of this theorem, we know that ∠Y AB = ∠Y BA, and thus ∠XAB = ∠Y BA. However,

we assume that ∠XAB = ∠XBA, so we conclude that ∠XBA = ∠Y BA (if we look at the

above figure, this equality is obviously not true, but we need to use logical arguments to

finish the proof). Since ∠XBA = ∠Y BA, we conclude that the lines BX and BY are equal

(since X and Y lie on the same half-plane determined by line AB), and so the line Y X is

equal to the line BX. However, we defined Y to lie on the line AX, so the line AX is equal

to the line Y X. But then we have equality of lines BX = AX, and so X lies on the line

AB, which we assume is not true. This is a contradiction, and so we must have that X lies

on k, and so we have completed the proof. �

Corollary 1.18. In a triangle ABC, the following three conditions are equivalent:

(i) |AC| = |CB|.
(ii) ∠CAB = ∠CBA.
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(iii) C lies on the bisector of AB.

Proof. Since ABC is a triangle, we know that C does not lie on the line AB. The statement

(i) ⇐⇒ (iii) is Theorem 1.13, (ii) ⇐⇒ (iii) is Theorem 1.17, and so these three statements

are equivalent. �

Definition. If ABC is a triangle which satisfies any of the equivalent properties in the above

corollary, then ABC is called an isosceles triangle. (Note: by our definition, equilateral

triangles are also technically isosceles triangles).

A B

C

Exercise 1.19. Let T = ABC be a triangle. Prove that T is isosceles if and only if there

exists a line k such that T is its own reflection when we reflect through k. (we say that the

reflection through k is a symmetry of the triangle T ).

Prove that T is equilateral if and only if there exist two distinct lines k and l such that T

is its own reflection through k and through l.

Remark: we could summarize this exercise by saying that non-isosceles triangles have

no symmetry, isoceles triangles have some symmetry, and equilateral triangles have the most

symmetry.

Theorem 1.20. Let ABC be a triangle with ∠CAB < ∠CBA. Then |BC| < |AC|. (this

theorem says that, opposite a smaller angle, you have a smaller side).

Proof. Since ∠CAB < ∠CBA, we know that there exists a point X in the segment AC

such that ∠XBA = ∠CAB. This is shown in the figure below.

A B

C

X

Then we apply the triangle equality to conclude

(∗) |AX|+ |XC| = |AC| ,

and the triangle inequality to conclude that

(∗∗) |BX|+ |XC| > |BC| .
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We can conclude a strict inequality above because non-degeneracy of ABC implies that

BXC cannot lie on a common line. By Theorem 1.17 we know that |AX| = |BX|, and so

we combine (∗) and (∗∗) to conclude that |BC| < |AC|, as desired. �

1.2. Some applications of reflections.

Problem 1.21. Given a line k and points A,B ∈ k on the same side of k, find X ∈ k such

that |AX|+ |XB| is minimized.

A B

X
k

To solve this problem, we will consider the reflection through k. The idea for the solution is

summarized nicely in the following figure. Let X be any point on k, and let A′ denote the

reflection of A through k. Then |AX| = |A′X|, so the problem of minimizing the distance

|AX|+ |XB| is the same as the problem of minimizing the distance |A′X|+ |XB|. Suppose

that X1 ∈ k does not lie on the segment AB. Then the triangle inequality tells us that

|A′X1| + |X1B| > |A′B|. Now let X2 ∈ k be the intersection of segment A′B with k (X2

exists because A and B lie on the same side of k, by assumption, therefore A′ and B lie on

opposite sides of k). Since X2 lies on the segment AB, |A′X2| + |X2B| = |A′B|, and so we

deduce that for all X1 6= X2 on k, we have

|AX2|+ |X2B| < |AX1|+ |X1B| .

This inequality tells us that the point X2 is the unique minimizer of |AX|+ |XB|, and this

completes the solution.

A B

X1

X2
k

A′
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Problem 1.22. Show that two distinct circles can intersect in at most two points.

A
O1

O2

A′

Before we solve this problem, let us recall the definition of a circle. If O is a point and r a

positive real number, then the circle centred at O with radius r is the collection of all

points X such that |OX| = r.

Now suppose that we have two distinct circles o1 and o2 with centres O1 and O2, respec-

tively. If O1 = O2, then the radii of o1 and o2 must be different (or else they would be the

same circle!), in which case it is easy to show that o1 and o2 do not intersect.

Supposing now that O1 6= O2, suppose that A ∈ o1 ∩ o2 (read: A is in the intersection of

o1 and o2). If A′ is any other point on o1 ∩ o2, then |AO1| = |A′O1| and |AO2| = |A′O2|, by

the definition of a circle. But by Theorem 1.13, this implies that the line O1O2 bisects the

segment AA′. Thus the reflection through O1O2 sends A to A′. Therefore, A′ is uniquely

determined by A. This completes the solution.

Exercise 1.23. Show that if two circles o1 and o2 intersect in a single point A, then A must

lie on the line O1O2 (therefore, in the notation of the previous example, A′ = A).

Exercise 1.24 (Congruence of circles). If o1 and o2 are two circles with the same radius,

construct a line k so that o1 and o2 are reflections of each other through k.

o1

o2

k

Exercise 1.25. Let k be a line and o a circle. Prove that k and o intersect in at most two

points. Hint : Follow Example 1.2.2; if A is one intersection point, any other intersection

point is uniquely determined by A.

Exercise 1.26 (Preparation for Example 1.2.3). Prove that s = ABCD is a square if and

only if A is the reflection of C through BD, B is the reflection of D through AC, and
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|AC| = |BD|.

C

B
A

D

Example 1.27. Given circles o1 and o2 and a line k, find necessary conditions under which

a square ABCD such that A ∈ o1, C ∈ o2 and B,D ∈ k exists.

k

o1

o2

C

A

B

D

Let us begin our solution by supposing that such a square ABCD exists. Thanks to Exercise

1.26, we know that the reflection through BD = k sends A to C. Therefore o′1 intersects o2,

where o′1 denotes the reflection of o1 through k, (since C is on o′1 and o2). Thus a necessary

condition for the existence of such a square is that o′1 and o2 must intersect.

Now we prove that this condition on o1, o2 and k is sufficient ; that is, if o′1 and o2 intersect,

then a square ABCD satisfying our problem exists. Let o′1 and o2 intersect in a point C, and

let A be the reflection of C through the line k. Let O be the midpoint of AC; clearly O lies

on k. Now let B 6= D be the (only) two points on k such that |OB| = |OD| = |OA| = |OC|.
This construction is summarized in the figure below.

k

o1o′1

o2

C O A := C ′

B

D

k

o1o′1

o2

O

C

A

B

D
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Then since BD is the bisector of AC and AC is the bisector of BD (prove this!), and

|BD| = |AC| (by our construction), we can apply Exercise 1.26 to conclude that ABCD is

a square. This completes the solution.

Definition 1.28. Here we introduce two concepts which will be used in the next example.

Let X be a point and k a line. The distance from X to k (written |X, k|) is the length of

the perpendicular line segment from X to k.

kX

Exercise 1.29. Prove that the distance |X, k| is the minimum distance between X and a

point on k.

Exercise 1.30. If s = ABCD is a square of length 1 and l and k are lines such that AD = l

and BC = k, then any point X on the segment AB satisfies |X, l|+ |X, k| = 1.

k
l

A
B

C
D

Example 1.31. Suppose the vertices of a quadrilateral A,B,C,D lie on distinct sides of a

square s of side length 1. Prove that the perimeter of ABCD is at least than 2
√

2.

C

A

B

D

The solution is nicely summarized in the following figure. Let l1 be the line coinciding with

the side of s which contains the point B. Reflecting s in l1 defines a new square s′ containing
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the reflections A′B′C ′D′ of our original quadrilateral ABCD.

C

A

B′B

D

C ′

A′

D′

l1

We repeat this process with the line l2 coinciding with the side of s′ containing the point C ′;

this defines the points A′′, B′′, C ′′ and D′′. Repeating the process one last time, we reflect

in the line l3 coinciding with the side of s′′ containing the point D′′. This construction is

summarized in the figure below. Now note that |AB| + |BC| + |CD| + |DA| is equal to

|AB| + |BC ′| + |C ′D′′| + |D′′A′′′|, and by the triangle inequality, this sum of distances is

bounded below by |AA′′′|.

C

A

B

D

C ′

A′

D′

A′′

B′′

D′′

C ′′′

A′′′

B′′′

l1

l2

l3

l4
O

Luckily, we can calculate |AA′′′|. Let O be the reflection of A′′′ through l2. Since l3 bisects

A′′A′′′ and the reflection through l2 fixes l3 (since l3 ⊥ l2) we deduce that l3 bisects A′O

(since the l2 reflection sends A′′ to A′ and A′′′ to O). Therefore the l3 reflection sends A′ to

O and so the distance from A′ to O is twice the distance from A′ to l3. Since the l1 reflection

sends A to A′, the distance from A to A′ is twice the distance from A′ to l1. We obtain

|AO| = |AA′|+ |A′O| = 2 |l1A′|+ 2 |A′l3| = 2(|l1A′|+ |A′l3|) = 2,

since l1 and l3 coincide with parallel sides of the square s′ (see Exercise 1.30). An easier

argument shows that |OA′′′| = 2, and thus |AA′′′| is the hypotenuse of a right triangle with

both non-hypotenuse side lengths equal to 2. We apply Pythagoras’ theorem (which we will

prove later on!) to deduce |AA′′′|2 = 22 + 22, so |AA′′′| = 2
√

2.
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Exercise 1.32. Let s be a unit square and let A be a point on one side of s (suppose A is

not a corner). Prove that there is exactly one set of points B,C,D on the other sides of s

such that the perimeter of ABCD satisfies the lower bound of 2
√

2.

A

Hint: referring to the figure in Example 1.2.4, draw a straight line from A to A′′′ and consider

“folding” this straight line back into a quadrilateral.

Exercise 1.33 (continuation of previous exercise). Consider a point A and a unit square

s as in the previous exercise. Suppose we “play billiards” in s, where we can hit a billiard

ball initially located at A and let it bounce around the square. The rule of the game is that

when the ball bounces off of an edge of the square the angle of incidence must the same as

the angle of reflection.

A

(This rule is a very good approximation to how a billiard ball actually moves, as most billiard

players know.)

Prove that if you hit the ball towards the adjacent wall in such a way that it comes back

to A after hitting each of the other three walls exactly once, then the trajectory of the ball

will be the unique quadrilateral from Exercise 1.32.

A
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2. Rotations

In this section we introduce rotations as a new tool we can use to prove theorems.

Definition 2.1. The rotation through an (oriented) angle α at a point O is the unique

transformation of the plane satisfying two properties:

(i) The point O is the only point fixed by the rotation (this is the centre of the rotation).

(ii) If A 6= O, then A gets rotated to the unique point A′ such that ∠AOA′ = α and

|OA′| = |OA|.

Theorem 2.2. Pick points A,B distinct from O such that ∠AOB = α/2; then the rotation

is the reflection through k := OA followed by the reflection through l := OB.

Proof. The reason this theorem is true is best seen in the following figure.

X

A

B

X ′

X ′′

k

l

α/2

Since O is clearly fixed under both reflections, it is clear that this composition of two reflec-

tions is a transformation of the plane which satisfies (i). It remains to prove (ii), namely if

X 6= O then ∠XOX ′′ = α, and |OX| = |OX ′′|.
The angle ∠XOX ′ is twice the angle ∠AOX ′ since reflecting in k proves the equality

∠AOX ′ = ∠XOA and clearly ∠XOX ′ = ∠AOX ′ + ∠XOA. Similarly, the angle ∠X ′OX ′′

is twice the angle ∠X ′OB. Thus

∠XOX ′′ = ∠XOX ′ + ∠X ′OX ′′ = 2∠AOX ′ + 2∠X ′OB = 2∠AOB = α.

The second part is easy since reflections preserve distances so we know |OX| = |OX ′| =

|OX ′′|. We have proved this composition of two reflections is a transformation which satisfies

(i) and (ii) in Definition 2.1, so it must be the reflection through α at O. �

Corollary 2.3. Rotations preserve distances and angles.

Proof. This follows from Fact 1.9 (which states that reflections preserve distances and

angles), since any rotation is simply a composition of two reflections. �
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Fact 2.4. Let k, l be lines in the plane intersecting another line m. Then ` and k are parallel

if and only if α = β (in the figure, α is the red angle and β is the blue angle).

k

m

`

β

α

Exercise 2.5. We can actually prove this Fact, using the previous Fact 1.14.

(a) Let O be a point and ` a line not containing O. Prove that the 180◦ rotation around O

sends ` to a line `′ parallel to `. Hint : the 180◦ rotation is a composition of reflection

through any pair of perpendicular lines intersecting at O; choose a special pair.

(b) Suppose that ` ‖ k. In the context of Fact 2.4, Let m intersect ` at a point A and k

at a point B, and let O be the midpoint of the segment AB. Then the 180◦ rotation

through O sends A to B, and by part (a) sends ` to a line `′ parallel to ` which

contains B. Use Fact 1.14 to prove that `′ = k.

(c) Use this rotation to conclude α = β. Hint: pick point C on ` such that ∠OAC = α,

and argue that ∠OBC ′ = β, where C ′ is the rotated image of C. Then use the fact

that rotations preserve angles.

(d) For the converse, suppose the angles are equal. As in part (b), consider the rotation

around O, and picking C ∈ ` such that ∠OAC = α = β, show that ∠OBC ′ = β

implies C ′ must lie on k, so that the rotation of 180◦ around O sends ` to k. Conclude

that ` ‖ k.

Corollary 2.6. The sum of interior angles in a triangle is 180◦.

D EC

A B

k

`

Proof. Let k be the unique parallel to ` = AB passing through C. As in the figure, pick

points D and E on k such that C is between D and E. Without loss of generality, we may
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assume that the three angles ∠ACD, ∠BCA and ∠ECB do not intersect (by choosing D and

B on opposite sides of AC). Then ∠ACD+∠BCA+∠ECB = ∠BCD = 180◦. Since k and

` are parallel, we may apply Fact 2.4 to conclude ∠CAB = ∠ACD and ∠ABC = ∠ECB.

Then we conclude ∠CAB + ∠BCA+ ∠ABC = 180◦, as desired. �

Definition 2.7. A quadrilateral ABCD is a collection of four distinct segments called

edges AB, BC, CD and DA; the four points A,B,C,D are called vertices. We require

that no line contains three (or more) of the four points (i.e. ABCD is “non-degenerate”). If

two edges intersect at a vertex (e.g. segments AB and AD intersect at A) we say that two

edges are adjacent. We require that non-adjacent edges do not intersect.

In the figure below, the green figure is a genuine quadrilateral, and the red figures are not

quadrilaterals.

C

A B

D

C

A B

D

C

A B

D

Corollary 2.8. For any quadrilateral ABCD, the sum of the interior angles is 360◦.

Proof. As in the figure below, split the quadrilateral ABCD into two triangles ABC and

ADC.
C

A B

D

Then, using Corollary 2.6, we know that ∠DAC + ∠ACD + ∠CDA = 180◦ and ∠CAB +

∠ABC +∠BCA = 180◦. Since ∠DAB = ∠DAC +∠CAB and ∠BCD = ∠BCA+∠ACD,

we conclude

∠DAB + ∠ABC + ∠BCD + ∠CDA = 360◦,

as desired. �

Theorem 2.9. Let k′ be the rotation of k around a point O by angle 0◦ < α < 180◦. Then

the angle between k and k′ is α. Here the angle between k and m is computed by starting
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at any half-line of k and going clockwise until you hit one of the two half-lines of l.

O

k

k′

Proof. Let A′ be the rotation of A around O by the angle α.

If O ∈ k, then the theorem follows immediately from the definition of a rotation. If not,

since 0◦ < α < 180◦, we claim that the two lines are not parallel and intersect at a point P .

To prove this claim, suppose not (so that k and k′ are parallel); then A, O and A′ all lie on

a common line, so α must have been 180◦.

If O 6∈ k, then pick A ∈ k such that OA is perpendicular to k, as shown below:

P

O

kA

A′

k′

Referring to the colours in the figure above, we note that since OA is perpendicular to k,

the green angle between OA and k is 90◦. Since OA′ is the rotation of OA and k′ is the

rotation of k, we conclude (since rotations preserve angles) that the second green angle is

also 90◦. Since the angles inside a quadrilateral add up to 360◦, we know that the red angle

plus the blue angle at O is 180◦. But we also know that the red angle plus the blue angle at

the intersection of k and k′ is equal to 180◦ (since they join to make a straight line) and so

we conclude that the two blue angles are in fact equal. Since the blue angle at O is ∠AOA′,

we deduce that it is the angle of rotation, namely α. This completes the proof. �
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Problem 2.10. Let ABCD be a square and suppose E ∈ DC and F ∈ AD are such that

|DE| = |AF |. Prove that AE and BF are perpendicular.

A
B

C
D

F

E

Solution. The trick is to rotate by 90◦ through the centre of the square.

A
B

C
D

F

E

Then A 7→ D 7→ C 7→ B 7→ A, and since F is between AD, F ′ is between DC. Since

E and F ′ are both between DC and located at a distance of |DE| from D, we conclude

they are equal E = F ′. Hence the line FB is rotated to the line AE. We can thus apply

Theorem 2.9 to conclude the angle between lines FB and AE is 90◦; in other words, they

are perpendicular.

Definition 2.11 (Congruence). We say that two figures are congruent if one can be ob-

tained from the other by a sequence of of reflections.

Exercise 2.12.

(1) Prove that all points are congruent.

(2) Prove that all lines are congruent.

(3) Prove that all circles of the same radius are congruent. Can two circles of differing

radii be congruent?

(4) Consider a figure F defined by the union of two intersecting perpendicular lines, as

shown below.

F
F′

Prove that if F′ is another figure made out of two intersecting perpendicular lines,

then F is congruent to F′.
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Exercise 2.13 (if you know what “equivalence relations” are). Prove that “congruence” is

an equivalence relation on the set of all figures.

Definition 2.14 (Congruence of Triangles). For triangles ABC we modify the definition

of congruence a little bit. We say ABC and A′B′C ′ are congruent if there is a sequence of

reflections taking A to A′, B to B′ and C to C ′. In words, this modification of the definition

of congruence takes the ordering of the vertices into account.

Theorem 2.15 (Triangle Congruence). ABC and A′B′C ′ are congruent if and only if one

of the following condition holds.

(i) (SSS) the three sides are equal; |AB| = |A′B′|, |AC| = |A′C ′| and |BC| = |B′C ′|.
(ii) (SAS) one of the pairs of corresponding angles are equal, and the two pairs of sides

adjacent to this angle have equal length. For example: ∠CAB = ∠C ′A′B′ and

|AC| = |A′C ′| and |AB| = |A′B′|.
(iii) (ASA): two of the pairs of corresponding angles are equal, and the pair of segments

which are adjacent to these angles is equal. For example: ∠CAB = ∠C ′A′B′ and

∠CBA = ∠C ′B′A′ and |AB| = |A′B′|. Note that equality in two angle pairs auto-

matically implies the third angle pair is equal, so one does not care which ones they

are.

In the figure below, we have shown an instance when the (SAS) criterion would apply:

A
B

C

A′

B′
C ′

Remark. The following figure shows non-congruent triangles ABC and ABC ′ with side-

side-angle equality |AB| = |AB|, |AC| = |AC ′| and ∠ABC = ∠ABC ′.

A

C ′B C

While this remark demonstrates that “side-side-angle” equality is, in general, not sufficient

to guarantee congruence of two triangles ABC and A′B′C ′, there is one case where the

“side-side-angle” equalities do guarantee congruence (see the Lemma below).
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Definition 2.16. let ABC be an angle. The bisector of ∠ABC is a line k passing through

B such that the reflection through k interchanges the two half-lines defining the angle ∠ABC.

A

B

C

k

A′

C ′

Exercise 2.17. Prove that the bisector to an angle ABC always exists. Hint: pick Ã on

the ray BA so that ∠ÃBC = ∠ABC, and such that
∣∣∣ÃB∣∣∣ = |BC|. Let k be the bisector of

the segment ÃC. Prove that k bisects ∠ABC.

Proof (Proof of Theorem 2.15). Obviously, if ABC and A′B′C ′ are congruent then (i), (ii)

and (iii) all hold. The point of the theorem is that (i), (ii) and (iii) contain (a priori) less

information than full-blown congruence.

In class we proved that the (SAS) criterion implies congruence. Here we will prove that

the (SSS) criterion implies congruence. Suppose we have our two triangles ABC and A′B′C ′,

as shown below, and suppose that |AB| = |A′B′|, |BC| = |B′C ′| and |AC| = |A′C ′|.

A
B

C

A′

B′
C ′

If we reflect through the bisector of AA′, then A gets sent to A′, and B and C get sent to

B′′ and C ′′, respectively:

B′′

C ′′

A′

B′
C ′

Assuming |AB| = |A′B′|, then |A′B′′| = |A′B′|, and so the bisector through B′B′′ contains

A′. It follows that reflecting through the bisector of B′B′′ sends B′′ to B′, A′ to A′ (and C ′′

to C ′′′). If C ′′′ = C ′ then we got lucky, and the triangles are congruent. If C ′′′ 6= C ′. then

|A′C ′′′| = |AC| = |A′C ′| and |B′C ′′′| = |BC| = |B′C ′|, and so A′B′ is the bisector to the

segment C ′C ′′′ (by Theorem 1.13). It follows that reflecting in A′B′ sends C ′ to C ′′′ (and
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doesn’t move A′ or B′). This proves that ABC and A′B′C ′ are congruent.

A′

B′
C ′

C ′′′

We remark that we needed, at most, three reflections to move ABC to A′B′C ′. �

Exercise 2.18. Prove that the (ASA) criterion for two triangles ABC and A′B′C ′ implies

congruence of ABC and A′B′C ′. Hints: suppose |AB| = |A′B′| and, following the above

proof, use two reflections to move the pair (A,B) to the pair (A′, B′). Refering to the

notation of the proof of Theorem 2.15, assume that C ′ and C ′′ are on opposite sides of A′B′.

Consider A′C ′C ′′ (see below). Prove that ∠A′C ′C ′′ = ∠A′C ′′C ′ (by reflecting one triangle

through A′B′, and showing that the line B′C ′′ must be reflected to B′C ′ and A′C ′′ must be

reflected to A′C ′, so that C ′′ must be reflected to C ′) and conclude (by Theorem 1.17) that

A′ lies on the bisector through C ′C ′′. Similarly, conclude that B′ lies on the bisector through

C ′C ′′, and thus A′B′ is the bisector through C ′C ′′. It follows that the reflection through

A′B′ sends C ′ to C ′′ (as in the proof of Theorem 2.15, this is exactly what we want!).

A′

B′

C ′

C ′′

Problem 2.19. Let ABC be a right-angled triangle with |AB| = 3 |AC| and let D,E lie on

side AB be chosen so that |AD| = |DE| = |EB|. Prove that ∠CDA+∠CEB+∠CBA = 90◦.

