MATH 599 Nonpositive Curvature Problem list 3

Problem 1. Let X be a $\operatorname{CAT}(\kappa)$ space. Prove that there is a unique geodesic segment joining each pair of points $x, y \in X$ (provided $d(x, y)<\operatorname{diam} M_{\kappa}$ if $\kappa>0$), and this geodesic segment varies continuously with its endpoints.

Problem 2. Let X be a finite graph (with possibly varying length of edges). When is X
(i) $\mathrm{CAT}(0)$,
(ii) $\operatorname{CAT}(-1)$,
(iii) $\operatorname{CAT}(1)$?

Definition. A map $c:[0, a] \rightarrow X$ into a metric space X is local geodesic if every $p \in[0, a]$ has a neighbourhood U such that the restriction of c to U is a geodesic.

Problem 3. Let X be a $\operatorname{CAT}(\kappa)$ space. Prove that every local geodesic in X of length at most $\operatorname{diam} M_{\kappa}$ is a geodesic.

Definition. Let x, y, z be points in a metric space X with $y, z \neq x$. The comparison angle between y and z at x is the angle at \bar{x} of the comparison triangle $\bar{x} \bar{y} \bar{z}$ in \mathbb{R}^{2}, and is denoted by $\bar{Z}_{x}(y, z)$.

Let $c:[0, a] \rightarrow X, c^{\prime}:\left[0, a^{\prime}\right] \rightarrow X$ be two geodesics starting at $c(0)=$ $c^{\prime}(0)=x$. The Alexandrov angle between c and c^{\prime} at x is

$$
\angle\left(c, c^{\prime}\right)=\lim _{\varepsilon \rightarrow 0} \sup _{0<t, t^{\prime}<\varepsilon} \bar{Z}_{x}\left(c(t), c^{\prime}\left(t^{\prime}\right)\right) .
$$

Problem 4. Suppose that the concatenation of c^{-1} and c^{\prime} in the definition above is a geodesic. Prove $\angle\left(c, c^{\prime}\right)=\pi$.

Problem 5. Let c, c^{\prime}, $c^{\prime \prime}$ be three geodesics with $c(0)=c^{\prime}(0)=c^{\prime \prime}(0)$. Prove $\angle\left(c, c^{\prime}\right)+\angle\left(c^{\prime}, c^{\prime \prime}\right) \geq \angle\left(c, c^{\prime \prime}\right)$.

Problem 6. Prove that in \mathbb{H}^{2} and $\mathbb{C} \mathbb{H}^{2}$ the hyperbolic angle is equal to the Alexandrov angle.

Problem 7 (Alexandrov's Lemma). Consider four distinct points, $x, y, y^{\prime}, z \in$ M_{κ} for $\kappa \leq 0$. Suppose that y, y^{\prime} lie on the opposite sides of the geodesic line through $x z$. Let $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ be the angles in the geodesic triangles $x y z, x y^{\prime} z$. Assume $\gamma+\gamma^{\prime} \geq \pi$. Consider a triangle $\bar{x} \bar{y} \bar{y}^{\prime}$ in M_{κ} with distances between vertices $d(x, y), d\left(x, y^{\prime}\right), d(z, y)+d\left(z, y^{\prime}\right)$ (show that they satisfy the triangle inequality). Denote its angles by $\bar{\alpha}, \bar{\beta}, \bar{\beta}^{\prime}$. Let \bar{z} be a point on $\bar{y} \bar{y}^{\prime}$ at distance $d(z, y)$ from \bar{y}. Prove $\bar{\alpha} \geq \alpha+\alpha^{\prime}, \bar{\beta} \geq \beta, \bar{\beta}^{\prime} \geq \beta$ and $d(x, z) \leq d(\bar{x}, \bar{z})$.

Problem 8. Prove that X is $\operatorname{CAT}(0)$ if and only if for every geodesic triangle $x y z$ and a point p on $x y$, its comparison point \bar{p} in the comparison triangle $\bar{x} \bar{y} \bar{z}$ satisfies $d(p, z) \leq d(\bar{p}, \bar{z})$. Hint: Use monotonicity in the law of cosines.

Problem 9. Prove that X is $\operatorname{CAT}(0)$ if and only the Alexandrov angle between two sides of each geodesic triangle is no greater than the angle between the corresponding sides of the comparison triangle in \mathbb{R}^{2}. Hint: use Problems 7 and 8.

