MATH 599 Nonpositive Curvature Problem list 4

Problem 1. Let C_{r} be a circle in the hyperbolic plane \mathbb{H}^{2} of radius r, i.e. the set of points at distance r from a given point. Compute the length of C_{r}. Do not use the lemma from class on polar coordinates - this problem completes its proof.

Problem 2. Show that for any $r>0$ the function $x \rightarrow \frac{\sinh (r x)}{r x}$ is increasing on \mathbb{R}_{+}. (We used this to show that $\operatorname{CAT}(\kappa)$ implies $\operatorname{CAT}\left(\kappa^{\prime}\right)$ for $0>\kappa^{\prime}>\kappa$.)

Problem 3. Show that the action of $\mathbf{S L}(n, \mathbb{R})$ on $P(n, \mathbb{R})_{1}$ is transitive meaning that for every pair of points $p, p^{\prime} \in P(n, \mathbb{R})_{1}$ there is $g \in \mathbf{S L}(n, \mathbb{R})$ such that $g(p)=p^{\prime}$.

Problem 4. In the action of $\operatorname{SL}(n, \mathbb{R})$ on $P(n, \mathbb{R})_{1}$, compute the stabiliser of each point $p \in P(n, \mathbb{R})_{1}$, that is, the set of $g \in \mathbf{S L}(n, \mathbb{R})$ such that $g(p)=p$.

Problem 5. Let $A \subset P(n, \mathbb{R})_{1}$ be diagonal matrices (with entries positive and product 1). Describe A as a metric space (with the restriction of the Riemannian metric from $\left.P(n, \mathbb{R})_{1}\right)$.

Problem 6. Prove that $P(2, \mathbb{R})_{1}$ is isometric with rescaled \mathbb{H}^{2}. What is the scaling factor?