A D E B

C

Solution. It helps to build a 3 × 3 grid to house our triangle as in the figure below. With

the labels from the figure below, we remark that the counterclockwise rotation of 90◦ around

C sends the rectangle ACE′E to KCF ′F . From this rotation we deduce two things: (1) the



TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE 23

diagonal CE has the same length as the corresponding diagonal CF and (2) ∠ECF = 90◦.

Therefore the triangle ECF is a right angled isosceles triangle, and so we conclude

∠FEC = ∠CFE = 45◦ = ∠CDA.

It is also clear from the figure that triangle EGF is congruent to triangle BAC, since

are both right angled triangles with equal side lengths |AB| = |EG| and |FG| = |AC| (here

we are using “side-angle-side” criterion to deduce congruence). By congruence, ∠GEF =

∠CBA. Combining everything we have concluded so far, we obtain

∠CBA+ ∠CEA+ ∠CDA = ∠GEF + ∠FEC + ∠CEA = ∠GEA = 90◦,

and this completes the solution.

G

A D E B

C
K E′

F ′ F

Proposition 2.20. If |CA| = |C ′A′|, |AB| = |A′B′| and ∠ABC = ∠A′B′C ′ = 90◦, then

ABC and A′B′C ′ are congruent.

A

C ′BC

Proof. Since |AB| = |A′B′|, we can follow the proof of Theorem 2.15 and move A′B′C ′

so that A′B′ coincides with AB. Using another reflection if necessary, we may assume

that C and C ′ are on opposite sides of the line AB = A′B′. Since ∠CBA = 90◦ and

∠ABC ′ = 90◦, we conclude that ∠CBC ′ = 180◦, and thus B lies between CC ′. Since

|AC| = |AC ′|, we know that ACC ′ forms an isosceles triangle. Then by Corollary 1.18, we
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know that ∠ACC ′ = ∠AC ′C and consequently ∠ACB = ∠AC ′B. Thus we may now use

the “angle-side-angle” criterion for triangle congruence to deduce ABC is congruent with

ABC ′. �

Definition 2.21. A parallelogram is a quadrilateral ABCD such that AB ‖ CD and

BC ‖ AD and |AB| = |DC|, |AD| = |BC|.

A B

CD

Proposition 2.22. Let ABCD be a quadrilateral such that any of the following three

conditions holds.

(a) |AB| = |DC| and |BC| = |AD|.
(b) |AB| = |DC| and AB ‖ DC.

(c) AB ‖ DC and BC ‖ AD.

Then ABCD is a parallelogram.

Proof. Without loss of generality, assume that the diagonal segment AC is contained inside

the quadrilateral.

A B

CD

First we note that if we can show that ACB is congruent to CAD, then we will be done.

Congruence easily gives us equality of all sides, and it also gives us parallel edges, as the

following argument shows. If ∠CAB = ∠ACD, then the line AC cuts the two lines AB

and CD in equal angles. Previously we have shown that this implies AB ‖ CD. A similar

argument shows that BC ‖ AD. Therefore if ACB is congruent to CAD then ABCD is a

parallelogram.

Case (a): If |AB| = |CD| and |BC| = |AD|, then the “side-side-side” criterion for con-

gruence holds between triangles ACB and CAD.

Case (b): If |AB| = |CD| and AB ‖ CD, then AC cuts AB and CD in equal angles so

that ∠ACD = ∠CAB. Then we may use “side-angle-side” to conclude that triangle BAC

is congruent to DCA.
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Case (c): If AB ‖ CD and BC ‖ AD, then AC cuts CD and AB in equal angles, and it

cuts AD and BC in equal angles. Since triangles ACD and CAB share a side AC, we can

use the “angle-side-angle” criterion to conclude ACD and CAB are congruent. �

Exercise 2.23. Find a quadrilateral ABCD such that |AD| = |CB| and AB ‖ CD yet

ABCD is not a parallelogram.

3. Circular arcs

Definition 3.1. Let A,B be points on a circle o with centre O. The arc AB is the arc of

o going clockwise from A to B.

The central angle corresponding to the arc AB is the oriented angle AOB.

An inscribed angle is the oriented angle ASB with S ∈ o outside the arc AB.

We say that the arc AB subtends the central angle AOB and the inscribed angle ASB

(i.e. arcs subtend angles).

In the figure below we have shown an arc AB, the central angle ∠AOB it subtends and two

incribed angles it subtends. We emphasize that, as shown, there is more than one inscribed

angle corresponding to the arc AB.

A

S
S′

O

B

Theorem 3.2. Let A,B lie on a circle o. The measure of any inscribed angle subtended by

the arc AB is half the measure of the central angle subtended by arc AB.

Corollary 3.3. Any two inscribed angles subtended by arcs of the same length have the

same measure.

Remark. The length of an arc is proportional to the measure of the central angle it subtends,

with proportionality constant equal to 2πR/360, where R is the radius of the circle. One can

easily prove this whenever the measure θ of the central angle α is equal to m360◦/n, where

m and n are natural numbers (by subdividing the circle into n congruent arcs and using a

rotation to show that the arc subtending α has the same length as m of these n arcs). The

case for general angle measure follows by an approximation by rational angle measures.
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As a corollary to the proportionality between the subtended central angle’s measure and

the arc’s length, we know that two arcs have equal length if and only if they subtend central

angles with the same measure (assuming that the arcs lie on the same circle).

Corollary 3.4. Any inscribed angle subtended by arc AB, where the segment AB is a

diameter of o, is 90◦.

A

S

O

B

Exercise 3.5. Prove Corollary 3.3 and Corollary 3.4 using Theorem 3.2.

Exercise 3.6. Let ASB be a right-angled triangle, with the right angle at S. If O is the

midpoint of AB, prove that |AO| = |OB| = |OS|.

Proof of Theorem 3.2. We will consider three cases.

Case 1: assume that ∠AOB < 180◦, and that SA forms a diameter of the circle (see

figure). This gives us ∠BOS + ∠AOB = 180◦, and since OSB is an isosceles triangle, we

have

∠OSB =
1

2
(180◦ − ∠BOS) =

1

2
∠AOB,

and since ∠ASB = ∠OSB, we have shown 2∠ASB = ∠AOB, as desired.

A

S
O

B

Case 2: The angle ∠ASB contains O. This case follows relatively easily from the figure.

From Case 1, we see that the cyan (cyan = light blue) angle is half the dark blue angle, and

the orange angle is half the red angle. In other words, if we choose C so that SC form

a diameter of the circle, then 2∠ASC = ∠AOC and 2∠CSB = ∠COB. Since ∠AOB =

∠AOC + ∠COB, and ∠ASB = ∠ASC + ∠CSB, adding our previous equalities gives us
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2∠ASB = ∠AOB, as desired.

A

S

O

B
C

Case 3: The angle ∠ASB does not contain O. This case is very similar to Case 2, although

we replace the addition of angles used in Case 2 by subtraction of angles. The details are

left to the reader.

A

S
O

B

C

�

Corollary 3.7. Given a circle, any two inscribed angles with the same measure are sub-

tended by arcs of the same length.

Proof. This follows immediately from Theorem 3.2, since it tells us that the central angle’s

measure is twice the inscribed angle’s measure. We mentioned above that the arc’s length

is proportional to the measure of the central angle it subtends. �

Corollary 3.8. Given points A 6= B, let σ be the half plane bounded by AB containing all

points P such that ∠BPA < 180◦ (here we mean the clockwise oriented angle).

A B

P

σ

Then for any α > 180◦, the set of points P such that ∠BPA = α is the arc AB of the circle

o with centre O on the bisector of AB satisfying ∠BOA = 2α. Remark: note that O may
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lie on either side of AB, depending on the size of α.

A B

P

O
o

A B

P

O
o

Proof. By Theorem 3.2, it is clear that if P lies on the circle o, then ∠BPA = α, since

∠BPA is the inscribed angle of the arc AB subtending a central angle of measure 2α.

Conversely, we need to show that ∠BPA = α implies P lies on the circle o. In search of

a contradiction, suppose that P lies off of the circle. We consider two cases.

Case 1: P lies inside the circle o. Then extend the line AP until it intersects o in a point

X, as shown below.

A B

X
P

O
o

Now the idea is to look at the angles in the triangle BPX. We know that ∠XPB+∠BPA =

∠XPA = 180◦ (XPA lie on a straight line). But ∠BPA = α, and so ∠XPB = 180◦ − α.

However, ∠BXP = α, since X lies on the circle o (we proved this in the first part of this

proof). Since ∠BXP + ∠XPB + ∠PBX = 180◦, we conclude that ∠PBX = 0, which is a

contradiction (since it implies the lines BX and BP are equal, and since BX intersects AP

in a single point, we deduce that X = P , but we assumed P 6∈ o).
Case 2: P lies outside the circle o. Then pick X ∈ o inside the angle ∠BPA, and let D

be the intersection between AX and BP , as shown in the figure below.

A B

X
D

P

O
o
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Note that ∠BDX + ∠DXB < 180◦ (since these are two angles in a triangle). However

∠DXB + ∠BXA = 180◦, and ∠BXA = α by the first part of this proof. Comparing the

inequality with the equality yields ∠BDX < α. A similar argument shows that ∠BPA <

∠BDX < α. This contradicts our assumption that ∠BPA = α. This completes the proof.

�

Problem 3.9. Suppose that point P lies inside a parallelogram ABCD with ∠ABP =

∠PDA. Prove that ∠DAP = ∠PCD.

P

A
B

CD

Solution. The idea is to translate the triangle DCP along the parallel edges AD and BC

so that edge DC coincides with the parallel edge AB, and let P be translated to a point E,

as shown below.

P

A
B

CD

E

It is clear that AEB and DPC are congruent triangles, and so, in particular |AE| = |DP |.
Then since ∠CDP = ∠BAE, we know that AE is parallel to DP . By the characterization of

parallelograms in Proposition 2.22 we conclude that DPAE is a parallelogram. In particular

we conclude that the opposite angles ∠PDA and ∠AEP are equal. By our assumption,

∠PDA = ∠ABP , and so ∠ABP = ∠AEP . By Corollary 3.8, we conclude that AEPD lie

on a circle, as shown below.

A

E

P

D

B

C

Then we apply Corollary 3.8 again to conclude ∠EBA = ∠EPA. Since the line AP cuts

the parallel lines AD and PE in equal angles we deduce ∠EPA = ∠DAP . Combining our
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results so far, we have ∠EBA = ∠DAP . Since triangle DCP was congruent to ABE, we

know ∠EBA = ∠PCD, so ∠PCD = ∠DAP , which was what we wanted to show.

Definition 3.10. A line k is tangent to a circle o if k intersects o in a single point.

O

o

k

A

Proposition 3.11. If A lies on the circle o centred at O, then a line k is tangent to o at A

if and only if k is perpendicular to the radius OA.

O

k

A

Proof. First suppose k contains A and is perpendicular to OA. Then the reflection through

line OA fixes k and o (when we say the reflection “fixes” k we mean k is its own reflection).

It follows that the reflection sends intersection points of k and o to intersection points of k

and o. If there is another point B 6= A which lies on k and o, then B cannot lie on OA, so B

gets reflected to some other point B 6= B′ 6= A. But then A,B,B′ all lie on the intersection

of o and k, which is impossible since we proved a line intersects a circle in at most 2 points

(Exercise 1.25). Therefore the perpendicular to OA passing through A is tangent to o. It

remains to prove that this is the only tangent through A.

Suppose that k is not perpendicular to OA, then let B be the projection of O onto k, as

shown below.
O

k

A
B

Consider the reflection in line OB; as in the first part of this proof, this reflection fixes k

(since k is perpendicular OB) and fixes o (since any reflection through a line passing through

the centre of a circle fixes that circle). Since A is the only intersection point of o and k, the
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reflection through OB must send A to itself, so OB and k intersect in two points A and B.

It follows that k = OB, which is a contradiction, since it is obvious that any line passing

through the centre of a circle o intersects o in two points. This completes the proof. �

Problem 3.12. Let k be a line tangent to a circle o at A. Let B,C be distinct points on o

distinct from A. Let D ∈ k so that the angle DAB contains C. Then ∠ABC = ∠DAC.

k
A

B

C

D

Remark. If we let E be a point lying on the same side of AC as B, as shown below, then

∠DAC can be thought of ∠AEC in the limit as E → A. This motivational remark is not

meant to be a proof.

k
A

B

C

D

E

Solution. Assume that ∠DAC < 90◦ (see the remark below). Pick B′ such that AB′ is

a diameter and so that the arc AC subtends the inscribed angle AB′C (so that ∠ABC =

∠AB′C).

k
A

B

C

D

B′

Then, since the angle B′CA is subtended by a diameter, ∠B′CA = 90◦. Therefore ∠CAB′+

∠AB′C = 90◦. Since AD is tangent to the circle, and AB′ is a diameter (so it contains the

radius through A), we conclude by Proposition 3.11 that AD and AB′ are orthogonal, so

that ∠DAB′ = 90◦. The angle ∠DAB′ contains C; this requires the assumption that

∠DAC < 90◦, in addition to the assumption that angle DAB contains C. Then we may

write

∠DAC + ∠CAB′ = ∠DAB′ = 90◦ = ∠CAB′ + ∠AB′C,

so ∠DAC = ∠AB′C, as desired.
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Remark. The proof we give below is the case when that ∠DAC ≤ 90◦. The problem still

has a solution when ∠DAC ≥ 90◦, but it will require a modified argument, since we will not

be able to conclude that ∠ABC = ∠AB′C (see the figure below).

B′

k
A

B

C

D D′

Exercise 3.13. Adapt the solution of Problem 3.12 to prove the case ∠DAC ≥ 90◦. Hint :

prove the case ∠DAC = 90◦ separately, and in the case ∠DAC > 90◦, consider a point D′

on line k as in the figure shown in the above Remark, and then apply the solution of Problem

3.12 with B and C interchanged.

Problem 3.14. Let ABC be a triangle with |AB| 6= |BC|. Show that the bisector of angle

ABC intersects the bisector of segment AC in a point X lying on the circumscribed cricle.

X

A

B

C

Solution. A good place to start when solving a problem which asks you to prove three

figures intersect in a single point X is to guess what the point is, and then (if you guessed

right) show that the three figures all contain it. In our problem, the three figures are the

bisector of angle ABC, the bisector of AC and the circle. After staring at our figure for

a while, we guess that X should be the point on the circle which splits the arc AC (not

containing B) into two equal length arcs.

X

A

B

C

With this choice of X, we immediately realize that ∠XBC = ∠ABX since the angles XBC

and ABX are subtended by arcs of the same length (recall Corollary 3.7).
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Furthermore, it is intuitively obvious that |AX| = |CX|. This can be rigourously proved

by noting that AOX and COX are congruent by “side-angle-side” criterion, since the central

angles subtended by arcs AX and XC are equal since the arc lengths are equal (as shown

below), and the sides OA, OX and OC all have equal length (since they are all radii of the

circle). Thus the third side pair is also equal |AX| = |CX|.

X

A

B

O
C

But then since |AX| = |XC| we know that X lies on the bisector of AC.

X

A

B

C

We have shown that X lies on both the bisector through angle ABC and through segment

AC, and this completes the solution.

Definition 3.15. Let ABCD be a quadrilateral. We say that ABCD is convex if both

diagonals AC and BD lie in the interior of ABCD.

A

B

C

D

Theorem 3.16. Let ABCD be a convex quadrilateral. Then the following are equivalent.

(i) ABCD lie on a common circle.

(ii) ∠BDA = ∠BCA.

(iii) ∠DAB + ∠BCD = 180◦.
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Proof. We begin by proving (i) and (ii) are equivalent. By convexity of ABCD, the points

CD lie on the same side of AB, and so the equivalence of (i) and (ii) follows from a direct

application of Corollary 3.8.

A B

C
D

Next we will prove that (i) implies (iii). Assuming the points ABCD lie on a circle, as

shown in the following figure, we have 2∠DAB = ∠DOB, since the angle DOB is the central

angle corresponding to the inscribed angle DAB. Similarly 2∠BCD = ∠BOD. Therefore

2 (∠DAB + ∠DOB) = ∠DOB + ∠BOD = 360◦,

which is what we wanted to show.

A B

C
D

We show that (iii) implies (i). Let O be the centre of the circumscribed circle of ABD.

Since ∠DOB is twice ∠DAB and ∠BOD+∠DOB = 360◦, we conclude 2∠BCD = ∠BOD.

However, if we choose any other C ′ on the arc DB of the circle through ABD we will also

have 2∠BC ′D = ∠BOD. By Corollary 3.8, this implies that ∠BCD is the correct value for

C lies on the circle centred on O, and so C lies on the circle through ABD. This completes

the proof. �
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Corollary 3.17. Let ABCD be a quadrilateral made out of two right angles, as shown

below. (So ∠ABC and ∠CDA are 90◦).

A

B

C

D

Then ABCD has a circumscribed circle, and furthermore, the circumscribed circle is centred

on the midpoint of AC.

A

B

C

D

O

Proof. Left to the reader. �

Problem 3.18. Let ABCD be a square, and pick E and F on sides AB and BC, respec-

tively, so that |BE| = |BF |. Let P be the projection of B onto CE. Prove that ∠DPF is

90◦.

A
B

C
D

P

F

E

Solution. We begin our solution by extending the segment BP until it intersects AD at a

point Q.

A
B

C

PQ

E
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We claim that triangles QAB and EBC are congruent. To prove this claim, we will use

the “side-angle-angle” criterion for congruence. Since ∠BCE = ∠BCP and BCP is a

right angled triangle (by definition of P ) we deduce ∠BCE + ∠QBC = 90◦. Since ABC

is a right angle, we have ∠ABQ + ∠QBC = 90◦. From these two equalities, we deduce

∠BCE = ∠ABQ. Since ∠QAB = ∠EBC = 90◦, we now know that two angle pairs in

triangles QAB and EBC are equal. Since the triangles also have an equal side length pair

|AB| = ∠BC, we have satisfied the requirements for the “side-angle-angle” criterion, and

we conclude QAB and EBC are congruent.

Thanks to this congruence, we conclude |QA| = |EB| = |BF |. Thus |DQ| = |CF |. Since

DQ ‖ CF , we conclude QFCD is a parallelogram (by Proposition 2.22) and since angle

QDC is a right angle, we deduce QFCD forms a rectangle. Then, since the opposite angles

at D and F add up to 180◦, we deduce by Corollary 3.17 that QFCD has a circumscribed

circle. However, since ∠QPC = 90◦, and ∠QDC = 90◦, we deduce by Corollary 3.17 that

QPCD also has a circumscribed circle. There is only one circle circumscribing the three

points QCD, and so we conclude that the circumscribed circles of QFCD and QPCD are

the same, so the five points QPFCD lie on a common circle. This is summarized in the

figure below.

C
D

P

FQ

But then the quadrilateral DPFC is circumscribed by a circle.

C
D

P

FQ

so applying Corollary 3.17 once more, we deduce ∠DPF + ∠FCD = 180◦, and since

∠FCD = 90◦ (since it is one of the corners of our original square) we deduce ∠DFP = 90◦,

as desired. This completes the solution.

Exercise 3.19 (The Simson Line, hard exercise). Let ABC be a triangle and let P lie on

the circumscribed circle of ABC. Let K,L,M be the projections of P onto the lines BC,

AC and AB, respectively. Then the points K,L,M lie on a common line.
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4. Circles inscribed in angles and the “strongest theorem of geometry”

Theorem 4.1. Let X be a point lying inside an acute angle AOB. Let P and Q be the

projections of X onto the half-lines OA and OB, respectively. Note that P and Q exist

because AOB is an acute angle.

P

A

Q B

X

O

Then the following are equivalent.

(i) X lies on the bisector of the angle AOB.

(ii) |OP | = |OQ|.
(iii) |XP | = |XQ|.

Proof. To see that (i) implies (ii) and (iii), we use the “side-angle-angle” criterion for

congruence to prove OXP and OXQ are congruent. By the assumption (i) we know

∠POX = ∠QOX, and, since they are right triangles, we know ∠XPO = ∠XQO. They

obviously share the side OX, and so we have enough information to apply the “side-angle-

angle” criterion. Then (ii) and (iii) follow immediately from congruence of OXP and OXQ.

For an alternate proof, we simply reflect through the bisector of AOB. Since O and X lie

on this bisector, O and X are fixed by the reflection. By definition1 of the bisector of an

angle, the half lines OA and OB are interchanged by the reflection (since the projections

must be interchanged). It follows that P and Q are interchanged by this reflection, and since

reflections preserve distances we have |OP | = |OQ| and |XP | = |XQ|, as desired.

To prove (ii) implies (i) we use Proposition 2.20 which is the “side-side-angle” criterion for

congruence when the equal angle pair is a pair of right angles. We can use this proposition

to prove triangles OXP and OXQ are congruent, since we have equal side length pairs

|OP | = |OQ| and |OX| = |OX|, and the equal angle pair ∠XPO = ∠XQO of right angles.

Then, by this congruence, we have ∠PXO = ∠OXQ, and so, indeed X lies on the bisector

of the angle POQ (which is the same angle as the angle AOB).

A very similar argument (also using Proposition 2.20) proves the implication (iii) =⇒ (i),

and we leave this to the reader. �

Exercise 4.2. In the setting of Theorem 4.1, prove that as long as the projections P and Q

of X onto the lines OA and OB lie on the half-lines OA and OB, then the theorem is true,

1some define the bisector of an angle as the line which interchanges the two half-lines defining the angle.



38 TAUGHT BY PIOTR PRZYTYCKI. NOTES BY DYLAN CANT.

even if the angle AOB is not acute.

P

A

Q B

X

O

Exercise 4.3. Let P lie outside a circle o centred at O. Prove that there are exactly two

points A and B on o so that PA and PB are tangent to o. Hint : Consider the circle whose

diameter is OP .

o

A

B

O
P

Theorem 4.4 (strongest theorem of geometry). Let P lie outside a circle o centred at a

point X, and pick A and B on o so that PA and PB are tangent to o. Then |PA| = |PB|

o

A

B

X

P

Proof. First we remark that the points A and B are well-defined thanks to Exercise 4.3.

Clearly |AX| = |BX| and since PA and PB are tangent to the circle o, we also have

XA ⊥ PA and XB ⊥ PB (we proved this in Proposition 3.11). Thus we can use (iii) =⇒ (ii)

in Theorem 4.1 to conclude |PA| = |PB|, as desired. �

Remark. If we want to use Theorem 4.1, then we should require that ∠APB ≤ 90◦. How-

ever, as mentioned in Exercise 4.2, as long as the projections remain on the angle, it does

not matter if the angle is not acute. Since the points A B always lie on the angle APB

in the statement of the “strongest theorem of geometry,” we can use Theorem 4.1 without

worrying about acuteness of the angle APB.
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Theorem 4.5. In a triangle ABC the three bisectors of its angles intersect in a common

point.

k

l

m

A B

C

Proof. As in the figure above, let k, l,m be the bisectors of the angles at A,B,C, respec-

tively. Let O be the point of intersection between k and l, and consider the projections

P,Q,R of O onto the sides opposite A,B,C, respectively.

k

l

A B

C

O

P

Q

R

Since O lies on the bisector of CAB, we know ∠CAO and ∠OAB are both less than 90◦, and

so the projections of O onto the lines AC and AB lie on the half-lines AC and AB, so we may

apply Theorem 4.1 to the angle CAB and point O. Similarly, we may apply Theorem 4.1

to the angle ABC and point O (i.e. we do not need to worry about acuteness of angles).

