MATH 599 Nonpositive Curvature Preparation problems to midterm II

Problem 1. Prove that a CAT(0) space is convex.
Problem 2. Prove that a local isometry from a complete metric space to a locally convex metric space is a covering map.

Below $[a, b]$ denotes the commutator $a b a^{-1} b^{-1}$.
Problem 3. Let K be the presentation complex of the group
(i) $\langle a, b, c, d, e, f \mid[a, b][c, d][e, f]=1\rangle$,
(ii) $\left\langle a, b, c \mid a b=b a, c a c^{-1}=b\right\rangle$,
(iii) $\left\langle a, b, c \mid a^{2} b c=b a, c^{2} a c=b^{2}\right\rangle$,
(iv) $\left\langle a, b, c \mid a b=c^{2}, b a=c^{2}\right\rangle$.

Find a piecewise Euclidean structure on K of nonpositive curvature, and, if possible, a piecewise hyperbolic structure of curvature ≤-1.

Problem 4. Realise each of the following groups as the fundamental group of a nonpositively curved metric space.
(i) $\langle a, b \mid a b a=b a b\rangle$,
(ii) $\langle a, b \mid a b a b=b a b a\rangle$,
(iii) $\left\langle a, b, t, s \mid a b=b a, t a t^{-1}=a b^{2}\right\rangle$,
(iv) $\left\langle a, b, t, s \mid a b=b a, t a t^{-1}=a b, s a s^{-1}=b\right\rangle$.

Problem 5. Let X be a simplicial complex with finitely many isometry types of cells and nonpositive curvature. Let Y be its locally convex subcomplex. Prove that the natural map $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ is an embedding.

Problem 6. Let g be an isometry of a metric space X. Show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} d\left(x, g^{n}(x)\right)
$$

exists for all x, and is independent of x.
Hint: subadditive sequence.
Problem 7. Suppose that a group G acts properly and cocompactly on a metric space X. Prove that the set of translation distances of the elements of G is a discrete subset of \mathbb{R}.

Problem 8. Prove that the following groups do not act properly and cocompactly on a $\operatorname{CAT}(0)$ space:
(i) the Heisenberg group $\langle s, t, r \mid[s, t]=[s, r]=1,[t, r]=s\rangle$,
(ii) the solvable group $\left\langle\mathbb{Z}^{2}, t\right| t^{-1} v t=A v$ for all $\left.v \in \mathbb{Z}^{2}\right\rangle$, where

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

(iii) the fundamental group of the unit tangent bundle of the orientable genus 2 surface.

In the following problems you are allowed to use the theorem below.
Theorem. Let G, H be groups and ϕ_{1}, ϕ_{2} two embeddings of H into G. The HNN-extension defined by this data is the group presented as $\langle G, t| t \phi_{1}(h) t^{-1}=$ $\phi_{2}(h)$ for all $\left.h \in H\right\rangle$. Then the natural map from G to the HNN-extension is an embedding.

The theorem follows from viewing the HNN-extension as a loop of groups, which has nonpositive curvature.
Problem 9. Prove that the group $\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle$ does not act properly and cocompactly on a CAT(0) space.

Problem 10. Prove that the group

$$
\left\langle a, b, t, s \mid a b=b a, t a t^{-1}=a b^{2}, s a s^{-1}=b\right\rangle
$$

does not act properly and cocompactly on a complete CAT(0) space.
Problem 11. Describe the Coxeter complex and the Davis complex Σ for Coxeter groups:
(i) with three generators and exponents $2, \infty, \infty$,
(ii) with three generators and exponents $3,3, \infty$,
(iii) with three generators and exponents $2,3,6$,
(iv) with generators p, r, s, t, and $m_{p r}=6, m_{r s}=m_{s t}=3, m_{p s}=m_{p t}=$ $m_{r t}=2$,
(v) with generators p, r, s, t, and $m_{p r}=m_{s t}=4, m_{r s}=3, m_{p s}=m_{p t}=$ $m_{r t}=2$.

Problem 12. Prove that every finite subgroup of a Coxeter group lies in a conjugate of a finite special subgroup.

Problem 13. Let Σ be the Davis complex of a Coxeter group with all $m_{i j} \in$ $\{2, \infty\}$. Show that after assembling the simplices of Σ into cubes, the links of the resulting cube complex are flag.

Problem 14. Describe the action of the Coxeter group
(i) D_{∞},
(ii) with three generators and all exponents equal to 3 ,
on $\mathbb{R}^{|S|}$ via the dual representation to the Tits representation. Hint: look at the translates of the simplex spanned by the basis dual to the standard basis.

Problem 15. Consider the full symmetry group G of the square tiling of \mathbb{R}^{2}. What is the simplex of groups structure of \mathbb{R}^{2} / G ?

Problem 16. Let $a b c$ be a triangle with the following simplex of groups structure. The edge and vertex groups are $G_{a b}=\mathbb{Z}_{3}, G_{a c}=G_{b c}=\mathbb{Z}_{2}, G_{c}=$ $D_{3}, G_{a}=G_{b}=\left\langle s, t \mid s^{2}=t^{3}=(s t)^{3}=1\right\rangle$ and $G_{a b c}$ is trivial. Moreover, suppose that the maps φ send generators of edge groups to s and t in G_{a}, G_{b}, and to arbitrary generators in G_{c}. What are the local developments? Is this simplex of groups developable?

