## MATH 599 Nonpositive Curvature Problem list 1

Problem 1. Consider $\mathbb{R}^{n}$ with one of the following metrics.
(i) $d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|$
(ii) $d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\}$

Prove that these metric spaces are geodesic. Given $x, y$, are geodesics joining $x, y$ unique?
Definition. A sequence $\left(x_{n}\right)$ of points in a metric space is called Cauchy if for every $\varepsilon$ there is $n_{0}$ such that for all $m, n>n_{0}$ we have $d\left(x_{n}, x_{m}\right)<\varepsilon$. A metric space is complete if every Cauchy sequence has a limit, that is, a point $x$ such that for every $\varepsilon$ there is $n_{0}$ such that for all $n>n_{0}$, we have $d\left(x_{n}, x\right)<\varepsilon$.
Problem 2. Let $X$ be a complete metric space with the property that for each pair of points $x, y \in X$ there is a point $m$ with $d(x, m)=d(y, m)=\frac{1}{2} d(x, y)$. Prove that $X$ is a geodesic metric space.

Definition. A subset $C$ of a metric space $X$ is convex if every pair of points $x, y \in C$ can be joined by a geodesic in $X$ and the image of every such geodesic is contained in $C$. The open ball $B(x, r)$ of radius $r$ centered at $x$ is the subset of $X$ of all points at distance $<r$ from $x$.
Problem 3. Prove that open balls in $\mathbb{S}^{n}$ of radius $\leq \frac{\pi}{2}$ are convex. Hint: points on the geodesic segment joining non-antipodal $x, y \in \mathbb{S}^{n}$ can be written as $s x+t y$ where $s+t \geq 1$ and $s, t \geq 0$.
Problem 4. In $\mathbb{S}^{2}$ consider a spherical triangle formed of geodesic segments with angles $A, B, C$ and distances between vertices $a, b, c$. Prove the dual spherical law of cosines:

$$
\cos C=-\cos A \cos B+\sin A \sin B \cos c
$$

Hint: consider the dual triangle whose vertices are unit vectors

- orthogonal to the planes containing the sides of the original triangle, and
- lying in the halfspaces containing that triangle.

Problem 5. Prove that a hyperplane in $\mathbb{H}^{n}$ (with distance inherited from $\mathbb{H}^{n}$ ) is isometric to $\mathbb{H}^{n-1}$.

Problem 6. Let $\varphi$ be an isometry of $\mathbb{H}^{n}$. Prove that
(i) if $\varphi$ is not the identity, then the set of points which it fixes is contained in a hyperplane,
(ii) if $\varphi$ acts as the identity on a hyperplane $H$, then $\varphi$ is either the identity or the reflection through $H$,
(iii) $\varphi$ can be written as the composition of $n+1$ or fewer reflections through hyperplanes.