Since O lies on the bisector of CAB we know from Theorem 4.1 that |QO| = |OR|, and

(similarly) since O lies on the bisector of ABC we know |OR| = |OP |. But then |OQ| = |OP |
so we conclude, again by Theorem 4.1, that O lies on the bisector of BCA. This completes

the proof. �

Corollary 4.6. In the setting of the above theorem, the circle o centred at O with radius

|OR| = |OP | = |OQ| is the a circle contained in the triangle ABC which is tangent to

the edges of ABC. In other words it is an inscribed circle of the triangle ABC. We have
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therefore shown that every triangle admits an inscribed circle.

A B

C

O

P

Q

R

Exercise 4.7. We have shown above that every triangle admits an inscribed circle. However,

we have not shown that the inscribed circle is unique. Prove that every triangle has only

one inscribed circle. Hint: What must be the centre of any inscribed circle?

5. Altitudes of Triangles and Escribed Circles

Definition 5.1. The altitude in a triangle ABC through the vertex C is the line perpen-

dicular to AB through C. The intersection of the altitude with the line AB is called the

foot of the altitude. In the figure below we have shown the altitude through C and its

corresponding foot F in a few cases.

A B

C

F
A B

C

F
A

B

C

F

Theorem 5.2. The three altitudes in any triangle intersect in a common point.

A B

C

D
E

F

Proof. We will only prove the theorem when all the feet lie inside the triangle, although

the theorem is still true if we drop this assumption.
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Let D,E, F be the feet of the altitudes of A,B,C, respectively. Since BEA and BDA

are both right angles, we conclude that E and D lie on the circle whose diameter is AB.

A B

D

E

Then the quadrilateral ABDE is inscribed in a circle, so we can apply Theorem to conclude

∠EAB + ∠BDE = 180◦. Since BDC are collinear, we have ∠BDE + ∠EDC = ∠BDC =

180◦, and combining this with our previous equality, we deduce ∠EAB = ∠EDC.

A B

C

D

E

In a similar fashion, we deduce ACDF lie on a common circle.

A B

C

D

F

Since ∠CAF+∠FDC = 180◦, as we argued above this implies ∠CAB = ∠DFB. Combining

this with what we have shown already yields ∠EDC = ∠BDF .

A B

C

D

E

F

SinceAD is perpendicular toBC we have ∠EDC+∠ADE = 90◦ and ∠BDF+∠FDA = 90◦,

so using our previous equality, we conclude ∠FDA = ∠ADE. This implies that AD is the
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bisector of the angle FDE.

A B

C

D

E

F

Then, relabeling A 7→ B 7→ C 7→ A and D 7→ E 7→ F 7→ D, the same argument we just

gave will prove that each altitude of ABC is the bisector of the corresponding angle of the

triangle DEF .

A B

C

D

E

F

Since we proved in Theorem 4.5 that the bisectors of the angles of a triangle intersect in a

single point, we conclude that the altitudes of ABC, which are the bisectors of the angles of

DEF intersect in a single point, and this completes the proof. �

Definition 5.3. Given a triangle ABC we define the bisector of the exterior angle at the

vertex A as follows. The lines AC and AB intersect at A and make 4 angles, which split

into two pairs of equal measure, as shown in the figure below.

A

B

C
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As shown below, there is a unique bisector k of the first (interior) angle pair, and a bisector

` of the second (exterior) angle pair.

A

B

C

k

`

Exercise 5.4. Let ABC be a triangle, and prove that the exterior bisector and interior

bisector at the vertex C are perpendicular. Hint : show that the reflection in the interior

bisector fixes the lines AB and lines AC, and hence fixes the exterior bisector.

Exercise 5.5. Prove that the exterior bisectors at A and B and the interior bisector at C

intersect at a single point. (Obviously we have a similar result when we permute the vertices

A 7→ B 7→ C 7→ A).

Exercise 5.6. Let ABC be a triangle. Prove that the feet of A and B do not lie inside

the triangle if and only if ∠BCA > 90◦. In thise case, let DEF be the triangle made out

of the feet of ABC. Using Execise 5.5, let P be the intersection point of the interior angle

bisector at F , and the exterior angle bisectors at D and E. Prove that the altitudes of ABC

intersect at P .

A

B

C

D
E

F

P

Definition 5.7. Let ABC be a triangle, and let O be the intersection point of exterior

angle bisectors at B and C and the interior angle bisector at A (this intersection point is

guaranteed by Exercise 5.5). A fairly straightforward application of Theorem 4.1 proves that

O lies at an equal distance d from the sides AB, AC and BC. The circle centred at O with
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radius d is called the escribed circle of ABC opposite A.

A

C

B

O

Problem 5.8. Let ABC be a triangle and let O be the centre of the escribed circle opposite

A. Let P,Q,R be the projections of O onto BC, AC and AB. Then 2 |AQ| is equal to the

perimeter of ABC.

A
B

C

O

P

Q

R

Solution. Our solution uses the “strongest theorem of geometry” (Theorem 4.4). The first

application of the theorem yields |AQ| = |AR|. Therefore, proving 2 |AQ| is equal to the

perimeter of ABC is equivalent to proving |AR|+ |AQ| = perimeter. Noting that

|AQ| = |AC|+ |CQ| and |AR| = |AB|+ |BR|

and that |CQ| = |CP | and |BR| = |BP | by the “strongest theorem of geometry,” we obtain

|AQ|+ |AR| = |AC|+ |AB|+ |CP |+ |BP | = |AC|+ |AB|+ |BC| .

This completes the solution.
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Problem 5.9. Let ABC be a triangle and consider the inscribed circle and the escribed circle

opposite A. Label the tangency points as in the following figure. Show that |CD| = |BP |.

A
B

C
D

E

F

P

Q

R

Solution. A simple application of the “strongest theorem of geometry” shows that |AF |+
|FB|+ |CD| = |AB|+ |CD| is half the perimeter of ABC.

A
B

C D

E

F

However by the preceeding problem, we also have |AR| = |AB| + |BP | equal to half the

perimeter. Since |AB|+ |CD| = |AB|+ |BP |, we deduce |CD| = |BP |, as desired.

Definition 5.10. A circle o is inscribed in a quadrilateral ABCD if o is tangent to each of

the sides AB, BC, CD and DA.

A

B C

D
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In the figure below we show a quadrilateral A′B′CD which does not have an inscribed circle.

A

B

A′

B′ C

D

E

Theorem 5.11. A convex quadrilateral ABCD has an inscribed circle if and only if

|AB|+ |CD| = |AD|+ |BC| .

Proof. We will only prove the =⇒ direction, and the other direction is presented in

Exercise 5.12. Suppose that ABCD has an inscribed circle o, and let K,L,M,N be the

tangency points of edges AB,BC,CD,DA with o, respectively.

A

B

C

D

K

L

M
N

Then the “strongest theorem of geometry” (applied four times) yields

|AK| = |AN | , |BK| = |BL| , |CL| = |CM | , |DM | = |DN | ,

and since
|AB| = |AK|+ |BK| |BC| = |BL|+ |CL|

|CD| = |CM |+ |DM | |DA| = |DN |+ |AN |

we deduce |AB|+ |CD| = |BC|+ |AD|, as desired. �

Exercise 5.12. The goal of this exercise is to establish the unproved direction in Theo-

rem 5.11: If ABCD is a convex quadrilateral satisfying |AB| + |CD| = |AD| + |BC|, then

ABCD has an inscribed circle.

(a) Prove that convexity is a necessary assumption.

(b) Suppose that |AD| is the smallest side. Prove that |BC| must be the largest side.

(c) If |AD| = |BC|, prove that all sides are equal, and so we have a rhombus. Show

that, in this case, the diagonals AC and BD are also the bisectors of corresponding

angles. Prove that there is a circle centred at the intersection point P of AC and BD
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inscribed in ABCD. Hint : Consider the projections K,L,M,N of P onto the sides

of ABCD.

(d) If |AD| = |DC|, then |AB| = |BC|, and so we have a deltoid (also known as a kite)

A

B

C

D

Show that, in this case, DB is the the angle bisector of D and B, and the angle

bisectors at A and C intersect on BD. As in part (c) prove that the intersection of

all the angle bisectors is the centre of an inscribed circle. Note that (d) implies (c).

(e) Now we assume that |AD| is not equal to either adjacent side length |DC| or |AB|.

A

B

C
D

K

L

P

Let K,L be points on BC and DC so that |DL| = |AD| and |BK| = |AB| (why is

this possible?). Prove that |LC| = |KC|. Prove that, as shown in the figure above,

the angle bisectors at B,C,D are the bisectors of the sides AK, KL and LA of the

triangle AKL. Therefore the angle bisectors of B,C,D intersect in a single point P .

Prove that P is the centre of an inscribed circle of ABCD.

Problem 5.13. Consider a triangle EBF and a point D inside the triangle. Let C and A

be the intesection points of FD and ED with BE and BF , respectively.

E

F

A

B

C

D

Prove that if |AB|+ |DC| = |AD|+ |CB|, then |EB|+ |DF | = |DE|+ |BF |.



48 TAUGHT BY PIOTR PRZYTYCKI. NOTES BY DYLAN CANT.

Solution. Using Theorem 5.11, we know thatABCD has an inscribed circle. LetK,L,M,N

be the tangency points of the circle on the edges, as shown.

E

F

A

B

C

D
K

L

M
N

We compute

|BE| = |BK|+ |EK| = |BL|+ |EM | = |BL|+ |DE|+ |DM | = |BL|+ |DE|+ |DN | ,

where we have used the “strongest theorem of geometry” in the second and fourth equalities.

We obtain

|BE|+ |DF | = |BL|+ |DE|+ |FN | = |BL|+ |DE|+ |FL| = |BF |+ |DE| ,

where we have used the “strongest theorem of geometry” in the second equality to write

|FN | = |FL|. This completes the solution.

6. Area and Thales’ Theorem

Fact 6.1 (the existence of area function). There exists a non-negative area function for

polygons, satisfying

(i) The area of a rectangle ABCD is |AB| · |BC|.

A
B

C
D

(ii) If polygons P1 and P2 have disjoint interiors, then

Area(P1 ∪ P2) = Area(P1) + Area(P2).

(iii) If polygons P1 and P2 are congruent, then Area(P1) = Area(P2).

We will use the notation |P | := Area(P ).

Remark. The usual “proof” of this fact simply defines the area of a triangle, and then

defines the area of an arbitrary polygon P by “triangulating” the polygon (as shown below)

and then defining the area of P as the sum of the areas of the triangles comprising the
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triangulation.

However, there is a major flaw with this “definition,” as it a priori depends on the partic-

ular triangulation of P used. One must then prove that the area does not depend on the

triangulation, and this is not easy to do.

There are more abstract proofs of the existence of the area function which use the ma-

chinery of “measure theory” (a branch of real analysis).

Theorem 6.2. (a) The area of a parallelogram with side length a and height h is ah.

a

h

A B

C
D

(b) The area of a triangle with base a and height h is ah/2.

a

h

A B

C

(c) The area of a trapezoid with parallel side lengths a, b and height h is (a+ b)h/2.

a

b

h

A B

D C

Proof. To prove (a), let K ∈ AB be the foot of the perpendicular to AB through D, and

suppose that K lies between AB. Drop a perpendicular to AB from C, intersecting the line
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AB in a point L, as shown below.

a

h

A
B

C
D

K L

Then ADK and BCL are congruent by side-angle-angle criterion, since |AD| = |BC| (by

Definition 2.21, where we defined parallelograms) ∠KAD = ∠LBC (since AD ‖ BC), and

∠AKD = ∠BLC = 90◦. It follows by property (iii) of the area function that |ADK| =

|BCL|, so

|ABCD| = |KBCD|+ |AKD| = |KBCD|+ |BCL| = |KDCL| = ah,

where we have used part (ii) in the first and third equalities, and part (i) in the final equality.

We proceed in the same way of the projection of C lies in AB. Otherwise, after possibly

interchanging C with D (and A with B) we can assume that the projection of D separates

the projection of C from AB on the line AB. Let E be the point at distance |DC| from D

distinct from C on the line CD. Note that AE ‖ BD (show this!). Suppose, without loss of

generality, that |BD| ≤ |AC|.

a

h

A

E

B

C
D

K L

Triangles ADE and BCD are congruent by “side-side-angle” criterion with

|ED| = |DC| , |AE| = |BC| and ∠DEA = ∠CDB

(prove this) and so a similar argument to the one used in the first part of the proof shows

|ABDE| = |ABCD|. Repeat this process until either D or C has its projection K inside

the segment AB (convince yourself that this will eventually happen).

To prove part (b) of the theorem, we begin with a triangle ABC, and then we rotate

180◦ through the midpoint of AC to obtain a parallelogram ABCB′, where B′ is the rotated
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image of B, as shown below.

A B

CB′

h

By construction ABC and AB′C are congruent, so they have the same area. It follows from

part (a) that |ABC| = ah/2.

For part (c), we let the diagonal AC cut the trapezoid into two triangles with the same

height and sides lengths a and b, respecitvely. The result now follows from part (b). �

Armed with the area function, we can give a straightforward proof of Thales’ Theorem.

Theorem 6.3. Thales’ Theorem If `, k are two lines intersecting at a point A, points D,E

and B,C lie on ` and k, respectively, and DB ‖ EC,

`

kC

A

D

B

E

then

(i)
|AB|
|BC|

=
|AD|
|DE|

(ii)
|AB|
|AC|

=
|AD|
|AE|

(iii)
|AB|
|AC|

=
|BD|
|CE|

.

Remark. We note that B,C do need to lie on the same side of A as we have shown above.

The theorem is still true if they lie on opposite sides of A, but the figure is different in this

case.
`

k

D

B

E

C
A

Proof of Thales’ Theorem. First we note that if B and C lie on the same side of A, then

D and E must also lie on the same side of A. This is intuitively obvious, and it can be shown
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by letting m be the line through A parallel to BD and CE.

`

k

D

B

E

C

A

m

Clearly B,C are on the same half-plane determined by m (by assumption that they lie on

the same side of A on k), and since BD and CE do not intersect m, we also conclude D,E

are on the same side of m, and, in particular, this implies that A is not between D and E.

Now if A lies in between B and C and between D and E, then we can rotate both C

and E by 180◦ through A to obtain points C ′ ∈ k and E′ ∈ ` so that BC ′ and DE′ do not

intersect A, as shown. Furthermore, since 180◦ rotations send parallel lines to parallel lines,

we deduce that E′C ′ ‖ DB. Finally |AE| = |AE′|, |AC| = |AC ′| and |EC| = |E′C ′|.

`

k

D

B

E′

C ′

E

C
A

Therefore, if we prove (ii) and (iii) in the case when A is not between B and C (and so also

not between D and E) then we also prove (ii) and (iii) in the case when A is between B and

C. Furthermore, if A is between B and C and between C and D then

|CB| = |AB|+ |AC| |DE| = |AD|+ |AE|

and so if we know (ii) holds, then we have

|CB|
|AB|

= 1 +
|AC|
|AB|

= 1 +
|AE|
|AD|

=
|DE|
|AD|

,

which obviously implies (i).

This argument shows that it suffices to prove the theorem in the case when BC and ED

do not intersect A.
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Consider triangles ABD and BCD.

`

k

D

B

E

C

A

It is clear the heights of these two triangles through vertex D are the same (since their bases

lie on the same line BC) and so we deduce

(∗) |ABD|
|BCD|

=
|AB|
|BC|

.

A similar argument yields

(∗∗) |ABD|
|BDE|

=
|AD|
|DE|

.

Since triangles DBC and BDE share a height (namely, the distance between the parallel

lines BD and CE) and a base BD, we deduce |BCD| = |BDE|, and so combining (∗) and

(∗∗) we obtain
|AB|
|BC|

=
|AD|
|DE|

,

which proves (i).

Part (ii) follows immediately from part (i), since we have

|AC|
|AB|

=
|AB|+ |BC|
|AB|

= 1 +
|BC|
|AB|

= 1 +
|DE|
|AD|

=
|AE|
|AD|

,

where we have used part (i) in the third equality.

Part (iii) requires a bit more work. Pick K, L so that CKL is congruent to BAD, as

shown.

D

B

E

K

L

C

A

Since CE cuts KL and AE in equal angles (as shown), we deduce KL ‖ AE. Now we apply

Thales’ Theorem part (ii) to the angle ACE which intersects the parallel lines AE and LK.

We obtain
|CK|
|CA|

=
|CL|
|CE|

.



54 TAUGHT BY PIOTR PRZYTYCKI. NOTES BY DYLAN CANT.

Since CKL is congruent to BAD, the above equation implies

|BA|
|CA|

=
|BD|
|CE|

,

which is part (iii) as desired. This completes the proof. �

Theorem 6.4 (converse to Thales’ Theorem). Let k, ` be lines intersecting at a point A, let

B,C and D,E lie on k and `, respectively, and (1) suppose that BC and DE both do not

contain A or (2) BC and DE both contain A. If

|AB|
|AC|

=
|AD|
|AE|

then BD and CE are parallel.

Remark. Note that our converse to Thales’ Theorem is not a complete converse, and it

only treats the case when we have equality (i) from the statement of Thales’ Theorem.

Counterexamples to the converse to Thales’ when we have (ii) or (iii) are presented in the

exercises below.

Exercise 6.5. Prove the converse to Thales’ Theorem. Hint: Using a 180◦ rotation (as in

the proof of Thales’ theorem) argue that it suffices to prove the case (1). In this case, argue

that any point D′ ∈ ` such that (a) |AD′| / |AE| = |AB| / |AC| and (b) D′ lies on the same

side of A as E must satisfy D′ = D, and argue that the parallel to BC through E intersects

` in a point D′ satisfying (a) and (b).

Exercise 6.6. Suppose that A,B,C,D,E are as in Theorem 6.4, but instead of (i) from

Thales’ theorem we have (iii), namely

|EC|
|BD|

=
|AC|
|AB|

,

Show that BD need not be parallel to CE. Hint :

A

B = C

D

E

Exercise 6.7. As in the previous exercise, suppose that A,B,C,D,E are as in Theorem

6.4, but suppose instead we have (ii). Prove that BD need not be parallel to CE. Hint :

A

C B

D

E
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Remark. This counterexample shows that, in general (ii) does not imply BD ‖ CE. This

remark will show that if we assume that B is between A and C and D is between A and E

(or C is between A and B and E is between A and D) then we actually do have (ii) =⇒
parallelism. The details of the straightforward proof of this fact are left to the reader. Hint :

use Theorem 6.4, and be careful when considering when we can write |AC| = |AB| + |BC|
(versus |AC| = |AB| − |BC|).

Problem 6.8. Let ABCD be a trapezoid with AB ‖ CD. Let P on segment AD and Q on

segment BC be such that |AP | / |PD| = |BQ| / |QC|.

A B

CD

P Q
R

Prove that PQ ‖ AB and that

|PQ| = 1

1 + λ
|AB|+ λ

1 + λ
|CD| ,

where λ is the common ratio |AP | / |PD| = |BQ| / |QC|.

Solution. We will use the converse to Thales’ Theorem (Theorem 6.4). Pick R on the

diagonal AC so that |AR| / |RC| = λ (see the figure above). Then, using the angle DAC

with the converse to Thales’ Theorem, we have PR ‖ DC. Similarly, using the angle BCA

in the converse to Thales’ Theorem, we have RQ ‖ AB. Since there is a unique parallel

to AB ‖ DC through R, we deduce the lines RQ and PR are equal and so the line PQ

containing R is parallel to AB.

By Thales’ Theorem part (iii) (applied to both angles DAC and BCA), we know that

|PR| = |AP |
|AD|

|DC| and |QR| = |CQ|
|BC|

|AB| .

Since |AD| = |AP |+ |PD| and |BC| = |QC|+ |QB|, we deduce

|PQ| = |PR|+ |QR| = λ

1 + λ
|DC|+ 1

1 + λ
|AB| ,

as desired.
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Problem 6.9. LetABCD be a convex quadrilateral with diagonals intersecting at a point P .

A B

C

D

P

Prove that
|ABC|
|ACD|

=
|BP |
|DP |

.

Solution. Since the problem concerns the area of triangles ABC and BCD we introduce

the feet K and L of altitudes through B and D, respectively.

A B

C

D

P

L

K

Then |ABC| = |AC| |BK| /2 and |ACD| = |AC| |DL| /2. This implies

(∗) |ABC|
|ACD|

=
|BK|
|DL|

,

Since lines DL and BK are parallel (since they are both orthogonal to the line AC) we can

apply Thales’ Theorem to the angle formed at P . We obtain

|BK|
|DL|

=
|BP |
|DP |

,

and combining this with (∗) gives us the desired result.

Problem 6.10 (Nine Point Circle). In a triangle ABC with orthocentre H (the orthocentre

is the intersection point of the altitudes) there is a circle o containing (i) the feet K,L,M

of altitudes through A,B,C, respectively, (ii) the midpoints D,E, F of the edges BC, AC,
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AB, respectively, and (iii) the midpoints A′, B′, C ′ of segments AH, BH, CH, respectively.

A B

C

A′

B′

C ′

DE

F

K

L

M

H

Solution. This problem is fairly daunting without an idea where to begin, and so to start

the solution we simply make a guess (the correct guess) that the nine-point circle has the

segment EB′ as a diameter (we make this guess because it looks like it could be true).

Let o be the circle which has EB′ as a diameter. The first step of our solution is to

prove that the midpoints D,F of the edges adjacent to B lie on o. By relabelling points it

suffices to prove that D lies on o. Since |CE| / |CA| = 1/2 and |CD| / |CB| = 1/2, we can

apply the Converse to Thales’ to the angle BCA, to conclude ED ‖ AB. Similarly, since

|BD| / |BC| = |BB′| / |BH|, we can apply the Converse to Thales’ to the angle HBC to

conclude B′D ‖ HC. Since the altitude HC is perpendicular to AB, and B′D ‖ HC and

ED ‖ AB we conclude that ED is perpendicular to B′D, and so ∠B′DE = 90◦. By what

we have shown in Corollary 3.8, we know that D lies on the circle o. As mentioned above,

this argument also works to prove F lies on the circle o.

A B

C

B′

DE

F

H
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The next step in our solution is to prove that A′ and C ′ lie on o. To show this, we note that

in the first step we proved that o is the circumscribed circle of EDF ; in other words, we

showed that EB′ is a diameter of the circumscribed circle of EDF . Since the circumscribed

circle of EDF is independent of relabelling the vertices, we conclude (by symmetry) that

DA′ and FC ′ are also diameters o, and so, in particular A′ and C ′ lie on o.

