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This article addresses how diverse collective behaviours
arise from simple and realistic decisions made entirely at
the level of each agent’s personal space in the sense of
the Voronoi diagram. We present a discrete-time model in
two dimensions in which individual agents are aware of
their local Voronoi environment and may seek static target
locations. In particular, agents only communicate directly
with their Voronoi neighbours and make decisions based on
the geometry of their own Voronoi cells. With two effective
control parameters, it is shown numerically to capture a wide
range of collective behaviours in different scenarios. Further,
we show that the Voronoi topology facilitates the computation
of several novel observables for quantifying discrete collective
behaviours. These observables are applicable to all agent-
based models and to empirical data.

1. Introduction
The connection between individual and collective behaviour
in biological systems has fascinated researchers for decades.
A well-studied paradigm entails the tendency of groups of
individual agents to form flocks, swarms, herds, schools, etc.
As we discuss further in §1.1, many mathematical models from
discrete to continuum have been presented and studied to
capture the emergence of collective behaviours from postulated
local laws. These models comprise components—for example,
averaging orientation directions with Euclidean distance weights
to capture alignment, or phenomenological interaction poten-
tials (kernels) for repulsion/attraction—which in addition to
facilitating numerical computations, lend themselves well to
formal, rigorous, or multi-scale mathematical analysis.

© 2024 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.

Research

Cite this article: Gonzalez I, Tisdell J, Choksi R,
Nave J-C. 2024 Emergence of collective
behaviours from local Voronoi topological
perception. R. Soc. Open Sci. 11: 231537.
https://doi.org/10.1098/rsos.231537

Received: 13 October 2023
Accepted: 25 March 2024

Subject Category:
Mathematics

Subject Areas:
computational mathematics, behaviour, applied
mathematics

Keywords:
collective behaviours, Voronoi diagram, Delaunay
topology, milling, queuing

Author for correspondence:
Rustum Choksi
e-mail: rustum.choksi@mcgill.ca

†These authors contributed equally to the study.

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7265981.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

un
e 

20
24

 

http://orcid.org/
http://orcid.org/0000-0003-2419-9520
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rsos.231537&domain=pdf&date_stamp=2024-06-05
https://doi.org/10.1098/rsos.231537
https://doi.org/10.6084/m9.figshare.c.7265981
https://doi.org/10.6084/m9.figshare.c.7265981


Here, we take a different approach, divorced from any underlying goal/bias for the potential
mathematical analysis of the model. We directly address what we believe to be an important and useful
question in the modelling of collective behaviour: how do collective behaviours emerge from simple
and realistic decisions made entirely at the level of the individual’s personal space? We argue that
the Voronoi diagram provides that personal space. Hence, our underlying assumption is that agents
base their decisions on their Voronoi cell and the behaviours of their immediate Voronoi-neighbouring
agents. Such neighbouring agents are simply those whose personal space is adjacent to that of the
given individual. An example of Voronoi diagram is shown in figure 1 along with its dual graph.

Based solely on the topology this neighbouring connectivity induces, we present a movement
scheme (a velocity) via a synthesis (i.e. a weighting) of three competing tendencies: repulsion from the
closest neighbour, homing towards a target (or targets) and alignment with the directions of neigh-
bouring agents. This movement scheme is the basis for our model which we call Voronoi topological
perception (VTP). While other models are also based upon similar three tendencies, and several have
components using the Voronoi topology, ours is distinct in that it is entirely based upon the geometry
of an agent’s (Voronoi) personal space. To discuss further the scope and novelty of VTP, we briefly
review some of the main modelling paradigms for collective behaviours, and the resulting large body
of literature.

