MATH 599 Nonpositive Curvature Problem list 3

Problem 1. Let X be a $CAT(\kappa)$ space. Prove that there is a unique geodesic segment joining each pair of points $x, y \in X$ (provided $d(x, y) < diam M_{\kappa}$ if $\kappa > 0$), and this geodesic segment varies continuously with its endpoints.

Problem 2. Let X be a finite graph (with possibly varying length of edges). When is X

- (i) CAT(0),
- (ii) CAT(-1),
- (iii) CAT(1)?

Definition. A map $c: [0, a] \to X$ into a metric space X is *local geodesic* if every $p \in [0, a]$ has a neighbourhood U such that the restriction of c to U is a geodesic.

Problem 3. Let X be a $CAT(\kappa)$ space. Prove that every local geodesic in X of length at most diam M_{κ} is a geodesic.

Definition. Let x, y, z be points in a metric space X with $y, z \neq x$. The comparison angle between y and z at x is the angle at \bar{x} of the comparison triangle $\bar{x}\bar{y}\bar{z}$ in \mathbb{R}^2 , and is denoted by $\overline{\angle}_x(y,z)$.

Let $c: [0, a] \to X, c': [0, a'] \to X$ be two geodesics starting at c(0) = c'(0) = x. The Alexandrov angle between c and c' at x is

$$\angle(c,c') = \lim_{\varepsilon \to 0} \sup_{0 < t,t' < \varepsilon} \overline{\angle}_x(c(t),c'(t')).$$

Problem 4. Suppose that the concatenation of c^{-1} and c' in the definition above is a geodesic. Prove $\angle(c,c')=\pi$.

Problem 5. Let c, c', c'' be three geodesics with c(0) = c'(0) = c''(0). Prove $\angle(c, c') + \angle(c', c'') \ge \angle(c, c'')$.

Problem 6. Prove that in \mathbb{H}^2 and \mathbb{CH}^2 the hyperbolic angle is equal to the Alexandrov angle.

Problem 7 (Alexandrov's Lemma). Consider four distinct points, $x, y, y', z \in M_{\kappa}$ for $\kappa \leq 0$. Suppose that y, y' lie on the opposite sides of the geodesic line through xz. Let $\alpha, \beta, \gamma, \alpha', \beta', \gamma'$ be the angles in the geodesic triangles xyz, xy'z. Assume $\gamma + \gamma' \geq \pi$. Consider a triangle $\bar{x}\bar{y}\bar{y}'$ in M_{κ} with distances between vertices d(x,y), d(x,y'), d(z,y) + d(z,y') (show that they satisfy the triangle inequality). Denote its angles by $\bar{\alpha}, \bar{\beta}, \bar{\beta}'$. Let \bar{z} be a point on $\bar{y}\bar{y}'$ at distance d(z,y) from \bar{y} . Prove $\bar{\alpha} \geq \alpha + \alpha', \ \bar{\beta} \geq \beta, \ \bar{\beta}' \geq \beta$ and $d(x,z) \leq d(\bar{x},\bar{z})$.

Problem 8. Prove that X is CAT(0) if and only if for every geodesic triangle xyz and a point p on xy, its comparison point \bar{p} in the comparison triangle $\bar{x}\bar{y}\bar{z}$ satisfies $d(p,z) \leq d(\bar{p},\bar{z})$. Hint: Use monotonicity in the law of cosines.

Problem 9. Prove that X is CAT(0) if and only the Alexandrov angle between two sides of each geodesic triangle is no greater than the angle between the corresponding sides of the comparison triangle in \mathbb{R}^2 . Hint: use Problems 7 and 8.