The final step in our solution is to prove that the feet of the altitudes lie on o. However

this is easy to show using Corollary 3.8. Since ∠ELB′ = 90◦, we know that L lies on the

circle o whose diameter is EB′. Again, by symmetry, K,M also lie on o.

A B

C

B′

E

K

L

M

This completes the solution.

Theorem 6.11 (Newton Theorem). Let ABCD be a convex quadrilateral with an inscribed

circle centred at a point O, and let L and K be the midpoints of the diagonals AC and BD,

respectively. Then L,O, and K lie on the same line.

A

B
C

D

K

L

O

In the proof of Theorem 6.11, we will use a lemma (we will prove the lemma after we

prove the theorem).

Lemma 6.12. Let ABCD be a convex quadrilateral with AB not parallel to CD, and

choose some a > 0. Then the set of points P inside ABCD satisfying |PAB|+ |PCD| = a

lie on a common line. (In the figure below, we have shown points P , P ′ and P ′′ such that
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|PAB|+ |PCD| = |P ′AB|+ |P ′CD| = |P ′′AB|+ |P ′′CD|).

A

B
C

D

P

P ′

P ′′

Proof of the Newton Theorem using Lemma 6.12. First suppose that AB ‖ CD (this

is the case when we cannot use the Lemma, and so we treat it with a different argument).

Let k be parallel to AB and CD so that k is equidistant from AB and CD (more formally,

k is defined as all the points which are equidistant from AB and CD). Then the centre of

the circle, call it O, lies on the line k, since O bisects the orthogonal segment connecting AB

to CD through O.

k

A B

CD

O

We will show that K and L also lie on k. This follows from Thales’ theorem. Consider the

angle at K formed between segments DB and the orthogonal segment to AB:

k

A B

D

K

Since K bisects DB, we conclude (by Thales’) that K also bisects the orthogonal segment

to AB through K, and so K lies on k. A similar argument shows L lies on k, and so we have
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proved Newton’s theorem in the case when AB ‖ CD.

k

A B

CD

OL K

In the case where CD is not parallel to AB, we can use Lemma 6.12. Let a = |ABCD| /2,

and note that triangles ABK and ADK share a height and have a common base length

|BK| = |KD|, so |ABK| = |AKD|.

A

B
C

D

K

A similar argument proves that |CDK| = |CKB|. Therefore |ABK|+ |CKD| = a.

A

B
C

D

K

The same argument shows that |ALB|+ |CLD| = a.

Let r be the radius of the inscribed circle. We claim that |AOB| = r |AB|. This is true

because the perpendicular segment joining O to AB intersects AB at the tangency point of

the circle (as we have shown in Proposition 3.11), and so the height of AOB is equal to the
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radius r. A similar argument gives |COD| = r |CD|, |AOD| = r |AD| and |BOC| = r |BC|.

A

B
C

D

O

Since ABCD splits into the four disjoint triangles AOB, BOC, COD and DOA, we have

|ABCD| = r (|AB|+ |BC|+ |CD|+ |DA|) ,

but since |AB|+ |CD| = |BC|+ |DA| (Theorem 5.11), we conclude

|ABCD| = 2r (|AB|+ |CD|) = 2 (|AOB|+ |COD|) ,

and so |AOB| + |COD| = a. By Lemma 6.12, we deduce that L,O,K lie on a common

line. �

Proof of Lemma 6.12. Since AB and CD are not parallel, we know that they intersect

in a point E. Furthermore, suppose P is chosen so that |APB|+ |CPD| = a. Then choose

points L and K on the half-lines ED and EA so that |EL| = |DC| and |EK| = |AB|. We

assume for simplicity that K and L lie outside the sides AB and DC, as shown below. The

other cases are left as exercise for the reader.

A B

C

D

P

E K

L

Since triangles EPL and DPC share a base length |DC| = |LE| and share the height

through P , they have the same area |EPL| = |DPC|. Similarly |EPK| = |APB|, and so

|EKPL| = |EPL|+ |EPK| = a.

Splitting the quadrilateral EKPL into two triangles EKL and KPL, we note that

|EKPL| = a implies that |KPL| = a− |EKL|. Therefore, P lies on the set of all points (on

the opposite side of LK to E) for which the triangle LPK has specified area a − |EKL|.
Conversely, it is easy to show that if we form the triangle LPK and it has area a− |EKL|,
then |APB|+ |CPD| = a.
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In other words, the set of P such that |APB|+ |CPD| = a is precisely the set of P such

that |KPL| = a− |EKL|.

P

E K

L

Let ` be parallel to LK passing through P , as shown. We claim that |KPL| = |KP ′L| if

and only if P ′ lies on `.

P

E K

L

`

P ′

This is easy to see since, |KPL| = |KP ′L| if and only if the heights of triangles KPL and

KP ′L through P and P ′ are equal, which happens if and only if PP ′ is parallel to base KL,

so that PP ′ = `. This completes the proof of the lemma. �

Exercise 6.13. Modify the proof of Lemma 6.12 to prove the case when K and L do not

lie outside the sides AB and DC.

Problem 6.14. Let ABCD be a parallelogram construct equilateral triangles BPC and

DQC outside of ABCD. Prove that APQ is equilateral.

A B

C
D

P

Q
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Solution. We begin by proving that ABP is congruent to ADQ; this follows from the

“side-angle-side” criterion since

(side) |AB| = |DC| = |DQ| ,

(angle) ∠ABP = ∠ABC + 60◦ = ∠CDA+ 60◦ = ∠QDA,

(side) |BP | = |BC| = |AD| .

In the (angle) computation, we have used the fact that opposite angles in a parallelogram

are equal.

Therefore |AP | = |AQ| and so we deduce that PAQ is isosceles. To prove PAQ is

equilateral, it suffices to prove that ∠PAQ = 60◦. Our proof depends on ∠CDA: we assume

that ∠CDA < 60◦, and we leave the case ∠CDA ≥ 60◦ to the reader. Let α = ∠BPA =

∠DAQ and β = ∠PAB = ∠AQD.

A B

C
D

P

Q

Then, since α + ∠PAQ + β = ∠DAB, α + β + ∠ABC + 60◦ = 180◦ (here we have simply

added all the angles in triangle ABP ), and ∠DAB+∠ABC = 180◦, we rearrange and obtain

∠PAQ = 60◦, as desired. This completes the solution.

Problem 6.15. Let ABCD be a square and ABE be the triangle in its interior satisfying

∠EAB = ∠ABE = 15◦. Prove that CDE is equilateral.

A B

CD

E
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Solution. Let F,G,H be the rotations of E by 90◦, 180◦, 270◦ around the centre of the

square inside ABCD, so that ∠GBC = ∠BCG = 15◦ etc. Clearly EFGH is a square (by

its 90◦ rotational symmetry, it must have all sides and all interior angles equal). We claim

that FCG and HDG are equilateral triangles.

A B

CD

E F

G

H

Proving this claim is not hard. Since ∠BCD = 90◦ and ∠BCF = 15◦ and ∠GCD = 15◦,

we deduce ∠FCG = 60◦. Furthermore, by “angle-side-angle” we know BFG and CGD

are congruent (and both are isosceles), so |CG| = |CF |. Thus FCG is an isoceles triangle

with vertex angle equal to 60◦, so FCG must be equilateral. Similarly GDH is equilateral.

Interpreting EFGH as a parallelogram with equilateral triangles FCG and GDH built

outside of EFGH, we can use the previous problem to deduce EDC is equilateral. This

completes the solution.

Exercise 6.16. Solve the previous problem without using Problem 6.14 by proving that

triangles CGD, CFE and DHE are all similar, so that |CE| = |DE| = |CD|.

A B

CD

E

F

G

H

7. Similarities and Similar Triangles

Definition 7.1. Let k > 0. A similarity with scale k is a transformation of the plane

A 7→ A′ satisfying |A′B′| = |AB| for all pairs of points A,B in the plane.

We have seen that all reflections and rotations are similarities with scale k = 1. We give

scale 1 similarities a special name:

Definition 7.2. An isometry is a similarity with scale 1.

Example 7.3. In this example, we will construct the similarity known as a homothety

with centre O. Fix a point O and a positive scale k. The homothety centred at O with

scale k is the transformation of the plane which (a) fixes O and (b) maps each A 6= O to
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the unique point A′ on the half-line OA with |OA′| = k |OA|. In the figure below, we have

shown the homothety centred at O with scale 2.

BB′

C

C ′

A

A′

O

We claim that the homothety centred at O with scale k is a similarity with scale k. To

prove this, we use both Thales’ theorem and its converse. Let A,B be any two points so

that A,O,B do not lie on the same line, and let A′, B′ be their images under the homothety.

Since |A′O| / |AO| = k and |B′O| / |BO| = k, we apply the converse to Thales’ to deduce

A′B′ is parallel to AB.

B

B′

A
A′

O

Then we can apply Thales’ to deduce |A′B′| / |AB| = |A′O| / |AO| = k, so that |A′B′| = k |AB|,
as desired.

If A,O,B lie on a common line, then the proof that |A′B′| = k |AB| is an easy application

of the equality case in the triangle equality; it is left as an exercise for the reader.

Exercise 7.4. Let O,A,B be three points on a line, and let A′, B′ be the image of A,B

under the homothety with scale k, centred at O. Prove that |A′B′| = k |AB|. Hint : consider

two cases: (i) when O is between A,B and (ii) when O is outside A,B. In case (i), prove

that |A′B′| = |A′O|+ |OB′| and |AB| = |AO|+ |OB|, so that |A′B′| = k |AB|. In the second

case, use a similar argument.
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Definition 7.5. Two triangles ABC and A′B′C ′ are called similar if there is a similarity

mapping ABC to A′B′C ′.

B

B′

C C ′

A

A′

Theorem 7.6. If ABC and A′B′C ′ are similar then all corresponding angles are equal.

Proof. Suppose that ABC and A′B′C ′ are similar with scale k. Let A′′, B′′ and C ′′ be the

images of A′, B′, C ′ under the homothety centred at B′ with scale 1/k.

B

B′ = B′′

C C ′

A

A′

C ′′

A′′

Then A′′, B′′, C ′′ is similar to ABC with scale 1, and so, by “side-side-side” criterion for

congruence, A′′B′′C ′′ and ABC are congruent. It follows that ∠ABC = ∠A′′B′′C ′′. By

definition of the homothety centred at B′, we know that the half lines B′′A′′ and B′A′ and

B′′C ′′ and B′C ′ are equal, and so ∠A′′B′′C ′′ = ∠A′B′C ′. Thus ∠ABC = ∠A′B′C ′. By

relabeling the vertices of our triangles, we deduce all angle pairs are equal. This completes

the proof. �

Theorem 7.7. If ABC and A′B′C ′ are two triangles satisfying any one of the following

three conditions then ABC and A′B′C ′ are similar.

(a) |AB| / |A′B′| = |BC| / |B′C ′| = |AC| / |A′C ′|.
(b) |AB| / |A′B′| = |BC| / |B′C ′| and ∠ABC = ∠A′B′C ′.

(c) All corresponding angle pairs between ABC and A′B′C ′ are equal.

We refer to (a), (b) and (c) as the “side-side-side,” “side-angle-side” and “angle-angle-angle”

criteria for similarity, respectively.

Proof. Let A′′B′′C ′′ be the image of A′B′C ′ under the homothety centred at B′ with

scale |AB| / |A′B′|. If (a) holds, then A′′B′′C ′′ is congruent to ABC by the “side-side-side”
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condition for congruency. If (b) holds, then A′′B′′C ′′ is congruent to ABC by the “side-

angle-side” condition for congruency. If (c) holds, then A′′B′′C ′′ is congruent to ABC by

the “side-angle-angle” condition for congruency. In all three cases, there exists a sequence of

reflections taking A′′B′′C ′′ to ABC. Since reflections are isometries, the composition of the

sequence of reflections taking A′′B′′C ′′ to ABC with the initial homothety taking A′B′C ′

to A′′B′′C ′′ is a similarity taking A′B′C ′ to ABC. This completes the proof. �

Corollary 7.8 (Pythagoras). If ABC is a right-angled triangle (with right angle at C) then

|AC|2 + |BC|2 = |AB|2 .

Proof. Let D be the projection of C onto the side AB. Let α = ∠CAB and β = ∠ABC.

Since the angles in any triangle add up to 180◦, we know α+ β = 90. Adding the angles in

triangle ADC, we deduce ∠DCA = β and, similarly, adding the angles in DBC we deduce

∠BCD = α.
B

C A

D

Then, by the “angle-angle-angle” criterion for similarity, we know CDB, ADC and ACB

are all similar. Thus
|BC|
|AB|

=
|BD|
|BC|

and
|AC|
|AB|

=
|DA|
|AC|

,

whereby we obtain
|BC|2 + |AC|2

|AB|
= |BD|+ |DA| = |AB| ,

which gives the desired result. �
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Corollary 7.9. Let ABC and AB′C ′ be similar triangles, both labelled counterclockwise.

Then ABB′ and ACC ′ are similar.

A

B

C

B′

C ′

A

B

C

B′

C ′

Proof. We will use the “side-angle-side” criterion for similarity presented in part (b) of

Theorem 7.7. Because ABC and AB′C ′ are similar, we have |AB′| / |AC ′| = |AB| / |AC|,
and rearranging we obtain |AB′| / |AB| = |AC ′| / |AC|. Then to prove the angles ∠C ′AC

and ∠B′AB are equal, we compute

∠C ′AC = ∠C ′AB′ ± ∠B′AC = ∠B′AC ± ∠CAB = ∠B′AB,

where we have used the fact that ∠C ′AB′ = ∠CAB, which follows by similarity of ABC

and AB′C ′. The ± depends on whether or not the triangles are interlaced, i.e. we may have

a figure of the form pictured below.

A

B

C
B′

C ′

A

B

C
B′

C ′

This completes the proof. �

Problem 7.10 (Napoleon’s Theorem). Let ABC be a triangle, and build equilateral trian-

gles ARB, BPC and CQA outside of ABC, and let M,K,L be their orthocentres. Prove
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that KLM is equilateral.

A B

C

Q

P

R

L

M

K

Solution. Using the “angle-angle-angle” criterion for similarity (i.e. part (c) of Theorem

7.7) we deduce AMR is similar to ALC. Hence, by Corollary 7.9, we deduce AML is similar

to ARC.

A

C

R

L

M

A

C

R

L

M

Therefore |ML| / |CR| = |AM | / |AR|. Analogously, MBK is similar to RBC, and so

|KM | / |CR| = |BM | / |BR|. However, |AM | / |AR| = |BM | / |BR|, since AMR is con-

gruent to BMR by the “side-side-angle” criterion for congruency, and so |ML| = |KM |.
But then, by symmetry, all sides are equal (i.e. |MK| = |KL| and |KL| = |ML|) and this

completes the proof.

Exercise 7.11. In the solution of Problem 7.10 we used the fact that AMR is congruent

to BMR. Prove this using elementary arguments by considering the reflection through the

bisector of the segment AB.



70 TAUGHT BY PIOTR PRZYTYCKI. NOTES BY DYLAN CANT.

Ptolemy’s Theorem. Let ABCD be a convex quadrilateral. Then we have the following

inequality

|AB| |CD|+ |AD| |BC| ≥ |AC| |BD| ,

with equality holding if and only if ABCD lie on a circle.

A B

D

C

Proof. Let E be the point inside the angle ABC such that ∠ABD = ∠EBC and such that

|BE| / |BA| = |BC| / |BD|. Then, by the “side-angle-side” criterion for similarity, we know

ABD is congruent to EBC.

A B

ED

C

(We remark that it is possible for E to leave the interior of the quadrilateral ABCD). By

similarity of ABD and EBC, we know

(∗) |EC| / |AD| = |BC| / |BD|

Using Corollary 7.9, we deduce ABE and DBC are similar, and hence

(∗∗) |AE| / |DC| = |AB| / |DB|

We note that we have found two equalities which involve all of the lengths present in

Ptolemy’s inequality. Using the triangle inequality, we obtain

(T) |AC| ≤ |AE|+ |EC| ,

and multiplying both sides of this equation by |DB|, we obtain

|AC| |DB| ≤ |AE| |DB|+ |EC| |DB| = |AB| |DC|+ |AD| |BC| ,

where we have used the equalities (∗) and (∗∗) in the second equality. This completes the

proof of the inequality, and it only remains to characterize the case when equality holds.

Equality will hold in Ptolemy’s inequality if and only if equality holds in (T) which happens
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if and only if E lies on the segment AC. We (cleverly) observe that E lies on AC if and only

if ∠BCE = ∠BCA.

A

B

D
C

E

If this is the case, then similarity of ABD and EBC implies that ∠BDA = ∠BCE, and so

∠BDA = ∠BCA. By Corollary 3.8 (a long time ago) we know that ABCD lie on a circle.

Conversely, if ABCD lie on a circle, then we have ∠BDA = ∠BCA. Since ABD and EBC

are similar, We have ∠BDA = ∠BCE, and so ∠BCE = ∠BCA, so that E lies between A

and C. Therefore, we have characterized the case when equality holds in Ptolemy’s inequality,

and this completes the proof of theorem. �

Example 7.12. Let ABC be an equilateral triangle with circumscribed circle o. Suppose

P lies on the arc BA of o. Then |CP | = |AP |+ |BP |.

A

P

B

C

Clearly APBC forms a convex quadrilateral whose vertices lie on a circle, and so we can

apply the equality case in Ptolemy’s Theorem. We obtain

|PC| |AB| = |AC| |PB|+ |BC| |AP | .

However, |AB| = |AC| = |BC|, and so we can cancel these common terms in the above

equality, and we obtain |PC| = |PB|+ |AP |, as desired.

Problem 7.13. Let A1 · · ·A7 be regular heptagon (a regular n-gon is a polygon whose

vertices form an ordered collection of n points A1 · · ·An on a circle so that the rotation of

angle 360◦/n sends Aj to Aj+1 and An to A1. A heptagon is just a 7-gon). Let o be the
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circumscribed circle of A1 · · ·A7, and pick D on the arc joining vertices A1A7.

A1

A2

A3

A4

A5

A6

A7

D

Show that

(∗) |DA1|+ |DA3|+ |DA5|+ |DA7| = |DA2|+ |DA4|+ |DA6| .

Solution. The idea for the solution is simple, we will use the equality case in Ptolemy’s

Theorem seven times applied to various quadrilaterals inscribed in the circle, then we will

add the seven resulting equalities together and, after some simplification, we will obtain (∗).
We remark that this problem can be seen as a generalization of Example 7.12.

We begin our solution by identifying three side lengths in the heptagon. Let a = |A1A2|
and b = |A1A3|. Note that by the rotational symmetry of a regular heptagon, a = |AjAj+1|
and b = |AjAj+2| (where we add integers modulo 7, so that 6 + 2 = 1 etc). Now we consider

the quadrilaterals DAjAj+1Aj+2, where j = 1, · · · , 5 (j = 1, 3, 5 is shown on the left in the

figure below, and j = 2, 4 is shown on the right).

D

A1

A2

A3

A4

A5

A6

A7

D

A1

A2

A3

A4

A5

A6

A7

Since each such quadrilateral is inscribed in a circle, we can apply the equality case in

Ptolemy’s theorem, and in all cases we obtain

(?) b |DAj+1| = a |DAj |+ a |DAj+2| .



TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE 73

This gives us five equations. We still need to apply Ptolemy’s theorem twice more. We

consider the two quadrilaterals DA1A6A7 and DA1A2A7, shown below.

D

A1

A2

A3

A4

A5

A6

A7

D

A1

A2

A3

A4

A5

A6

A7

Applying Ptolemy to these quadrilaterals yields

(??) a |DA6| = a |DA1|+ b |DA7| and a |DA2| = b |DA1|+ a |DA7|.

Now we add up the five equations in (?) and the 2 equations in (??) in a clever way: we

gather the “even” terms (terms containing |DAj | for j even) on the left, and move the “odd”

terms (terms containing |DAj | for j odd) to the right:

(? and ??)

b |DA2| = a |DA1|+ a |DA3|

a |DA2|+ a |DA4| = b |DA3|

b |DA4| = a |DA3|+ a |DA5|

a |DA2|+ a |DA4| = b |DA5|

b |DA6| = a |DA5|+ a |DA7|

a |DA6| = a |DA1|+ b |DA7|

a |DA2| = b |DA1|+ a |DA7|

Adding all of these up yields

(2a+ b)(|DA2|+ |DA4|+ |DA6|) = (2a+ b)(|DA1|+ |DA3|+ |DA5|+ |DA7|),

and the common factor of (2a+ b) cancels and we obtain (∗), as desired.

Theorem 7.14 (angle bisector theorem, cf. Definition 5.3 and Exercise 5.4). Let ABC be

a triangle, and let P be the intersection of the interior bisector at C and AB, and suppose

that the exterior bisector at C intersects AB in a point Q (note that this is only possible if
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the exterior bisector at C is not parallel to AB).

A PQ B

C

Then P,Q satisfy
|AP |
|BP |

=
|AQ|
|BQ|

=
|AC|
|BC|

.

Remark. If |AC| = |BC|, then P is the midpoint of AB (as expected) but then Q is actually

not defined since the exterior bisector at C is parallel to AB. In this degenerate case we can

think of Q as being a point “at infinity.”

Proof. Draw a line through A parallel to BC intersecting CP in K and CQ in L.

A PQ B

K

C

L

The line CK cuts the parallel lines LK and CB in equal angles, so

∠AKC = ∠BCK = ∠KCA,

where we have used the fact that CK bisects the angle ∠BCA. Similarly, the line CQ cuts

the lines LK and CB in equal angles, so ∠CLA = ∠ACL. In particular, triangles ACK

and ALC are isosceles, and so |AK| = |AC| = |AL|.
Now we use Thales’ Theorem at the angle at P intersecting the parallel lines LK and

BC, and we obtain |AP | / |PB| = |AK| / |BC|. Using |AK| = |AC| = |AL|, this becomes

|AP | / |PB| = |AC| / |BC| = |AL| / |BC|. Now we use Thales’ theorem at the angle at Q to

conclude |AL| / |BC| = |AQ| / |BQ|, and combining everything, we obtain the desired result

|AP |
|BP |

=
|AC|
|BC|

=
|AQ|
|BQ|

.
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�

Problem 7.15. Given points A 6= B and a real number λ > 0, find the set of points such

that |AX| = λ |BX|.
Remark. If λ = 1, we have characterized this set of points as the bisector of AB (Theorem

1.13).

Solution. The idea for the solution is to use the angle bisector theorem (Theorem 7.14).

Thanks to the above remark, we may assume λ 6= 1. Then pick P inside the segment AB

and Q outside so that |AP | / |BP | = |AQ| / |BQ| = λ. We claim that the set of points X

satisfying |AX| = λ |BX| is precisely the circle with diameter PQ.

