MATH 599 Nonpositive Curvature Problem list 5

Definition. The $\operatorname{link} \operatorname{Lk}(x, S)$ of a point x in a geodesic n-simplex $S \subset M_{\kappa}^{2}$ (or in a convex n-polyhedron) is the spherical ($n-1$)-cell consisting of unit tangent vectors at x pointing towards S, that is, initial vectors of geodesic segments contained in S.

The link $\operatorname{Lk}(x, K)$ of a point x in a simplicial (or polyhedral) complex K is the piecewise spherical complex whose cells are $\operatorname{Lk}(x, S)$, with $y \sim y^{\prime}$ for $y \in \operatorname{Lk}(x, S), y^{\prime} \in \operatorname{Lk}\left(x, S^{\prime}\right)$ whenever S and S^{\prime} share a face in K and y corresponds to y^{\prime} under this identification.

Problem 1. (technical) Let x be a point in an M_{κ}-simplicial (or polyhedral) complex K with $\varepsilon(x)>0$. Prove that $B\left(x, \frac{\varepsilon}{2}\right)$ is isometric with the open ball of radius $\frac{\varepsilon}{2}$ around the cone point in $C_{\kappa}(\operatorname{Lk}(x, K))$.

Hints: for a pair of points $y=(t, u), y^{\prime}=\left(t^{\prime}, u^{\prime}\right) \in C_{\kappa}(\operatorname{Lk}(x, K))$ split the proof into two steps:
(i) If $d\left(y, y^{\prime}\right)<t+t^{\prime}$, then $d\left(u, u^{\prime}\right)<\pi$ and $d_{\text {cone }}\left(y, y^{\prime}\right) \leq d\left(y, y^{\prime}\right)$.
(ii) If $d\left(u, u^{\prime}\right)<\pi$, then $d\left(y, y^{\prime}\right) \leq d_{\text {cone }}\left(y, y^{\prime}\right)<t+t^{\prime}$.

In (i), given a string $\left(y_{i}\right)$ between y and y^{\prime}, construct a fan of comparison triangles for $x y_{i} y_{i+1}$ to obtain a bound on $d\left(u, u^{\prime}\right)$ and consequently on $d_{\text {cone }}\left(y, y^{\prime}\right)$.

Problem 2. Let K be an M_{κ}-simplicial complex (or in general a polyhedral complex) with finitely many isometry types of cells. Prove that K has curvature $\leq \kappa$ if and only if for each vertex $v \in K$ the complex $\operatorname{Lk}(v, K)$ is CAT(1).

Definition. The presentation complex of a group presentation $\langle S \mid R\rangle$ consists of one vertex, $|S|$ directed edges starting and ending at the unique vertex, and a 2-dimensional cell corresponding to each relator $r \in R$, whose boundary circle is identified with the closed edge-path spelled by r.

It is an exercise in topology to prove that the fundamental group of the presentation complex is the group $\langle S \mid R\rangle$, which thus acts freely by deck transformations on the universal cover of the presentation complex.

Problem 3. Let K be the presentation complex of the group:
(i) $\left\langle s, t \mid s^{2} t^{2}=t s\right\rangle$,
(ii) $\left\langle s, t, r \mid s t s^{-1}=t^{-1}, r s r^{-1}=t\right\rangle$,
(iii) $\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}=1\right\rangle$.

Find a piecewise Euclidean structure on K of nonpositive curvature, and, if possible, a piecewise hyperbolic structure of curvature ≤-1.

In the further problems you can use the following variant of CartanHadamard theorem for spaces of curvature ≤ 1.

Theorem. Let X be a piecewise spherical complex of curvature ≤ 1 with finitely many isometry types of cells and no isometrically embedded circles of length $<2 \pi$. Then X is $\operatorname{CAT}(1)$.

Definition. A simplicial complex is flag if every set of edges pairwise connected by edges spans a simplex.

Problem 4. (i) Let K be a piecewise spherical simplicial complex, each of whose edges has length $\frac{\pi}{2}$. Prove that K is CAT(1) if and only if it is flag. Hint: Proceed by induction on dimension.
(ii) Let K be a simply connected polyhedral complex build of Euclidean cubes. Prove that K is $\operatorname{CAT}(0)$ if and only if each $\operatorname{Lk}(v, K)$ is flag.

Problem 5. Let Γ be a finite graph with vertices v_{1}, \ldots, v_{n}. The rightangled Artin group defined by Γ is the group presented as $A_{\Gamma}=\langle S \mid R\rangle$, where $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and R consists of relations $s_{i} s_{j}=s_{j} s_{i}$ for all v_{i}, v_{j} joined by an edge. Find a $\operatorname{CAT}(0)$ cube complex with a free and cocompact action of A_{Γ}. Hint: if Γ has no triangles, then it suffices to consider the universal cover of the presentation complex.