BA PQ

X

To prove this claim, we begin by supposing that X satisfies |AX| / |BX| = λ. Since

|AP | / |BP | = |AX| / |BX|, we know that XP must bisect the angle BXA (here we are

using the angle bisector theorem and the fact that there is a unique point P between A

and B satisfying |AP | / |BP | = |AX| / |BX|). Similarly XQ bisects the exterior angle of

ABX at X. However, we have proved in Exercise 5.4 that the two angle bisectors at X are

perpendicular, and so ∠PXQ = 90◦, and so X lies on the circle with diameter PQ (applying

Corollary 3.8). Thus the set of points satisfying |AX| / |BX| = λ lies on the chosen circle.

It remains to prove that if X lies on the circle with diameter PQ, then X satisfies

|AX| / |BX| = λ. To show this, we construct two points M,N so that (i) AN ‖ PX
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and AM ‖ XQ and (ii) M,N both lie on the line BX.

BA PQ

M

N

X

Now we apply Thales’ Theorem to the angle QBN intersecting parallel lines AN ‖ PX and

AM ‖ QX and obtain the equalities

(∗) |AP |
|PB|

=
|NX|
|XB|

and
|MX|
|BX|

=
|AQ|
|BQ|

.

Since |AQ| / |BQ| = |AP | / |PB| = λ, we deduce |NX| = |MX|. Finally, since ∠PXQ = 90◦

(since X lies on the circle with diameter PQ) and AN ‖ PX and AM ‖ XQ, we deduce

∠NAM = 90◦, and consequently, A lies on the circle with diameter NM . Since X is the

midpoint of segment NM , we conclude |AX| = |NX| = |MX| (this is proven in Exercise

3.6). Thus, returning to (∗), we obtain

|AX|
|BX|

=
|AQ|
|BQ|

= λ,

as desired. This completes the proof.

8. The Power of a Point with Respect to a Circle

Definition 8.1. The power of a point A with respect to a circle o is a number

computed according to the following rule. Issue a line k from A intersecting o in two distinct

points B and B′.

k

oA

B
B′

Then the power of A with respect to o is given by the following formula.

power of A with respect to o =


|AB| |AB′| if A is outside o

0 if A is on o

− |AB| |AB′| if A is inside o
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A priori, this definition depends on the line k. However, with a little bit of work, we see that

it actually does not:

Theorem 8.2. The definition given for the power of A with respect to o does not depend

on the line k.

Proof. This result is called a “Theorem” because it is important, but not because it is hard

to prove! The proof is an easy application of similar triangles. First suppose that A lies

outside the circle o. Suppose k, ` are two lines intersecting at A, and suppose B 6= B′ and

C 6= C ′ are the intersection points of k and ` with o respectively. As in the figure, we assume

that B separates A from B′ and C separates A from C ′.

k

`
oA

B
B′

C
C ′

Since angles CC ′B and CB′B are subtended by the same arc CB, we know that ∠AC ′B =

∠CB′B, and since triangles AC ′B and CB′A share a common angle at A, we deduce they

are similar by the “angle-angle-angle” criterion. It follows that |AC| / |AB′| = |AB| / |AC ′|
and so |AC| |AC ′| = |AB′| |AB|.

The case when A is inside the circle is similar, and it is left to the reader. �

Proposition 8.3. Let A be a point lying outside of o. If D ∈ o is such that AD is tangent

to o, then the power of A with respect to o is |AD|2.

A

D

B′
B

Proof. Let B,B′ be as in the definition of the power of a point. Applying Proposition 3.12,

we deduce ∠BDA = ∠AB′D, and hence AB′D and ADB are similar by the “angle-angle-

angle” criterion. In particular, |AD| / |AB′| = |AB| / |AD|, and hence |AD|2 = |AB| |AB′|,
and this completes the proof. �

Remark. Let A and D be as in the preceeding proposition, and let O be the centre of

the circle o. Recall that AD is perpendicular to the radius OD, and hence we can apply

Pythagoras’ theorem to write |AD|2 = |AO|2−|DO|2. If we denote d := |AO| and r := |DO|
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the radius of the circle, then we conclude the power of A with respect to O is given by d2−r2.

A

D

O
d

r

In fact, this formula continues to hold if A is inside of o. To show this, issue a line k

passing through A and O, and consider the intersection points B and B′ between this line

and the circle o. Without loss of generality, suppose that |AB| ≤ |AB′|. Then we have the

configuration shown in the following figure.

r − d r + d

OA
B B′

As described in the figure above, we have − |AB| |AB′| = −(r − d)(r + d) = d2 − r2, which

is what we wanted to show. We remark that this formula is concise, but the definition given

at the beginning of this section is much more useful in practice.

Problem 8.4. Let o1 and o2 be two circles intersecting in two points E and E′ lying on a

line k. Let A,C lie on o1, and B,D lie on o2 so that AC intersects BD at a point P on k.

Prove that ABCD lie on a circle.

P

A

C

B

D

k

EE

E′

Solution. In our solution we assume that P lies inside the intersection of the interiors of o1

and o2 (the other case is when P is outside of both o1 and o2). The idea for the solution is
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simple: we let o3 be the circumscribed circle of ABC, and we will show that D lies on o3.

P

A

C

B

D

o2

o1

o3

E

E′

To prove D lies on o3, we will use an equality which will result from computing the power

of P with respect to o1 and o2 in various ways.

By computing the (negative) power of P with respect to o1 in two different ways (using the

lines AC and EE′) we obtain the equality |AP | |PC| = |EP | |E′P |. Similarly, by computing

the power of P with respect to o2 in two different ways, we obtain the equality |PD| |BP | =
|EP | |E′P |, and hence |AP | |PC| = |PD| |BP |. Now let o3 be the circumscribed circle of

ABC. We can compute the (negative) power of P with respect to o3 in two ways, using

the line AC and using the line BD. Let B and D′ be the intersection points of BD and

o3, so that the power of P with respect to o3 is equal to |BP | |PD′|. However, this power

is also equal to |AP | |PC| = |PD| |BP |. Hence, keeping track of the various equalities, we

have |PD′| = |PD|. We claim that D and D′ are both on the opposite side of P to B.

This is true because P lies on the edge AC, so it must lie inside o3, and consequently P

must separate B,D′, and (by our assumption that P lies inside o2) P separates B from D.

Therefore |PD′| = |PD| implies D = D′, and so D ∈ o3, as desired. The case when P lies

outside both o1 and o2 is similar and is left as an exercise.
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Exercise 8.5. Solve Problem 8.4 in the case when P lies outside of o1 and o2 (see figure

below).

P

A

C

B

D

E

E′

Definition 8.6. If two circles o1 and o2 intersect in two distinct points E 6= E′, then the

line EE′ is called the radical axis of o1 and o2.

Theorem 8.7. Let o1 and o2 intersect in points E 6= E′. Then P lies on the radical axis of

o1 and o2 if and only if the power of P with respect to o1 is equal to the power of P with

respect to o2.

P

B′

B

C ′

C

o1

o2

E

E′

Proof. Let B 6= B′ be on o1 and C 6= C ′ on o2 so that lines BB′ and CC ′ both contain P .

First we show that if P lies on the radical axis EE′ then the powers of P with respect to o1 and

o2 are equal. Case 1: if P lies outside o1 and o2. Proving equality of the powers in this case

is easy to since |PE| |PE′| = |PB| |PB′| (by computing the power of P with respect to o1 in

two different ways) and |PC| |PC ′| = |PE| |PE′| (by computing the power of P with respect

to o2 in two different ways). Thus |PC| |PC ′| = |PB| |PB′|, as desired. Case 2: if P lies

inside both o1 and o2. The same argument as in Case 1 shows − |PC| |PC ′| = − |PB| |PB′|,
as desired.
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We note that since P lies on the radical axis, it cannot be inside o1 and outside o2 (or

vice-versa) and so we have exhausted all cases.

Now we assume that P has equal powers with respect to o1 and o2, and we want to show

that P lies on the radical axis EE′. We will prove this by contradiction, so suppose that

P does not lie on the radical axis. First we note that P cannot be inside o1 and outside

o2 (or vice-versa), or else the powers with respect to o1 and o2 would have different signs.

Therefore there are only two cases: if P is outside both o1 and o2 or P is inside both o1 and

o2 (the third case where P lies on the intersection of o1 and o2 is trivial, for then P is either

E or E′). Assume that P lies outside both o1 and o2. Consider the line PE, and let PE

intersect o1 in a point A1 and o2 in a point A2.

P

o1

o2

A1

A2

E

E′

Since P does not lie on EE′, we know that A1 6= A2 (since A1 = A2 implies A1 = A2 = E′

is the other intersection point between o1 and o2). But since the power of P with respect

to o1 is the same as with respect to o2, we have |PE| |PA1| = |PE| |PA2|, and hence

|PA1| = |PA2|. Since A1 and A2 both lie on the ray PE, we deduce A1 = A2, which

contradicts our assumption. A similar argument works when P lies inside both o1 and o2.

This completes the proof of the theorem. �

Exercise 8.8. Prove that for any two circles o1, o2 with different centres, the set of points

P for which its power with respect to o1 equals its power with respect to o2 forms a line.

Hint : let O1 and O2 be the centres of o1, o2 and issue a perpendicular to O1O2 through a

point P on O1O2 which has equal powers with respect to o1 and o2.

Remark. By virtue of Exercise 8.8, we define the radical axis of two circles o1 and o2 with

distinct centres to be the set of points P with equal power with respect to o1 and o2.

Problem 8.9. Let o1, o2 and o3 be circles so that

o1 ∩ o2 = {A,A′}, o2 ∩ o3 = {B,B′} and o1 ∩ o3 = {C,C ′}.
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Then the three radical axes AA′, BB′ and CC ′ either intersect in a point or are parallel.

A

A′

B

B′

C

C ′

o1 o2

o3

or

A

A′

B

B′

C

C ′

Solution. In our solution we may obviously assume that the lines are not parallel, since if

they are parallel, then we are already done!

Therefore one pair of the radical axes must intersect, and so, without loss of generality,

we assume that AA′ and BB′ intersect in a point P . Then we apply Theorem 8.7 to deduce

that the power of P with respect to o1 is equal to the power of P with respect to o2 (since P

lies on AA′) and the power of P with respect to o2 is equal to the power of P with respect

to o3 (since P lies on BB′). But then (applying Theorem 8.7 once again) we deduce that

the power of P with respect to o1 equals its power with respect to o3, hence P lies on CC ′.

This completes the proof.

Exercise 8.10. Show that the argument given above does not require the circles to intersect,

and deduce that the three radical axes (as defined in the remark preceeding Exercise 8.8)

which can be made out of three arbitrary circles o1, o2 and o3 intersect in a common point

(or are parallel).

Problem 8.11. Let A,B,C,D,E be distinct points on a line k so that

|AB| = |BC| = |CD| = |DE| = a.
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Prove that, given any circle o1 containing A,B and any circle o2 containing D,E so that o1

and o2 intersect in distinct points K, L, we have that K,L,C lie on a common line.

k
A B C D E

o2

o1

K

L

Solution. Without our knowledge of the power of a point, this problem seems like it would

be difficult. However, it is easily solved using Theorem 8.7. Using the fact that |AC| =

|CE| = 2a and |BC| = |CD| = a, we compute that the powers of C with respect to o1 and

o2 are both equal to 2a2. Hence C lies on the radical axis of o1 and o2, and thus C lies on

the line KL, as desired.

Problem 8.12 (Brianchon’s Theorem). Let ABCDEF be a convex hexagon with an in-

scribed circle o; here convex means each diagonal is contained inside the hexagon. Then

the lines AD, BE and CE intersect in a single point.

A

B

C

D

E

F

Solution. The idea for the solution is to find three circles o1, o2, o3 so that AD, BE and

CF are the three radical axes constructed from o1, o2, o3. Then we can apply Exercise 8.10

to deduce AD, BE and CF intersect in a single point (a straightforward argument shows

that they cannot be parallel). To do this, we introduce some convenient notation: let PAB

be the tangency point between the line AB and the inscribed circle, and denote the other

tangency points by PBC , PCD, PDE , PEF and PFA in a similar fashion. Let a denote the

distance |APAB |, and recall that the “strongest theorem of geometry” states that a is also
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equal to |APFA|. Define distances b, c, d, e, f similarly.

A

B

C

D

E

FPAB

PBC

PCD
PDE

PEF

PFAa a

Let P be the point on the line AB at a distance of c+ e from A on the opposite side of B,

and let Q be the point on DE at a distance a + c from E on the opposite side of D. We

claim that there is a circle o1 tangent to lines AB and DE at the points P and Q.

A

B

C

D

E

Fa

e

c+
e

a+
c

P

Q

o1

To prove this claim, we consider the intersection point S between lines AB and ED. Since S

is equidistant to the tangency points PAB and PDE , and the distance from PAB is a+ c+ e

and the distance from Q to PDE is also a+ c+ e, we deduce that P and Q are equidistant

from S. A simple application of Theorem 4.1 proves that there is a circle tangent to the

angle at DSB at points P and Q.

In a similar fashion, and by consulting the figure below, define points R, S, T and U .

Then circles o2 and o3 (as shown below) exist, and this details of the proof of this assertion
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are left to the reader.

A

B

C

D

E

F

c+
e

a+
c

P

Q

o1

c+ e

a+
e

R

S

o2

a+ e

a+ c

T

U

o3

Now we claim that AD is the radical axis of o1 and o2. To prove this, note that |AP | =

|AS| = c+ e and AP and AS are tangent to o1 and o2 respectively. Therefore the power of

A with respect to o1 is equal to its power with respect to o2. A similar computation proves

that the power of D with respect to o1 equals its power with respect to o2, and so AD is

the radical axis of o1 and o2. Similar arguments prove that BE is the radical axis of o1 and

o3, and CF is the radial axis of o2 and o3. Therefore, by Exercise 8.10, the lines AD, BE

and CF intersect in a common point or they are parallel. However, convexity of ABCDEF

implies that the segments AD and BE intersect, and so we must have AD, BE and CF

intersecting in a common point. This completes the solution.

Exercise 8.13 (challenging). Let ABCD be a quadrilateral with an inscribed circle o. Let

E (respectively F , G, H) be the point of tangency between AB and o (respectively BC, CD,

DA and o). Prove that AC, BD, EG and FH intersect in a common point. Hint : use the

ideas in the proof of Brianchon’s Theorem by treating AEBCGD as a degenerate hexagon.

9. Ceva’s Theorem

Theorem 9.1 (Ceva). Let ABC be a triangle and let D, E, and F be arbitrary points on

the sides BC, CA, and AB, respectively. Then the lines AD, BE and CF intersect at a



86 TAUGHT BY PIOTR PRZYTYCKI. NOTES BY DYLAN CANT.

single point if and only if

(∗) |AF | |BD| |CE| = |BF | |CD| |AE| .

A B

C

D
E

F

Before we give the proof of Ceva’s theorem, we demonstrate how useful it is with a

corollary.

Corollary 9.2. If ABC is a triangle and D, E, F are the midpoints of the sides BC, AC

and AB, respectively, then the medians AD, BE and CF intersect in a single point (recall

that this point is called the centroid of the triangle ABC).

A B

C

DE

F

Proof. Using Ceva’s theorem, we see that it suffices to prove that |AF | |BD| |CE| =

|BF | |CD| |AE|, but this is immediate, since we have equalities |AF | = |BF |, |BD| = |CD|
and |AE| = |CE|! �

Proof of Ceva’s Theorem. First we show that if CF , AD and BE intersect at a point

then (∗) holds. This is a fairly straightforward consequence of Thales’ theorem. Let O

denote the intersection of CF , AD and BE, let k be the line through C parallel to AB, and
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consider the points P and R, obtained by extending BE to k and AD to k, as shown.

A B

C

D
E

F

O

P R
k

Then we apply Thales’ to the angle at D formed by the lines BC and AR to conclude

(1)
|BD|
|CD|

=
|AB|
|CR|

,

while applying Thales’ theorem to the analogous angle at E yields

(2)
|CE|
|AE|

=
|CP |
|AB|

.

Applying Thales’ theorem to the two angles at O formed by the lines CF , AR and CF , BP

we conclude

(3)
|AF |
|CR|

=
|FO|
|OC|

=
|BF |
|CP |

, hence
|AF |
|BF |

=
|CR|
|CP |

.

Taking the product of (1), (2) and (3) yields

|AF | |BD| |CE|
|BF | |CD| |AE|

= 1,

which is equivalent to (∗). This completes the first half of the proof.

Now we establish the converse, and so we assume that equality (∗) holds and wish to prove

that AD, BE and CF intersect in a common point. Let O denote the point of intersection

between CF and BE, and let D′ be the intersection of AO with the segment BC.

A B

C

D′
E

F

O D

By applying the first part of Ceva’s theorem, we know that

(4)
|BD′|
|D′C|

=
|BF | |AE|
|AF | |CE|

=
|BD|
|DC|

,
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where the second equality holds because we assume (∗) holds for the point D. But there is a

unique point between B and C with the ratio given by (4), and so D = D′, which completes

the proof. �

9.1. Applications of Ceva’s theorem. In this subsection we present an assortment of

problems which we solve using Ceva’s theorem.

Problem 9.3. Let ABC be a triangle and let Let D, E be points on ABC, as shown. Prove

that AD and BE intersect on the median from C if and only if ED is parallel to AB.

A B

C

DE

Solution. First suppose that AD and BE intersect at a point O on the median through

C. Let F be the midpoint of AB; then we apply Ceva’s theorem to the points D,E, F to

conclude

(1) |AF | |BD| |CE| = |FB| |CD| |AE| .

Since |AF | = |FB|, we conclude |CE| / |AE| = |CD| / |DB|, and hence Thales’ theorem

implies ED is parallel to AB.

For the converse, we assume ED is parallel to AB, and use Thales’ theorem at the angle

at C to conclude |CE| / |AE| = |CD| / |DB|, and since |AF | = |BF |, we conclude (1). Then

Ceva’s theorem implies BE and AD intersect on CF , which is the median through C.

Problem 9.4. Let ABC be a triangle with inscribed circle o, and letD,E, F be the tangency

points between o and the edges BC, CA and AB. Then AD, BE and CF intersect in a

common point. Remark: this point of intersection is called the Gergonne point.

A B

C

D
E

F
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Solution. By the “strongest theorem of geometry,” |AE| = |AF |, |BF | = |BD| and

|CD| = |CE|, and multiplying these three equalities together yields |AE| |BF | |CD| =

|AF | |BD| |CE|, hence Ceva’s theorem implies AD, BE and CF intersect in a common

point.

Problem 9.5. Let ABC be a triangle, and let P,Q,R be the centres of the sides BC, CA

and AB. Let S be a point inside the triangle PQR, and let K,L,M be the intersections of

the lines PS, QS and RS with the sides QR, RP , PQ, respectively. Prove that AK, BL

and CM intersect in a single point.

A B

C

P
Q

R

K
L

M

A B

C

P
Q

R

S

K ′

L′

M ′

Solution. As in the above figure, let K ′, L′,M ′ be the intersections of AK, BL and CM

with the opposite side BC, AC and AB (respectively). Since Q,P are the midpoints of AC

and BC, Thales’ theorem guarantees that QP is parallel to AB, and so we can apply Thales’

theorem to the angle at C formed by the lines CM ′ and CA to deduce 2 |QM | = |AM ′|.

M ′A B

C

P
Q

M

Similar argument yield 2 |AL′| = |RL|, 2 |RK| = |BK ′|, 2 |PM | = |BM ′|, 2 |QK| = |CK ′|
and 2 |PL| = |CL′|. Therefore, by multiplying all these equalities we deduce

|AM ′| |BK ′| |CL′| = |BM ′| |CK ′| |AL′| if and only if 8 |QM | |RK| |PL| = 8 |PM | |QK| |RL|,

and the latter equality is true by Ceva’s theorem, since QL, RM and PK intersect at S.

Applying Ceva’s theorem once again allows us to conclude AK ′, BL′ and CM ′ intersect in

a common point. This completes the solution.

Problem 9.6. Let D,E, F be the tangency points of the escribed circles to the triangle

A,B,C. Then the lines AD, BE and CF intersect in a common point.
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Solution. The idea for the solution is fairly simple: we will use the “strongest theorem of

geometry” to produce the equalities needed to invoke Ceva’s theorem. By the “strongest

theorem of geometry” we have

(1) |AB|+ |BD| = 1

2
(perimeter of ABC) = |AB|+ |AE| ,

so |AE| = |BD| (we proved (1) in the solution to Problem 5.8). Similarly |CD| = |AF | and

|FB| = |CE|. Multiplying these three equalities yields |AF | |BD| |CE| = |CD| |AE| |FB|,
as desired. This point of intersection is called the Nagel point.

A B

C

E D

F

Problem 9.7 (The intersection of symmedians). This application of Ceva’s theorem requires

a new notion: If ABC is a triangle, then the symmedian through C is the reflection of C’s
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median through the angle bisector at C.

median

angle bisector

symmedian

A B

C

Prove that the three symmedians of a triangle intersect at a common point.

mbs

m
b

s

m
b
s

A B

C

X

Solution. Let X,Y, Z be points on sides BC, AC and AB, respectively, so that AX, BY

and CZ are the symmedians through A,B,C, respectively. The key to the solution is the

fact that

(1)
|BX|
|CX|

=

(
|BA|
|CA|

)2

,
|CY |
|AY |

=

(
|CB|
|AB|

)2

, and
|AZ|
|BZ|

=

(
|AC|
|BC|

)2

.

To see why this implies the solution, we compute

|BC| |CY | |AZ|
|CX| |AY | |BZ|

= 1,

which, by Ceva’s theorem, implies that AX, BY and CZ intersect in a single point. To

prove (1), it suffices to prove the first equality |BX| / |CX| = |BA|2 / |CA|2. To do this, we

issue a line ` through C parallel to AB, and let D denote the point of intersection of the
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symmedian AX and `, and let E denote the point of intersection of the median AM and `.

`

A B

C D E

M

X

By Thales’ theorem, (i) |CE| = |AB|, and (ii) |BX| / |CX| = |AB| / |CD|.
Since the bisector through A bisects both CAB and DAE (by definition) we deduce that

∠CAD = ∠EAB. But since CE is parallel to AB, ∠EAB = ∠AEC. Thus triangles AEC

and DAC share two angles, and so they are similar. Therefore |CE| / |AC| = |AC| / |DC|,
and combining this with (i) and (ii) we deduce |BX| / |CX| = |BA|2 / |CA|2, as desired.

9.2. Menelaus’ Theorem. Suppose that we have a triangle ABC, points D,E on sides

BC and AC, and a third point F lying on the line AB but not between A and B. In a

similar spirit to Ceva’s theorem, Menelaus’ theorem gives a necessary and sufficient criterion

for when D,E, F lie on a common line.

Theorem 9.8 (Menelaus). With ABC a triangle and D,E, F as described above, D,E, F

are collinear if and only if the following equality holds

|AF | |BD| |CE| = |BF | |CD| |AE| .

A B F

C

D
E

Exercise 9.9. Prove Menelaus’ theorem by considering the following figure

A B F

C

DE

K
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Hint : Apply Thales’ theorem to the angles formed at E and D.

Problem 9.10 (The Simson line). Let ABC be a triangle and let S lie on the circumscribed

circle of ABC. Let D,E, F be the projections of S onto the lines BC, AC and AB, respec-

tively. Then the points D,E, F lie on a common line. Remark: this problem was already

asked in Exercise 3.19, but here we will solve it as an application of Menelaus’ theorem.

A
B

F

C

D

E

S

Solution. Without loss of generality, we can assume that S and C lie on opposite sides of

AB. We assume that F lies on the segment AB (there is another case, where F does not lie on

AB). Then, since ASBC admits a circumscribed circle, we know that ∠CAS+∠SBC = 180◦

(Theorem ). Thus, if ∠CAS = 90◦ then ∠SBC = 90◦, so we have E = A and D = B, and

so D,E, F lie on the line AB. Therefore, we may assume without loss that ∠CAS > 90◦,

so that ∠SBC < 90◦. It follows that E lies outside AC while D lies inside BC (as in the

figure above).

Therefore, we are in the setting of Menelaus’ theorem, since F,D lie on the edges of the

triangle, while E lies outside of its corresponding segment. We will establish the desired

equality

(∗) |AE| |BF | |CD|
|CE| |AF | |BD|

= 1

by proving that various triangles are similar. We claim that SFA is similar to SDC.

A
F

C

D

B

S
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This follows by the “angle-angle” criterion for similarity, since ∠BAS = ∠BCS, since BAS

and BCS both are subtended by the arc BS. Therefore, (i) |CD| / |AF | = |CS| / |AS|.
Similar arguments show that SEC is similar to SFB, so (ii) |BF | / |CE| = |BS| / |CS|, and

SDB is similar to SEA, so (iii) |AE| / |BD| = |AS| / |BS|. Multiplying together (i), (ii) and

(iii) we obtain (∗), and so we can apply Menelaus’ theorem to conclude D,E, F are collinear.

This completes the proof when F lies on AB. The proof of the other case is left to the reader

(Exercise 9.11).

Exercise 9.11. Suppose that we are in the setting of the previous problem, with AB sep-

arating C from S, but that F does lies outside of the segment AB. Prove that E,F,D still

lie on a common line.

A B

F
C

D

E

S

If the reader wishes to prove solve this problem using the same arguments as the solution to

Problem 9.10, she/he should prove an analogous theorem to Menelaus’ theorem which applies

when the points D,E, F lie on the lines CB,AC,AB, respectively, but none of D,E, F lie

inside their corresponding interval.

10. Isometries of the Euclidean plane

Recall that an isometry is a similarity with scale 1, i.e. a transformation of the plane

which preserves distances. Since isometries are similarities, they also preserves angles. The

goal of this section is to try to classify all isometries.

We have already seen that reflections and rotations are isometries. Another class of

isometries are the “parallel translations,” which we will define shortly. The concept of a

parallel translation is closely related to the concept of a “vector,” which is hopefully well

known to the reader. For completeness, we now give the formal definition of a “vector.”

Definition 10.1. We say that two pairs of points A,B and A′, B′ define the same vector,

written
−−−→
A′B′ =

−−→
AB, if and only if the point reflection (i.e. 180◦ rotation) through the

midpoint of AB′ sends B to A′. The reader will show below that
−−−→
A′B′ =

−−→
AB defines an

equivalence relation, and hence we can define a vector as an equivalence class of pairs of
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points.

A

B

A′

B′

Exercise 10.2. Prove the following facts about vectors:

(a) If
−−→
AB =

−−−→
A′B′, then |AB| = |A′B′|, and the point reflection through the midpoint of

BA′ interchanges A and B′.

(b) If A 6= B and A,B,A′ do not lie on a common line, then
−−→
AB =

−−−→
A′B′ implies ABB′A′

forms a parallelogram.

(c)
−−→
AB =

−−−→
A′B′ if and only if

−−→
AA′ =

−−→
BB′.

(d) If
−−→
AB =

−−−→
A′B′ and

−−−→
A′B′ =

−−−→
A′′B′′, then

−−→
AB =

−−−→
A′′B′′.

A
B

A′
B′

A′′
B′′

Hint for (d): first show this (i) when A,B,A′, B′, A′′, B′′ all lie on a common line, and (ii)

when A′, B′, A′′, B′′ lie on a common line and A,B lie on a different line. Then using (ii),

show that the general case can be reduced to the case when A,A′, A′′ lie on a common line.

Thus the relation
−−→
AB =

−−−→
A′B′ is an equivalence relation, and so we may define a vector

as an equivalence class of this relation.

Exercise 10.3. The goal of this exercise is to prove that vectors form a vector space.

(a) For any vector v and any point A, prove there is unique B so that
−−→
AB = v.

(b) If v =
−−→
AB, and w =

−−→
BC, define v + w =

−→
AC, and show that this not depend on the

choice of the pair A,B defining v.

(c) If v =
−−→
AB, λ ≥ 0 (resp. λ < 0) is a real number, and C is the unique point on AB so

that |AC| = |λ| |AB| and C lies on the ray [A,B〉 (resp. C lies on the other ray AB− [A,B〉),
define λv =

−→
AC. Show this does not depend on the pair AB defining v.

(d) Prove that with these operations of addition and scalar multiplication, the set of

vectors forms a vector space.

(e) Prove that this vector space is two-dimensional.
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Definition 10.4. If v is a vector, then the translation by v is a transformation of the

plane which takes A to A′, where A′ is the unique point so that v =
−−→
AA′ (the proof of

uniqueness was asked in Exercise 10.3).

v

A A′

B B′

C C ′

Proposition 10.5. The translation by a vector v is an isometry whose inverse is the trans-

lation by the vector −v.

Proof. Let A,B be two points in the plane. Since
−−→
AA′ =

−−→
BB′, part (b) of Exercise 10.2

implies that
−−→
AB =

−−−→
A′B′, so part (a) of the same exercise guarantees that |AB| = |A′B′|.

Referring to the definition of scalar multiplication given in Exercise 10.3, a simple argu-

ment shows
−−→
AA′ = v if and only if

−−→
A′A = −v, which proves that the inverse of the translation

by v is the translation by −v. �

Exercise 10.6. Let v and w be two vectors. If A′ is the translation of A by v, and A′′ is

the translation of A′ by w, then A′′ is the translation of A by v + w. (This is easy, once we

recall the definition of v + w given in Exercise 10.3).

Exercise 10.7. Let k, k′ be parallel lines, and let d be the distance between k and k′.

Prove that the composition of the reflection through k and the reflection through k′ is the

translation by a vector perpendicular to k with length 2d.

k

k′
v

Groups of transformations. The main goal in this section is to classify all isometries

of the Euclidean plane. It is therefore useful to consider the set of all isometries. The

first observation one makes about the set of all isometries is that they form a group, which,

informally, is a collection of transformations which can be composed and which have inverses.

Here are the formal definitions.

Definition 10.8. Recall that if f, g are two transformations of the plane, f ◦ g is the com-

posite transformation, which sends a point A to f(g(A)).

A transformation f is invertible if there is another transformation g (an inverse of f)

such that

f ◦ g = g ◦ f = id
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where id is the identity transformation, which maps each point to itself. As a corollary

to part (c) of Exercise 10.9 (see below), if f has an inverse, it has a unique inverse, which

we denote by f−1.

If g satisfies f ◦g = id, then we say g is a right-inverse for f , while if g satisfies g◦f = id

then we say g is left-inverse for f . Therefore, an inverse is both a right and left-inverse.

We say that f is onto (or surjective) if every point B is the image of some point A.

We say that f is one-to-one (or injective) if distinct points A 6= B map to distinct

points f(A) 6= f(B).

Exercise 10.9. Let f be a transformation of the plane.

(a) Show that f has a right-inverse if and only if f is onto. Hint : to prove the existence

of a right-inverse, for each point A define g(A) to be any point B so that f(g(A)) = B.

Prove that A 7→ g(A) is the desired right-inverse. Why does this argument fail if f is not

surjective?

(b) Show that f has a left-inverse if and only if f is one-to-one. Hint Pick a point Q. If

B = f(A) for some A, let g(B) = A. If B 6= f(A) for any A, let g(B) = Q. Prove that g is

the desired left-inverse.

(c) Suppose that f has left-inverse h and right inverse g. Prove that g = h, and hence f

has a unique inverse.

(d) Suppose that f is one-to-one and onto. Prove that f has a unique inverse.

Definition 10.10. A set G of transformations of the plane is a group if (i) id ∈ G, (ii)

f ∈ G implies that f is invertible and f−1 ∈ G, and (iii) f, g ∈ G implies that f ◦ g ∈ G.

Example 10.11. Proposition 10.5 and Exercise 10.6 imply that the set of all translations

forms a group. Indeed, (i) it is clear that the identity transformation equals the translation

by the zero vector, (ii) if T is the translation by v, then T−1 is the translation by −v
(Proposition 10.5) and (iii) if T, S are translations by v, w, respectively, then T ◦ S is the

translation by v + w.

Exercise 10.12. Prove that the group of all translations has the structure of a vector space.

Indeed, show that the group of all translations is isomorphic to the vector space of vectors.

Thanks to this result, we can ‘think’ of a vector as a translation, rather than an equivalence

class of pairs of points.

Exercise 10.13. Fix a non-zero vector v.

(a) Consider the set Nv = {v, 2v, 3v, 4v, · · · }, and for each natural number n ∈ N, let

Tn be the translation by nv. Let G = {Tn : n ∈ N}. Prove that G satisfies part (iii) of the

definition of a group, but show that it does not satisfy (i) or (ii).

(b) Consider the set Zv = {· · · ,−2v,−v, 0, v, 2v, 3v, · · · }, and for each integer n ∈ Z, let

Tn be the translation by nv. As in part (a), let G = {Tn : n ∈ Z}. Prove that G is a group.
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(c) Fix two non-zero vectors v, w, and consider the set Zv+Zw = {nv +mw : n,m ∈ Z}.
Prove that the set of all translations by elements in Zv + Zw forms a group.

Example 10.14. Fix a point O, and consider the set G of all rotations around O.

A

A′

O

Then G is a group: to show this, we let Rα ∈ G denote the rotation by angle α, and then

note that (i) R0◦ = id, (ii) Rα ◦R−α = R−α ◦Rα = R0◦ = id, and (iii) Rα ◦Rβ = Rα+β .

Exercise 10.15. (a) Pick some natural number n > 0, and let α be the angle (360/n)◦. Let

G be the set of all rotations by angle kα with k = 1, 2, 3, · · · (i.e. G = {Rα, R2α, R3α, · · · }).
Prove that G is a group. In fact, prove that G is a finite group.

(b) Pick an irrational number λ ∈ (0, 1). Let α be the angle (λ 360)◦. Prove that

G = {Rα, R2α, R3α, · · · }

is not a group. However, prove that

G̃ = {· · · , R−2α, R−α, id, Rα, R2α, R3α, · · · }

is a group. Unlike the group in part (a), show that G̃ is not finite.

Exercise 10.16. Let G be the set of all reflections of the plane (there is one reflection for

every line). Prove that G is not a group.

Proposition 10.17. Isometries form a group.

Before we give the proof, we ask the reader to solve the following exercise, whose conclusion

will be used in the proof of the proposition.

Exercise 10.18. (a) Let A 6= B be two points, and let d = |AB|. Suppose a, b are non-

negative real numbers so that one of the following relations is satisfied:

d = a+ b or a = d+ b or b = a+ d.

Show there is a unique point C on the line AB so that |AC| = a and |CB| = b.

(b) Let f be an isometry, and suppose that C is a point lying on the line AB. Use the

equality case in the triangle inequality to prove that f(C) lies on the line f(A)f(B).
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(c) If Y is any point on f(A)f(B), use part (a) to show that there is a unique point C on

AB so that |CA| = |Y f(A)| and |CB| = |Y f(B)|. Conclude that f(C) = Y .

(d) Combine parts (b) and (c) to conclude that any isometry f maps the line AB to the

line f(A)f(B) in a one-to-one and onto fashion.

Proof of the Proposition. It is clear that the identity transformation is an isometry, so

we have shown that isometries satisfy property (i) from the definition of a group.

Now we prove that isometries satisfy property (iii) for groups. Suppose f, g are both

isometries, and we want to show that the distance between f ◦ g(A) and f ◦ g(B) equals

|AB|. But this is easy:

|f(g(A))f(g(B))| = |g(A)g(B)| = |AB|

where the first equality follows since f is an isometry, and the second equality follows g is

an isometry. Therefore f ◦ g is an isometry.

The hardest part of the proposition is establishing that isometries satisfy property (ii) for

groups. Our argument is broken into three steps: first we fix some isometry f , and show

that it is one-to-one and onto, which guarantees the existence of an inverse f−1 (see Exercise

10.9). Then we show that this inverse f−1 is also an isometry.

If A 6= B are distinct points, then |AB| > 0, and so |f(A)f(B)| > 0, so f(A) 6= f(B).

Therefore f is one-to-one.

To prove that f is onto, we will use the result of Exercise 10.18. Let Y be an arbitrary

point in the plane, and we want to find C so that f(C) = Y . Take a (non-degenerate)

triangle A,B,D, and, without loss of generality, suppose that the line Y f(A) intersects the

line f(B)f(D). By the triangle inequality, f(A)f(B)f(D) is also a non-degenerate triangle

(e.g. no vertex lies on the line joining the other two).

Let the line Y f(A) intersect the line f(B)f(D) at a point C ′. Since C ′ lies on f(B)f(D),

we know there is C on BD so that C ′ = f(C). Then, since Y lies on the line f(A)f(C), we

may apply Exercise 10.18 know Y = f(X) for some X on AC.

A B

D

C f

f(A)

f(B)

f(D)

f(C) Y

This proves that f is onto. Therefore, by Exercise 10.9 we know that f−1 exists. Now it is

easy to show that f−1 is an isometry, since for any A,B we have

|AB| =
∣∣f(f−1(A))f(f−1(B))

∣∣ =
∣∣f−1(A)f−1(B)

∣∣ ,
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as desired. Since we have shown that the set of isometries satisfies (i), (ii) and (iii), we have

proved the proposition. �

Theorem 10.19. If an isometry f fixes the vertices of a triangle ABC, then f is the identity.

Proof. First we will prove that f fixes every point D on the line AB. Since f fixes A,B,

|f(D)A| = |DA|, |f(D)B| = |DB|, and so part (a) of Exercise 10.18 implies that f(D) = D.

Now suppose that Y is an arbitrary point. Without loss of generality, assume that the

line Y C intersects the line AB in a point D.

A

B

C D

Y

By the first part of our proof, we know that f fixes C and D. Therefore, applying the same

argument as in the first paragraph, we know that f fixes every point on the line CD, so f

fixes Y . It follows that f = id. �

Corollary 10.20. Let f, g be isometries, and assume there is a triangle ABC so that

f(A) = g(A), f(B) = g(B) and f(C) = g(C).

Then f = g.

Proof. Apply Theorem 10.19 to the isometry g−1f . �

10.1. The classification of isometries of the plane. So far we have encountered three

types of isometries: reflections, rotations and translations. There is one more kind of isometry

we have not seen yet, the so-called glide-reflection.

Definition 10.21. Let k be a line and v a vector parallel to k. The glide reflection

through k along v is the composition of the reflection R through k and a translation by v.

It is easy to see that the image of A under the glide reflection does not depend on the order

with which we translate and reflect (in other words, R commutes with the translation by v).

k

vv

A

A′

Note that the reflection through k is the glide reflection with vector v = 0.
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Theorem 10.22 (classification of isometries). Any isometry f is a rotation or a translation

or a glide reflection.

Proof. Let ABC be a triangle. Then the triangle f(A)f(B)f(C) is congruent to ABC

by the “side-side-side” criterion. Hence, by definition of congruence, there is a sequence

R1, R2, · · · , Rn of reflections taking ABC to f(A)f(B)f(C). By Corollary 10.20 we conclude

that f = Rn ◦ · · · ◦ R1. In fact, the proof of Theorem 2.15 shows that there is a sequence

of at most three reflections taking ABC to f(A)f(B)f(C), so we may assume that n = 1, 2

or 3.

If n = 1, so that f = R1, then we are obviously done.

If n = 2, then let R1 be the reflection through k and R2 be the reflection through `. If k

and ` intersect at a point O, then R2 ◦ R1 is a rotation through O (see Theorem 2.2). If k

and ` are parallel, then R2 ◦ R1 is a translation (see Exercise 10.7). In either case, we have

classified what f is.

The hardest part of the proof is analyzing the case n = 3. Let R1, R2 and R3 be the

reflections through lines k, ` and m, respectively. We will prove the case when k and `

intersect in a point O (the case when they are parallel is left as an exercise, see Exercise

10.23). Suppose that the angle between k, ` is α, so that R2 ◦ R1 is the rotation around O

of angle 2α.

`

k
O

R2 ◦R1

A

A′

The key observation is that if we have any other pair of lines k′, `′ so that (i) k′ and `′

intersect at O and (ii) k′, `′ are separated by an angle α, then the reflection R′1 through k′

and the reflection R′2 through `′ satisfy R′2 ◦R′1 = R2 ◦R1 (since they are both the rotation

around O by angle 2α). Therefore, without loss of generality, we may rotate the pair of lines

k, ` so that ` is perpendicular to m. Let P denote the intersection point of ` and m.

`

k
O

m

P
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As we did above with lines k and `, we may now rotate the lines ` and m to lines `′ and m′

still intersecting at P so that R′3 ◦R′2 = R3 ◦R2 (where R′2, R
′
3 are the reflections through `′

and m′). Therefore, replacing ` and m by `′ and m′ we may assume that m is perpendicular

to k.

`

k
O

m

P
`′

m′

Since m is perpendicular to both k and `, k and ` parallel, and so R3 ◦ R2 ◦ R1 is a glide

reflection (R2 ◦ R1 is a translation, and R3 is a reflection through a line parallel to the

translation vector). This completes the proof of the theorem. �

Exercise 10.23. Prove the above theorem in the case when k and ` are parallel.

10.2. Bonus subsection on the linear part of an isometry. A key idea in the study

of isometries is that isometries transform vectors in a natural way. If
−−→
AB is a vector and f

is an isometry, we can consider the transformed vector
−−−−−−→
f(A)f(B). What is important about

this transformation is that
−−−−−−→
f(A)f(B) only depends on the vector

−−→
AB - in other words, if

−−→
AB =

−−−→
A′B′, then

−−−−−−→
f(A)f(B) =

−−−−−−−→
f(A′)f(B′). In fact, the transformation

−−→
AB 7→

−−−−−−→
f(A)f(B) is

a linear transformation of vectors. Exercise 10.24 presents the necessary results.

f

Exercise 10.24. Let f be an isometry.

(a) If
−−→
AB =

−−−→
A′B′, show that

−−−−−−→
f(A)f(B) =

−−−−−−−→
f(A′)f(B′). Hint :

−−→
AB =

−−−→
A′B′ if and only

if the midpoint of AB′ is the midpoint of A′B. The latter statement is preserved under

isometries.

(b) Show that for each vector there is a corresponding vector f [(v) so that
−−→
AB = v implies

−−−−−−→
f(A)f(B) = f [(v). Hint : use part (a)!
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Then v 7→ f [(v) is a transformation of the set of vectors.

(c) Prove that for any positive real number λ > 0, f [(λv) = λf [(v). Hint : it may be

convenient to prove the cases λ > 1 and λ < 1 separately.

(d) Suppose that v, w are two vectors. Prove that f [(v + w) = f [(v) + f [(w). Hint : Let

A,B,C,D be chosen so that
−−→
AB = v and

−−→
BD = w, so

−−→
AD = v + w. Then

−−−−−−−→
f(A)f(D) = f [(v + w).

However, we also have
−−−−−−→
f(A)f(B) = f [(v) and

−−−−−−−→
f(B)f(D) = f [(w), so

−−−−−−−→
f(A)f(D) = f [(v) + f [(w).

(e) Use part (d) to show that f [(−v) = −f [(v), and then use part (c) to show that

f [(λv) = λf [(v) for any real number λ.

Therefore, for each isometry f , f [ is a linear operator on the set of all vectors (a

“linear operator” is a transformation of a vector space which preserves addition and scalar

multiplication).

(f) If g is another isometry, then (g ◦ f)[ = g[ ◦ f [.

Definition 10.25. Following the notation introduced in Exercise 10.24, we define the linear

part of an isometry f to be the linear operator f [. This operator acts on the space of vectors

in such a way that if A,B are points in the plane, then f [(
−−→
AB) =

−−−−−−→
f(A)f(B).

Exercise 10.26. Give an example of two different isometries f 6= g so that f [ = g[.

Exercise 10.27. Show that f [(v) = v for all vectors v if and only if f is a translation. Hint:

for the “only if” direction it suffices to show that, for all A,B,
−−−−→
Af(A) =

−−−−→
Bf(B).

Exercise 10.28. If ρ is any rotation by an angle α, then ρ[(
−−→
AB) =

−−→
AB′, where B′ is the

rotation of B around A by the angle α.

θ

A

B
ρ(A)

ρ(B)

B′

θ

Hint : Let O be the centre of rotation of ρ and let T be a translation taking A to O. Then

show that T−1◦ρ◦T is a rotation around A by angle α. Finally, note that (T−1◦ρ◦T )[ = ρ[.

10.3. Bonus subsection on orientation. The goal of this subsection is to make precise the

statement: “the isometry f preserves (or reverses) orientation.” Intuitively, an isometry f

“preserves orientation” if it takes a polygon A1 · · ·An whose vertices are oriented “clockwise”

to another polygon whose vertices are oriented “clockwise,” while f reverses orientation if the
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vertices of f(A1) · · · f(An) are oriented “counter-clockwise.” In the figure below, f preserves

orientation, while g reverses it.

A1

A2

A3

A4

A5

f

A1

A2

A3
A4

A5 g
A1

A2
A3

A4

A5

It is rather awkward to make the notion of “clockwise” precise, but it is possible to give a

rigourous definition of orientation which agrees with our intuition.

First let us write down a few properties any reasonable definition of orientation should

satisfy.

Requirements. Let f and g be isometries of the plane.

(I) If f preserves orientation and g preserves orientation, then f ◦ g also preserves orien-

tation.

(II) If f preserves orientation and g reverses orientation, then f ◦ g and g ◦ f reverse

orientation.

(III) If f reverses orientation and g reverses orientation, then f ◦ g preserves orientation.

(IV) All reflections reverse orientation.

We note that properties (I), (II), (III) can be packaged into the shorter statement: for

every isometry f there is a corresponding number sgn(f) ∈ {−1,+1}, so that

sgn(f ◦ g) = sgn(f)sgn(g),

with the convention that sgn(f) = +1 means f preserves orientation and sgn(f) = −1

means f reverses orientation. Then property (IV) implies that sgn(R) = −1 whenever R is

a reflection.

Therefore, the problem of giving a rigourous definition of orientation reduces to the prob-

lem of constructing the function sgn.

Proposition 10.29. There is at most one function f 7→ sgn(f) ∈ {−1,+1}, defined on

isometries, so that sgn(f ◦ g) = sgn(f)sgn(g) and sgn(R) = −1 for all reflections R.

Proof. Let f be an isometry of the plane. Following the proof of the classification of all

isometries, write f as a composition of reflections f = Rn ◦ · · · ◦R1. Then sgn(f) = (−1)n,

so the value of sgn(f) is already determined for us. This proves the proposition. �

It is tempting to define sgn(f) = (−1)n whenever f = Rn ◦ · · · ◦ R1 for reflections

R1, · · · , Rn, but this definition is, a priori, not well-defined, since it is certainly conceiv-

able that we could also write f = R′n+1 ◦ · · · ◦R′1 for some different reflections R′1, · · · , R′n+1.

In short, the value of sgn(f) seems to be over-determined.
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Theorem 10.30. There exists a function sgn : {isometries} → {±1} so that

sgn(f ◦ g) = sgn(f)sgn(g)

and sgn(R) = −1 for all reflections R.

Proof. A key ingredient in the contruction is the linear part of an isometry. As we did

above, we write f [ for the linear part of an isometry f . Then f [ is a linear operator on a

(two-dimensional) vector space, and so its determinant det f [ is well-defined. Furthermore,

basic properties of f [ and det imply that det(f ◦ g)[ = det f [ · det g[. We define

sgn(f) = det f [.

Then sgn(f ◦ g) = sgn(f)sgn(g).

If R is a reflection through a line `, pick v, w basis vectors so that v ‖ ` and w ⊥ `. By

picking v =
−−→
AB with A,B ∈ ` we clearly see that R[(v) = v. Write w =

−→
AC with A ∈ `

and C 6∈ `. Then R[(w) =
−−→
AC ′ with C ′ 6= C. Since AC ⊥ `, A is the midpoint of C ′C, so

|CA| = |AC ′|. Thus |AC ′|+ |AC| = 0, and so R[(w) = −w.

`

v = R[(v)

w
R[(w) = −w

The matrix of R[ with respect to the basis {v, w} is
(
1 0
0 −1

)
, so detR[ = −1. Since any

isometry f is a composition of reflections, sgn(f) ∈ {+1,−1}, and this completes the proof.

�

We will use orientation as a tool to distinguish isometries; the following exercise demon-

strates how this can be done.

Exercise 10.31. Suppose that R1, · · · , Rn are rotations (whose centres of rotation may be

different). Prove that R1 ◦ · · · ◦Rn is either a translation or a rotation.

10.4. Applications of the classification of isometries.

Problem 10.32. Let f be a glide reflection parallel to the line k. Then for any point A,

the centre of the segment Af(A) lies on k.

Solution. The case when the translation vector is zero is immediate, and so we suppose

that the translation vector of the glide reflection is non-zero. Let A′ denote the reflection of
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A through k, so that f(A) is the translation of A′ along a vector parallel to k.

k

AA′

f(A)

Then k is parallel to A′f(A), and so we may apply Thales’ theorem to the angle A′Af(A)

to deduce that the intersection of Af(A) with k is the midpoint of Af(A).

Problem 10.33. Let ABCD and A′B′C ′D′ be congruent quadrilaterals, but suppose the

vertices of one quadrilateral are labelled clockwise, while the vertices of the other quadrilat-

eral are labelled counter-clockwise. Then the centres of the segments AA′, BB′, CC ′ and

DD′ all lie on a common line.

A

B

C

D

A′

B′ C ′

D′

Solution. This problem is a nice application of our classification of isometries. The fact

that ABCD and A′B′C ′D′ are congruent implies there is some isometry f which takes

ABCD to A′B′C ′D′. Since A′B′C ′D′ has a different orientation to ABCD, we know that

the isometry f must reverse orientation. Thus f cannot be a rotation or a translation. By

our classification of isometries, f is therefore a glide reflection through some line k. Then

Problem 10.32 implies that the midpoints of the segments AA′, BB′, CC ′ and DD′ all lie

on k, and this completes the solution.

Theorem 10.34. Let f = Tn◦Rn◦· · ·◦T1◦R1 be a composition of translations and rotations.

Suppose the rotation angle of Rj is αj . Then f is a translation if α1 + · · · + αn = 0 and

otherwise f is a rotation by angle α1 + · · ·+ αn.

Proof. The idea of the proof is fairly simple: start with some line `, analyze how ` transforms

as we apply R1, T1, · · · , Rn, Tn.
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We have shown that R1(`) intersects ` at an angle α1 (see Theorem 2.9)); if α1 = 0◦

or = 180◦, then R1(`) doesn’t actually intersect `, but we will interpret “intersecting at an

angle of 0◦ or 180◦” to mean “parallel.”

Then T1 ◦R1(`) is parallel to R1(`), and hence T1 ◦R1(`) also intersects ` at an angle of

α1. Iterating this argument, we deduce that f(`) = Tn ◦ Rn ◦ · · · ◦ T1 ◦ R1(`) intersects `

at an angle of α = α1 + · · · + αn. If α is not 0◦ or 180◦, then f(`) actually intersects ` in

a unique point point P . It follows that f cannot be a translation, since translations send

lines to parallel lines. Since f preserves orientation, f cannot be a glide reflection. By the

classification of isometries, it follows that f is a rotation. Furthermore, since f(`) intersects

` at an angle α, we know (from Theorem 2.9 again) that the angle of rotation of f must be α

or α+180◦ (this indeterminacy is because there are always two angles formed between a pair

of lines). To resolve this indeterminacy we will look at the linear part of f . Furthermore

when α = 0◦ or α = 180◦, then f(`) is parallel to ` and so we cannot detect whether f

is rotation by 180◦ or a translation simply by comparing f(`) with `. However, instead of

keeping track of how the line ` transforms under R1, T1 · · · , Rn, Tn, if we keep track of how

a vector v transforms, then we will be able to differentiate the angles α and α + 180◦ and

also classify the cases when α = 0◦ and α = 180◦. In other words, we will look at the linear

part of the composition Rn ◦ Tn ◦ · · · ◦ R1 ◦ T1. Since T [ = identity for any translation T

(Exercise 10.27) we have

(Rn ◦ Tn ◦ · ◦R1 ◦ T1)[ = R[n ◦ T [n ◦ · · · ◦R[1 ◦ T [1 = R[n ◦ · · · ◦R[1.

Then, by Exercise 10.28, we know that R[n ◦ · · ·R[1 simply takes a vector
−−→
AB and sends it to

−−→
AB′, where B′ is the rotation of B around A by an angle α1 + · · ·+ αn.

If α = α1 + · · · + αn 6= 0◦, 180◦, then we already know that f is a rotation, so the fact

that f [ rotates by α implies f also rotates by α. This proves the case when α 6= 0◦, 180◦.

If α1 + · · · + αn = 180◦, every vector v is mapped to its inverse −v. In this case, we

conclude that Rn ◦Tn ◦ · ◦R1 ◦T1 is not a translation, and hence must be a rotation by angle

180◦. On the other hand, if α1 + · · ·+ αn = 0◦, then the above discussion implies that f [ is

the identity transformation, so f is a translation (by Exercise 10.27). �

Problem 10.35. Let RA, RB and RC be rotations around the vertices of a triangle ABC

by angles α, β and γ, respectively. Supposing that RC ◦RB ◦RA = id, find the interior angles

of ABC.

A B

C
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Solution. To begin, let us see how the point A transforms when we apply the rotations

RA, RB , RC . Clearly RA(A) = A. Define A′ = RB(A); then RC ◦ RB ◦ RA = id implies

RC(A′) = A.

A B

C

β

γ

A′

Then |A′C| = |AC| and |A′B| = |AB|, so that CB is the bisector of AA′. This fact uniquely

determines A′, and also tells us that BC bisects the angles ∠ABA′ and ∠A′CA. Therefore

∠BCA = γ/2 and ∠ABC = β/2.

To find the interior angle at A, we use a similar argument. First we note that RC ◦RB ◦
RA = id implies

RB ◦RA = R−1C , and thus RB ◦RA ◦RC = id.

Then we may apply the same argument used in the first paragraph but starting with vertex

C to conclude ∠CAB = α/2. This completes the solution.

A B

C

α/2 β/2

γ/2

Exercise 10.36. Let RA, RB be rotations by angles α, β around points A, B, respectively.

Assuming that α + β < 360◦, find a rotation RC by angle γ around a point C so that

RB ◦RA = R−1C . Hint : Use Problem 10.35.

Problem 10.37. Let E,C,D be three points lying on a common line with C between E

and D. Suppose A and B are chosen on the same side of the line ED so that the triangles

AEC and BDC are isosceles and right, and let M be the midpoint of AB. Prove that EMD
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is isosceles and right.

A
B

M

E
C

D

Solution. Interestingly, we will solve this problem by invoking the result of Problem 10.35.

Let RD be the rotation around D sending B to C, and let RE be the rotation around E

sending C to A. Then the composition RE ◦RD sends B to A. By Theorem 10.34, RE ◦RD
must be a rotation by 180◦, and since RE ◦ RD sends B to A, it must be the 180◦ rotation

centred at M , which we denote by RM . Then RM ◦RE ◦RD = id, and so, by Problem 10.35,

∠EMD = 90◦, ∠DEM = ∠MDE = 45◦, hence EMD is isosceles and right.

Problem 10.38. Let A,B,C,D be a square with side length a, and choose P on the side

CD. Let PY QX be another square with diagonal QP ⊥ DC and diagonal length a/2. Let

K,L be constructed as in the figure below (so that LY B and AXK are corners of squares).

Then Q is the midpoint of the segment KL.

P

A B

K

Q

L

X

D

Y

C

Solution. Let RY and RX be 90◦ rotations around Y,X sending L to B and A to K,

respectively, and let T be the translation by vector
−−→
BA. Then RX ◦ T ◦ RY (L) = K, and,

further, by Theorem 10.34 we know RX◦T ◦RY is an 180◦ rotation. We claim that RX◦T ◦RY
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fixes the point Q. To see this, consider the following figure.

Q Q′Q′′

X Y

P

T

RYRX

As above, let Q′ = RY (Q) and RX(Q′′) = Q. As is clear in the above figure, QQ′ is

orthogonal to QP , and hence QQ′ is parallel to T . Similarly QQ′′ is parallel to T , and

|Q′Q′′| = |QQ′|+ |QQ′′| = a, so T takes Q′ to Q′′. Thus RX ◦ T ◦RY (Q) = Q, and so Q is

the centre of the 180◦ rotation taking L to K, which means Q is the midpoint of KL.

11. Homotheties with negative scale

Definition 11.1 (Homothety with negative scale). In Example 7.3 we constructed homoth-

eties with positive scale k > 0, and showed that they were similarities with scale k. We can

extend this definition: the homothety with scale k < 0 centred at O is the transformation

of the plane fixing O and sending each point A 6= 0 to the point A′ lying on the line AO so

that (a) O separates A from A′ and (b) |A′O| / |AO| = |k|.

A

B

O

A′
B′

Using the fact that homotheties with positive scale |k| are similarities with scale |k|, it is

straightforward to show that homotheties with scale k < 0 are also similarities with scale |k|
(see Exercise 11.2 below).

Exercise 11.2. (a) Show that the homothety with scale −1 centred at O is the point

reflection (i.e. 180◦ rotation) around O.

(b) Using part (a), prove that the homothety of scale k < 0 centred at O is the composition

of a homothety of scale |k| > 0 and an isometry. Conclude that homotheties of scale k < 0

are similarities with scale |k| > 0.
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Exercise 11.3. Prove that the inverse of a homothety of scale k (k may be positive or

negative) centred at O is the homothety of scale 1/k centred at O.

Theorem 11.4. Homotheties map lines to parallel lines. In other words, if ` is a line and

`′ is its image under a homothety, then `′ is a line parallel to `.

Proof. Let O and k denote the centre and scale of the homothety. We consider the case

k > 0. If ` contains O, then the homothety fixes `, so there is nothing to prove. Consider

now a line ` disjoint from O. Pick a point A on the line `, and let `′ be the line parallel to

` passing through the image A′ of A under the homothety. If B lies on `, we want to show

that B′ lies on `′.

A

A′

B

B′ ?

O

`′

`

To prove that B′ lies on `′, we use the converse to Thales’ Theorem. Since |OA′| / |OA| =

|OB′| / |OB|, and O does not separate A from A′ or B from B′, we deduce that AB and

A′B′ are parallel, and so A′B′ must be the line `′, hence B′ ∈ `′. We have shown that the

homothety maps all points on ` onto the line `′.

We still need to prove that every point on `′ is the image of a point from `. To show

this, fix C ′ ∈ `′, and pick C on the ray OC ′ so that |OC ′| / |OC| = k (such a C ′ exists by

continuity). Applying the converse to Thales’ Theorem again, we deduce that `′ = A′C ′

is parallel to AC, and so C must lie on `. By our construction, the image of C under the

homothety is C ′ (justifying our notation) and this completes the proof. �

Exercise 11.5. Prove Theorem 11.4 in the case k < 0.

Problem 11.6. Given an acute triangle ABC, find an inscribed square A′B′F ′E′ such that

the edge E′F ′ lies on the side AB, and so that A′ ∈ AC and B′ ∈ BC.

A

A′

B

C

B′

E′
F ′

Solution. The idea for the solution is to begin by constructing a square which satisfies

some of the requirements of the problem (but not all of the requirements) and then use a
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homothety to transform the square into a new one which satisfies all the requirements of the

problem.

We begin by defining E,F so that ABFE is a square and ABFE lies inside the angle

BCA (this determines E and F uniquely), and we define E′ and F ′ to be the intersections

of EC and FC with AB, respectively. Then we raise perpendiculars p and q to AB from

the points E′ and F ′, respectively, and define A′ to be the intersection of p and AC and B′

the intersection of q with BC.

A

A′

B

C

B′

E

F

E′

F ′

p
q

Consider the homothety centred at C of scale |CE′| / |CE|. We claim that this homothety

sends A to A′, B to B′, E to E′ (obviously) and F to F ′. Since EF is parallel to E′F ′

(since E′F ′ = AB, and ABFE is a square), we can apply Thales’ Theorem to deduce that

|CF ′| / |CF | = |CE′| / |CE|, and so we know that the homothety maps F to F ′.

Since homotheties preserve parallel lines, we deduce that the line EA is mapped to the

line p (show this!), and so the image of A under the homothety must lie on p. However, since

the homothety is centred at C, we also know that the image of A lies on the ray CA, and so

the image of A must be the intersection point A′ of p and AC. A similar argument proves

that the image of B is B′.

We claim that A′B′E′F ′ is a square. This is easy to see since ABEF is a square and

homotheties are similarities (so they preserve angles and the ratios of sides). This completes

the solution.

Problem 11.7 (Euler line). Let ABC be a triangle, and let O be the intersection point of

the side bisectors (i.e. O is the centre of the circumscribed circle), let H be the orthocentre

of ABC (recall that the orthocentre is the intersection of the altitudes), and let S be the

centroid of ABC (recall that the centroid is the intersection of medians). Prove that S lies
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on OH and divides it in a 1 : 2 ratio.

A B

C

S

H

O

Solution. The idea is to consider the homothety with scale −1/2 with centre S, and show

that H gets mapped to O, which will prove that S divides OH in a 1 : 2 ratio.

Let A′, B′, C ′ be the midpoints of the edges BC, AC and AB, respectively. It can be

shown that S divides A′A, B′B and C ′C in 1 : 2 ratio (see Exercise 11.8 below). It follows

that the homothety of scale −1/2 through S sends the triangle ABC to the triangle A′B′C ′.

S

A B

C

A′
B′

C ′

Furthermore, by Theorem 11.4, the altitude ` through C gets mapped to a parallel line `′

passing through C ′, and since ` is perpendicular to AB, `′ is also perpendicular to AB. Since

C ′ is the midpoint of AB and `′ is perpendicular to AB, `′ is the bisector of AB.

S

A B

C

C ′

`

`′
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A similar argument shows that the altitude through A is mapped to bisector of BC. It

follows that the intersection point H of the two altitudes is mapped to the intersection point

O of the two bisectors. Thus HSO lie on a common line. Since the homothety has negative

scale, we know S separates HO, and since it has scale −1/2, we know |SO| / |SH| = 1/2, so

S splits OH in a 1 : 2 ratio, as desired.

Exercise 11.8. Let D,E, F be the centres of the sides BC, AC, AB of a triangle ABC.

Prove that the segments AD, BE, DF intersect at a common point that divides each of

them in the ratio 2 : 1.

Hint : Consider the following figure, and prove that |AQ| / |DQ| = 2.

Q

A

B C

F
G

E

D

Theorem 11.9. Let ABC and A′B′C ′ be triangles with AB ‖ A′B′, BC ‖ B′C ′ and

AB ‖ A′C ′. Then there is a homothety or a translation mapping ABC to A′B′C ′.

Before we prove this theorem, we remark that it has a nice corollary of independent

interest.

Corollary 11.10. With ABC and A′B′C ′ with parallel edges (as in Theorem 11.9), we

deduce that AA′, BB′ and CC ′ are parallel (corresponding to a translation in Theorem

11.9) or the intersect in a single point (corresponding to a homothety in Theorem 11.9).

A

B

C

A′

B′

C ′ O

Exercise 11.11. Prove Corollary 11.10 using Theorem 11.9.

Proof of Theorem 11.9. Assume first that AA′ and BB′ intersect in a point O. Since AB

and A′B′ are parallel, there are only two possibilities, either O lies outside of the segments
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AA′ and BB′ or O separates A from A′ and B from B′ (for the proof of this assertion,

refer to the proof of Thales’ theorem). Assume first that O lies outside of the segments

AA′ and BB′. Consider the homothety with centre O and (positive) scale |A′B′| / |AB|.
A straightforward application of Thales’ theorem proves that the image of A is A′ and the

image of B is B′. Since the line A′C ′ is parallel to the line AC, and (by Theorem 11.4) the

line AC is mapped to a parallel line under the homothety, we deduce that the image of the

line AC is the line A′C ′. Similarly, the image of the line BC is the line B′C ′, and so the

intersection point C of the lines AC and BC is mapped to the intersection point C ′ of the

lines A′C ′ and B′C ′. Therefore we have found a homothety taking ABC to A′B′C ′.

In the case where O separates A from A′ and B from B′, we consider the homothety

centred at O with scale − |A′B′| / |AB|. Using a similar argument to the one in the previous

case, we deduce that this homothety takes C to C ′. The details are left to the reader.

A
B

C

A′

B′

C ′O

Now we assume that AA′ and BB′ are parallel. Then ABB′A′ forms a parallelogram, and

so the translation by vector
−−→
AA′ =

−−→
BB′ takes A to A′ and B to B′. Since translations map

lines to parallel lines, we deduce that AC is mapped to A′C ′ and BC is mapped to B′C ′,

and so C must be mapped to C ′, as desired. This completes the proof of the theorem.

A
B

C
A′

B′

C ′

�

Problem 11.12. Let ABCDEF be a convex hexagon with area a, and so that each diagonal

AD, BE and CF cuts ABCDEF into two quadrilaterals of equal area a/2. Prove that AD,
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BE and CF intersect in a single point.

A

B C

D

E
F

Solution. First we remark that |ABE| = |ADE|, since |ADEF | = |ABEF | = a/2, and

|ADEF | = |AEF |+ |ADE| and |ABEF | = |AEF |+ |ABE|.

Then since ABE and ADE share the base AE, they must also share a height, so D and B

are the same distance from AE, thus DB ‖ AE.

A

B C

D

E
F

Analogously, BF ‖ CE and AD ‖ DF . Therefore we may apply Corollary 11.10 to the

triangles ACE and DFB (since they have parallel side pairs) so that AD, CF and EB

intersect in a single point, as desired.

A

B C

D

E
F



TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE 117

Theorem 11.13. The homothety with centre S and scale k maps the circle o with centre

O and radius r to the circle with centre O′ (the image of O) and radius |k| r.

OO′
S

Proof. If X lies on o and X ′ is the image of X under the homothety, then we know that

|X ′O′| = k |XO|, and so X ′ lies on o′. This proves that every point on o is mapped onto o′.

If Y ′ lies on o′, then we let Y be the image of Y ′ under the homothety centred at S of

scale 1/k, and note that Y must lie on o; this proves that every point on o′ is the image of

a point from o, and this completes the proof. �

Theorem 11.14. Let o1 and o2 be two circles with radii r1 6= r2. Then there are exactly

two homotheties mapping o1 to o2 (one with scale r2/r1 and one with scale −r2/r1).

O1O2

Sin Sout

Proof. It is clear that the scale of any homothety sending o1 to o2 must be ±r2/r1, and so

it remains to find the centre of the homotheties. Let O1 and O2 be the centres of o1 and

o2. First we will find the centre of the homothety with scale −r2/r1. Pick S in the segment

O1O2 so that |SO2| / |SO1| = r2/r1. Such an S always exists, by continuity (since the ratio

|XO2| / |XO1| goes to 0 as X goes to O2 and to ∞ as X goes to O1). Then the homothety

of scale −r2/r1 around S sends O1 to O2, and, by Theorem 11.13, sends the circle of radius

r1 to the circle of radius r2. Thus the chosen homothety sends o1 to o2. Note that we did

not need to assume r1 6= r2 in this case.

Now we will find the centre of the homothety with scale r2/r1. Without loss of generality,

assume that r1 < r2. Note that the ratio |XO2| / |XO1| goes to ∞ as X approaches O1 and

asymptotically decreases to 1 as X gets further from O1 (while remaining on the opposite

side of O2). Therefore, by continuity, we can find an S on the line O1O2 so that O1 separates

S from O2, and so that |SO2| / |SO1| = r2/r1 > 1. Then an analogous argument to the one
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in the previous paragraph shows that the homothety of scale r2/r1 centered at O takes o1

to o2.

In Exercise 11.15 below, the reader will prove that the two homotheties we have con-

structed are the only ones taking o1 to o2, and so we are justified in saying that there are

exactly two homotheties taking o1 to o2. �

Exercise 11.15. Prove that two homotheties we have constructed in the proof to Theorem

11.14 are unique using the following outline: Suppose there were a third homothety h sending

o1 to o2, and let H be the centre of h.

(a) Prove that the scale of h is ±r2/r1.

(b) If the scale of h is −r2/r1, prove that H lies between O1 and O2, and furthermore

that |O2H| / |O1H| = r2/r1. In this case, prove that H = Sin (using the notation in the

figure accompanying Theorem 11.14).

(c) If the scale of h is r2/r1, and r2 > r1, prove that O1 lies between H and O2, and that

|O1H| / |O2H| = r2/r1. In this case, prove that H = Sout.

(d) Repeat part (c) when r1 < r2.

(e) Conclude that h is one of the two homotheties we constructed in the proof to Theorem

11.14.

Exercise 11.16. Let o1 and o2 be two circles, and let `1 be a line tangent to o1. Prove that

there are exactly two lines, `2,+ and `2,−, which are parallel to `1 and tangent to o2, and

prove that they are the image of `1 under the homotheties (or translations) from Theorem

11.14.

Remark. The proof of Theorem 11.14 uses a continuity argument to guarantee the existence

of the two centres of homothety (these are denoted Sin and Sout in the accompanying figure).

It is natural to ask whether there is a more concrete description of Sin and Sout.

We will be able to describe Sin and Sout as the intersection of various tangent lines to o1

and o2. However, before we begin, we will need a preliminary exercise concerning tangent

lines to circles.

Exercise 11.17. Given two circles o1, o2 with centres O1, O2, respectively, and two parallel

lines `1 and `2 tangent to o1 at P1 and o2 at P2, respectively, we say that `1 and `2 are

tangent to o1 and o2 from the same side if the vectors
−−−→
P1O1 and

−−−→
P2O2 differ by a positive

scalar (since
−−−→
P1O1 and

−−−→
P2O2 are both perpendicular to `1 ‖ `2, we know they differ by some

scalar but it could be negative).

If
−−−→
P1O1 and

−−−→
P2O2 differ by a negative scalar then we say that `1 and `2 are tangent to o1

and o2 from opposite sides.
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`2

O2

O1

`1

P1

P2

Show that (a) Given a line `1 tangent to a circle o1 and a second circle o2, there is a

unique line `2 tangent to o2 so that `1 and `2 are tangent to o1 and o2 from the same side.

(b) If there is a homothety with positive scale (resp. negative scale) taking the pair (o1,

`1) to the pair (o2, `2), where `1 is tangent to o1, then `2 is tangent to o2 from the same

(resp. opposite) side as `1 is to o1. (Hint : consider how homotheties transform vectors.)

With the results of this preliminary exercise at our disposal, we will describe Sin in various

cases. First, if we assume that o1 and o2 are externally tangent at a point S, then Sin must

be the tangency point S.

o1 o2S

`

To see why this is so, let ` denote the tangent line to o1 and o2 through S and consider the

homothety with scale −r2/r1 centered at S. This homothety preserves ` and S, and so, by

part (b) of Exercise 11.17, we know that the image of o1 is tangent to ` at S and lies on the

opposite side as o1. Since o2 is the unique circle of radius r2 tangent to ` at S lying on the

opposite side of o1, the image of o1 must be o2.
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Now let us assume that o1 and o2 are tangent to opposite angles formed by a pair of lines

k and ` which intersect at a point S, as shown below.

o2

o1
k

`

S

Considering the homothety of negative scale mapping o1 to o2, part (b) of Exercise 11.17

guarantees that the image of k is a parallel line which is tangent to o2 from the opposite side

as k is tangent to o1 - in this case, it is easy to see that this implies k is preserved by the

homothety. Similarly ` is preserved by the homothety, and so their intersection point must

be the centre of the homothety.

Similar arguments allow us to find the centre of the positive scale homothety in the special

cases when o1 and o2 are internally tangent, and when they are both tangent to the same

angle (see Exercise 11.19).

Exercise 11.18. Let P and Q be two points on opposite sides of an angle (less than 180◦),

both at the same distance from the centre S. Show that there is a unique circle tangent to

angle with tangency points P and Q. (Hint : Consider the perpendicular raised from P ).

S P

Q

Exercise 11.19. Let o1 and o2 be two circles with different radii.

(a) If o1 and o2 are internally tangent at a point S (this means that they are both tangent

to a line ` at a point S, and they both lie on the same side of the line), then S is the centre
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of the positive scale homothety taking o1 to o2.

o1 o2

`

(b) If o1 and o2 are both tangent to an angle with vertex S (the vertex of an angle formed

by two half-lines r, s is the common end point shared by the two half-lines), then S is the

centre of the positive scale homothety taking o1 to o2.

o2

r

s

S

o1

Problem 11.20. Let o1 and o2 be two circles internally tangent to a third circle o3 at points

A and B, respectively. Let k be a common tangent line to o1 and o2 in points P and Q

which does not separate o1 from o2. Prove that AP and BQ intersect on o3.

o3

o1

o2
P

Q

A

B

X

k

Solution. Consider the homothety h1 with positive scale taking o1 to o3. As proven in

Exercise 11.19 h1, is centred at the point A. Let X be the image of P under h1, and let `
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be the image of k under h1. Since k is tangent to o1 at P , ` is tangent to o3 at X. Since the

homothety is centred at A, we know A,P,X lie on a common line.

o3

o1

o2
P

Q

A

B

X

k

`

Now consider the homothety h2 centred at B with positive scale taking o2 to o3, and let `′

be the image k under h2. We claim that `′ = `. Using the notions and results introduced

in Exercise 11.17, we know that ` is tangent to o3 from the same side as k is to o1 and `′ is

tangent to o3 from the same side as k is to o2. By our assumption k is tangent to o1 from the

same side as it is to o2. Therefore ` is tangent to o3 from the same side as `′ is to o3, and so

` = `′. As in the previous paragraph, it follows that h2 sends Q to X, and so B, Q, X lie on

a common line. Thus BQ and AP intersect at X ∈ o3, and this completes the solution.

Theorem 11.21 (Classification of similarities). Every similarity is (i) a translation, (ii) a

glide reflection, or a (iii) composition of a homothety with centre O and a rotation around

O or a reflection through a line through O.

Exercise 11.22 (challenging). Prove Theorem 11.21. To make the exercise a bit easier, you

may assume the fact that every similarity with scale 0 < λ < 1 has a fixed point.

12. Inversion in a circle

In this section, we add to the plane one point “at infinity,” denoted ∞. By definition,

every line contains∞. The reason for this addition is that it allows us to define the following

transformation of the plane:

Definition 12.1. Let o be a circle with radius r and centre O. The inversion in o is the

the transformation of the plane (with our added point!) which sends (a) O to ∞, (b) ∞ to
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O and (c) any point A 6= O,∞ to the point A′ lying on the ray OA so that |OA| |OA′| = r2.

A
A′

B′

B

O

Note that (i) If A ∈ o, then A′ = A (i.e. the inversion fixes every point in the circle), (ii) the

inside of o is swapped with the outside of o, and (iii) the inversion satisfies (A′)′ = A.

Theorem 12.2. If A′, B′ are the images of A,B, respectively, under the inversion through

a circle o with centre O, then OBA is similar to OA′B′.

A
A′

B

B′

O

Proof. We will use the “side-angle-side” criterion to show that OBA and OA′B′ are sim-

ilar. Since the two triangles share the angle at O, it suffices to show that |OA′| / |OB| =

|OB′| / |OA|, but this follows immediately from the fact that

|OA| |OA′| = (radius of o)2 = |OB′| |OB| ,

and this completes the proof. �

Corollary 12.3. In the setting of Theorem 12.2, we have equalities ∠ABO = ∠OA′B′ and

∠OAB = ∠A′B′O.

A A′

B

B′

O

Theorem 12.4. Inversions map circles and lines to circles and lines. (i.e. it is possible for

a circle/line to be mapped to either a line or a circle, and these are the only possibilities.)
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Proof. Let o be the inversion circle. Consider first the case where a line k passes through

the centre O. If A ∈ k, then the entire ray OA lies in k, and hence A′ ∈ k. Thus k is fixed

by the inversion.

A

A′

O

k

Now we consider the complementary case when k does not contain O. Let A be the

orthogonal projection of O onto k, and let A′ be the image of A under the inversion. We

claim that the image of k under the inversion is the circle with diameter OA′. To see this,

fix any point B ∈ k, with B 6= A,∞, and let B′ be the image of B under the inversion

through o. Since ∠OAB = 90◦, Corollary 12.3 implies ∠OB′A′ = 90◦, and so, by Corollary

3.8, B lies on the circle with diameter OA′.

A

B

B′

A′
O

k

Finally, it is clear that O and ∞ are interchanged by the inversion, and so the entire line k

is mapped into the circle with diameter OA′. We observe that the image of k is tangent to

the line through O parallel to k.

Repeating the argument in reverse shows the the circle with diameter OA′ is mapped into

the line k, and hence the line k and the circle with diameter OA′ are interchanged under the

inversion.

The preceeding argument shows that a circle containing O is mapped to a line disjoint

from O. The final case we consider is when we begin with a circle c disjoint from O. Let C

be the centre of c, let A,B be the intersection points of the line OC with c, and let A′, B′

be their images under the inversion. We will prove that c′ is the circle with diameter A′B′.
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To see this, fix any point X 6= A,B on c, and let X ′ be its image.

A B

X

X ′

B′ A′
O

Now we apply Corollary 12.3 two times:

∠AXO = ∠OA′X ′ and ∠BXO = ∠OB′X ′

and using the fact that ∠BXA = ∠BXO−∠AXO and ∠OB′X ′ = ∠A′X ′B′+∠OA′X ′ (by

adding the angles in triangle B′A′X ′), we conclude

∠BXA = ∠OB′X ′ − ∠OA′X ′ = ∠A′X ′B′,

and since ∠BXA = 90◦, we have ∠A′X ′B′ = 90◦, and hence X ′ lies on the circle with

diameter A′B′. Therefore the entire circle c is mapped to the circle with diameter A′B′. By

symmetry, we know that the circle with diameter A′B′ is mapped to c, and hence the two

circles are interchanged by the inversion. This completes the proof of the theorem. �

Exercise 12.5. Let o and c be circles with centres O and C, respectively, and suppose that

O 6∈ c. Let C ′ and c′ denote the images of C and c under the inversion through o (the proof

of Theorem 12.4 establishes that c′ is indeed a circle). Show that the center of c′ is C ′ if and

only if c and o are concentric.

Problem 12.6. Let o1, o2, o3, o4 be circles so that o1, o2 are externally tangent at A, o2, o3

are externally tangent at B, o3, o4 are externally tangent at C and o4, o1 are externally

tangent at D. Prove that A,B,C,D lie on a common circle.

A

B
C

D

o1

o2

o3

o4
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Solution. Without loss of generality we may assume that A,B,C,D are distinct, since we

can always find a circle containing the vertices of a triangle. The idea for the solution is to

apply an inversion in any circle centered at A. Since o1 and o2 are tangent at A, they get

mapped to lines k1 = o′1 and k2 = o′2. Further, since o1 ∩ o2 = A, k1 ∩ k2 = A′ = ∞, so k1

and k2 are parallel. Since o3 is tangent to o2 at B, o2 cannot contain A, and similarly o4

also cannot contain A. Therefore, following the proof of Theorem 12.4, we conclude that o3

and o4 are mapped to circles o′3 and o′4.

k1

k2

o′3

o′4

C ′

B′

D′

The idea now is to show that B′, C ′, D′ lie on a common line, for then B′, C ′, D′,∞ lie on

a line `, and when we reapply the inversion in the circle centred at A, we will deduce (by

Theorem 12.4) that B,C,D,A lie on a common circle (or line, but then we will show that

they cannot actually lie on a line).

To show that B′, C ′, D′ lie on a common line, we consider the homothety with negative

scale with centre C ′ mapping o′4 to o′3. Since homotheties maps tangent lines to tangent lines

(see Exercise 11.17), we conclude that the homothety maps k1 to k2 and D′ to B′. Therefore

B′, C ′, D′ lie on a common line, and, as described in the preceeding paragraph, this shows

A,B,C,D lie on a common circle or line.
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However, if A,B,C,D lie on a common line `, then the points A,B,C,D can be ordered

on `; without loss, suppose that A < B < C < D on `.

`

o1

o2
o3 o4

A

D
B

C

Then since the diameter to the circle o2 is AB and the diameter of o1 is AD, and AB is

entirely contained in AD, we conclude that o1 contains o2 in its interior, which means they

are not externally tangent.

Therefore, A,B,C,D must lie on a common circle.

Problem 12.7. Let ABCD be a convex quadrilateral, and assume that the inscribed circles

of ABC and ACD are tangent at a common point O ∈ AC. Prove that the other tangency

points of o1 and o2 lie on a common circle.

o2

o1
A

B

CD

Z

W

X

Y

O

Solution. Following the figure above, let X,Y and Z,W denote the other tangency points

of o1 and o2 with ABC and ACD, respectively.

The idea for the solution is to apply the inversion through any circle centered at O, and

then show that the images X ′, Y ′,W ′, Z ′ (of X,Y,W,Z) form a rectangle, and hence lie on

a common circle. Then when we apply the inversion again, we will deduce that X,Y, Z,W

lie on a circle or a line. It is impossible for a single line to intersect every edge on a non-

degenerate quadrilateral, and hence X,Y, Z,W cannot lie on a common line, and we will be

able to conclude that X,Y,W,Z lie on a common circle.
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Therefore, our task now is to show that X ′Y ′W ′Z ′ is a rectangle.

A′ B′

C ′

D′

X ′

Y ′

Z ′

W ′

O

The first observation we make is that, since o1, o2 and AC are tangent at O, o′1, o′2 and

(AC)′ = AC become parallel lines (informally, thinking of lines as “circles” containing the

point ∞, o′1, o′2 and (AC)′ are “circles” tangent at O′ = ∞, hence they are parallel lines).

Further, X ′, Y ′ lie on o′1 and Z ′,W ′ lie on o′2, and A′, C ′ lie on AC.

A′

B′

C ′

D′

X ′

Y ′

Z ′

W ′

O

o′1

o′2

The second observation is that the perpendicular to o′1 raised from X ′ bisects the segment

A′O. To establish this claim, we observe that the line AB becomes a circle (AB)′ when we

apply the inversion, and that (AB)′ is tangent to the line o′1 at X ′ and contains A′ and O.

If S denotes the center of (AB)′, then the perpendicular bisector of the chord A′O intersects

S (why?). Similarly the perpendicular to o′1 raised from X ′ also intersects S (since (AB)′

is tangent to o′1 at X ′). Therefore the perpendicular to o′1 raised from X ′ must be the
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perpendicular bisector of A′O (since they are both perpendicular to o′1 and intersect at S).

A′

B′

C ′

D′

X ′

Y ′

Z ′

W ′

O

o′1

o′2

S

A similar argument shows that the perpendicular to o′2 raised from Z ′ bisects A′O, and

hence Z ′X ′ is perpendicular to o′1 and o′2. Similarly, Y ′W ′ is perpendicular to o′1 and o′2.

Therefore Z ′X ′ ‖ Y ′W ′, and so X ′Y ′W ′Z ′ forms a rectangle, since it is a parallelogram with

perpendicular edges.

Following the argument given in the second paragraph of this solution, we conclude that

X,Y,W,Z lie on a circle.

12.1. More properties of the inversion. So far, all of our application of the inversion in

a circle relied on the simple fact that it mapped circles/lines to circles/lines, and preserved

“incidence,” i.e. if we could show that the images of some points lie on a circle/line, then

we could deduce that the original points also lie on a circle/line. However, the inversion in

a circle also preserves the “angles” between circles/lines! In order to make this precise, we

need to define what the angle between two circles/lines is.

Definition 12.8. Let c1 and c2 be two circles intersecting at a pointX. The angle between

c1 and c2 at X is the angle between their respective tangent lines at X.

c1 c2

X

Note that the ambiguity in the choice of angles between tangent lines forces us to consider

α and 180◦−α as equivalent. If we wish to differentiate the angles α and 180◦−α, we could

endow our circles with an “orientation,” but this is not necessary for what follows.
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Exercise 12.9. Give a similar definition for the angle between a circle c and a line ` inter-

secting at a point Y .

c

`

Exercise 12.10. Suppose a circle/line a intersects another circle c in two points X,Y . Prove

that the angle between a and c at X equals the angle between a and c at Y .

Exercise 12.11. Two lines `1 and `2 always intersect at ∞. Define the angle between `1

and `2 at ∞ in such a way so that (i) the angle between parallel lines is 0 and (ii) Exercise

12.10 generalizes to the case when a line `1 intersects a line `2 in two points.

Theorem 12.12. The inversion in any circle preserves the angles between circles/lines, i.e.

if a, b are intersecting circles/lines, and a′, b′ denote their images under some inversion, then

a′ and b′ intersect and the angle between a′ and b′ equals the angle between a and b.

Proof. In the following proof we fix an inversion, and we denote the image of any figure F

by the primed symbol F ′.

Our first observation is that it suffices to check that the angle between ` and k equals the

angle between their images `′ and k′, whenever `, k are lines. To see this, we claim that if c

is a circle and t is its tangent line at X, then c′ and t′ are tangent at X ′; this is true because

c′ and t′ being tangent at X ′ is equivalent to them intersecting only at X ′, which follows

from c, t being tangent at X. Therefore, if c1, c2 intersect at X with respective tangent lines

t1 and t2 at X, then the angle between t′1 and t′2 at X ′ equals the angle between c′1 and c′2

at X ′. Thus, without loss of generality, we will only prove that the angle between `′ and k′

equals the angle between ` and k whenever ` and k are lines.

Let O denote the centre of the inversion circle, and suppose `, k are two lines intersecting

at a point P , with an angle of α between them. First suppose that neither `, k contain O.

Then `′ and k′ are circles intersecting at P ′ and O; we will calculate the angle between them

at O. To do this, let `, k denote the tangent lines to `′, k′ at O. The discussion following the

definition of the inversion established that ` ‖ ` and k ‖ k (Definition 12.1). Hence the angle
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between k and ` equals the angle between k and `.

`

k

PO
inversion

O

`′

k′

`

k

PO

The other cases to consider are when k or ` contains O. Both of these cases are easier

than the one we proved, and so we leave them as exercises for the reader to complete. This

completes the proof of the theorem. �

Remark. One can define the angle between arbitrary differentiable curves intersecting at

a point X, and one can show that the inversion is a differentiable map which preserves the

angle between any two differentiable curves.

Problem 12.13. Consider four circles o1, o2, o3, o4, each three of which intersect in a com-

mon point A 6= B 6= C 6= D, as in the figure below. Prove that the angle between o1 and o2

equals the angle between o3 and o4.

o1 o2

o3

o4

A

B

C D

Solution. The idea is to consider an inversion through any circle centered at A. Since the

circles o1, o2 and o3 contain A, their images o′1, o′2 and o′3 are straight lines. Then, the points

B′, C ′, D′ form a triangle whose edges lie on the lines o′1, o′2 and o′3, and, in particular, the

angle at vertex B′ equals the angle between o′1 and o′2. Further, since o4 is a circle which does

not contain A, o′4 is still a circle, and since it contains B′, C ′ and D′, o′4 is the circumscribed

circle of B′C ′D′.
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We claim that ∠D′B′C ′ equals the angle between the line C ′D′ and the tangent line to

o′4 at C ′.

B′

C ′

D′

A

o′1

o′3

o′2

o′4

This is actually proved in a previous problem (Problem 3.12), and so we won’t repeat its

proof. We conclude that the angle between o′3 and o′4 equals ∠D′B′C ′ (which is the angle

between o′1 and o′2).

The fact that inversions preserve angles implies that ∠D′B′C ′ = angle between o1 and

o2, and

angle between o′3 and o′4 = angle between o3 and o4,

and so we deduce that the angle between o3 and o4 equals the angle between o1 and o2, as

desired.

Problem 12.14. Let o1, o2 and o3 be circles intersecting in a common point, and suppose

they are pairwise non-tangent. Find a circle or line tangent to o1, o2 and o3.

o1

o2

o3

O

AB

C

Solution. Let O be the single point of intersection. Since o1, o2, o3 are pairwise non-tangent,

each pair intersects twice; label the other intersection points A 6= B 6= C 6= O as in the figure

above.
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As is customary with the problems in this section, the key step in the solution is to take

the inversion in some circle - in this case, we will consider the inversion in any circle centered

at O. If A′, B′, C ′, o′1, o
′
2, o
′
3 denote the images of A,B,C, o1, o2, o3 under this inversion, then

o′1, o
′
2, o
′
3 are lines and A′B′C ′ is a triangle whose edges lie on o′1, o

′
2, o
′
3. Since the inscribed

circle c′ of A′B′C ′ is tangent to o′1, o
′
2, o
′
3, its image c′′ is a circle or line tangent to o1, o2, o3.

If c′′ is a circle, then we are done. If c′′ is a line, then O lies on c′, and hence O is contained

in the interior of A′B′C ′. Therefore O cannot lie on any escribed circle of A′B′C ′, and so,

if we take d′ an escribed circle of A′B′C ′, then its image d′′ is a circle which is tangent to

o1, o2, o3; either way we have completed the solution.

B′

C ′

A′

o′1

o′2

o′3

c′

d′

Remark. (1) In the figure given in the preceeding problem statement, we chose the inscribed

circles of A′B′C ′. If we chose an escribed circle, the figure would look like this:

o1

o2

o3
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(2) Following the notation of the preceeding solution, if c′ is the inscribed circle of A′B′C ′,

it is possible for c′′ to be line, as the following figure shows:

Problem 12.15 (Apollonius). Given any three circles o1, o2, o3 lying outside each other,

find a common tangent circle or line. (Note: in the accompanying figure we have drawn

multiple solutions to the problem.)

o1

o3

o2

Solution. Let o1 be the smallest circle, and let r be its radius. Shrink o2 and o3 by radius

r and turn o1 to a point - let o1, o2, o3 denote these shrunken circles. Note that o2 and o3
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may also be single points.

o1

o3

o2

We consider three cases: (i) If we can find a circle c internally tangent to o2 and o3 and

containing o1,then expanding c by radius r produces a circle c tangent to o1, o2 and o3. (ii)

If, instead we find a circle d so that d contains o1 but externally tangent to o2 and o3, then

shrinking d by radius r produces a circle d tangent to o1, o2, o3 (why is the radius of d at

least r?).

o1

o3

o2

c
c

d

d

Finally, (iii) if instead we find a line ` containing o1 and tangent to both o2, o3 from the

same side, then shifting ` in a perpendicular direction by distance r produces a line tangent

to o1, o2, o3.
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Therefore, we have reduced the problem to the case when one of the circles, o1, is actually

just a single point O1. Now the key is to consider an inversion in some circle centered at O1 -

in the figure below, an arc of the inversion circle is shown as a dashed curve. Let the images

of o2 and o3 be circles o′2 and o′3. Then, finding a tangent circle/line to o2, o3 containing

O1 is equivalent to finding a tangent line to o′2 and o′3. Let ` be a tangent line to o′2, o′3,

tangent to them from the same side (as in the figure below). We consider three cases: (1) If

` separates O1 from o′2 and o′3, then the circle `′ is a circle through O1 which contains both

o2, o3 in its interior. (2) If ` contains O1, o′2 and o′3 all on one side, then `′ is a circle through

O1 which doesn’t contain o2 or o3. (3) If ` contains O1, then `′ is a line tangent to o2 and o3

passing through O1. Since cases (1), (2) and (3) exhaust all possibilities, and in each case

we have constructed a solution to the problem (corresponding to the cases (i), (ii), (iii) given

above), we have completed the solution of the problem. Note that in the figure below, we

have drawn two choices of `, one which satisfies case (1) and one which satisfies case (2).

O1

o3

o2
o′2

o′3

`1

`2

Exercise 12.16. In the statement of Problem 12.15, we have drawn a figure presenting five

different solutions of the problem. However, in our solution, we present only two solutions

(corresponding to the two common tangent lines to o′2 and o′3 which are tangent from the
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same side). Which circles in the figure are not described by our solution? Explain how you

would modify the solution so that it could describe all of the circles presented in the Problem

statement’s figure.