1.1. Overview of current models
We first present three influential models achieving coherent behaviour solely through symmetric
alignment interactions. Vicsek et al. [1] introduced a simple kinematic model, where, amid random
noise, a transition to ordered behaviour is obtained by averaging over the velocities of neighbours that
fall within a metrically finite region, see [2] for analysis. Later, Cucker and Smale [3] introduced a
flocking model (C-S) that, in contrast with Vicsek’s, considers a global interaction where each agent is
influenced by every other individual. Consequently, C-S presents conservation laws that, on one hand,
fix the regimes through the initial conditions as for some physical system (e.g. thermodynamical) but,
on the other, seem unreasonable for systems of active, decision-making individuals. Another issue,
pointed out by Motsch and Tadmor [4] is that C-S invalidates the dynamics of small sub-flocks at
long range; this problem is addressed in their model (M-T). Precisely, M-T introduces the notions
of active sets to quantize the neighbour’s influence as well as the notion of relative distances. The
latter being supported by the experiments on bird flocks due to Ballerini et al. [5] demonstrating
many flocking behaviours to be density invariant; i.e. where the behaviour is essentially unchanged
as a given configuration of interacting agents scales in (spatial) size. As we will see, a (distinct)
notion of relative distance is a direct consequence of our topological perception framework. Note these
three approaches do not, in general, produce regimes other than velocity coherence. In this regard,
much adapting has been done to produce aggregation and other biologically accurate behaviours by
means of long-range attraction, short-range repulsion as well as hierarchy and leadership effects, see
[6–12]. Other interesting variants include incorporating: (i) limited peripheral view [4]; (ii) time delays
accounting for limited processing aptitudes [13,14]; and (iii) active and passive distinction of agents
[15–19]. Other important kinematic approaches which produce rolling and milling behaviours similar
to ours are models of d’Orsogna et al. [20] and Bernoff-Topaz [21,22], which consider attraction and
repulsion through potential as well as exogenous forces. The reader is also referred to seminal work
done by Mogilner and Edelstein-Keshet et al. in the matter of modelling interactions through the
potential formulation [23–25].

Particularly relevant to our approach is a family of models known as zone-based that generalize
Vicsek’s. Precisely, endogenous interactions act over non-overlapping concentric regions. Among this
vast family, one finds the popular boids model introduced by Reynolds in 1987 [26], the Huth and
Wissel model of homogeneous fish schools [27], a recent approach by Bernardi and Scianna (B-S) in
[28] as well as the seminal Couzin model [29] with hierarchies between the different interactions; the
Couzin model was later used in the context of effective leadership and propagation of directional
awareness in [30].

Importantly, the zone-based framework has been shown to agree with real-life data, for example,
Lukeman et al. [31] discuss how the dynamics of surf scoters (Melanitta perspicillata) can be accurately
described by different models in this family after an optimal fit of their parameters. We point out
that many zone-based interactions are often realized as gradients of artificial potentials (although
qualitative features often do not depend on the precise form of such potentials, e.g. [32]), and this
approach is seen in biological models as well as implemented in multi-agent control systems as in
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[33]. Furthermore, these approaches often involve steering towards the centre of mass of a possibly
large number of agents, which is appropriate for automated multi-agent control but not so realistic for
biological species with limited processing capabilities.

Olfati-Saber and others have worked to present very broadly applicable theoretical frameworks
for flocking in multi-agent systems in [34–36], especially for the case of linear dynamics (in both
continuous and discrete time).

The ‘social force’ pedestrian model (H-M) from Helbing and Molnár [37] (see also the seminal work
[38]) strives for a realistic human pedestrian flow without using a density-invariant communication
notion; i.e. behaviours are considerably altered as a given configuration of interacting agents gets
clustered or spread out. For a comprehensive summary of progress made in the realm of pedestrian
dynamics from both macroscopic and microscopic scales, the reader is referred to Chraibi et al. [39].
We remark that, depending on the context, it is a model’s prerogative to be described in terms of
accelerations or velocities: authors can choose to encode (or not) the fact that cars or heavy multi-agent
systems closely follow an inertial Newton-type behaviour while pedestrians and other biological
species can accelerate and brake almost instantaneously—thus, do not generally think in terms of
accelerations at the tactical level. While this ‘convention’ is natural, many successful models do not
adapt to it; e.g. H-M is a pedestrian model based on acceleration. H-M and other knowledge-based
human pedestrian models stand in contrast with comparatively recent deep learning approaches. This
dichotomy is explored in detail in the review article [40]. The follow-up [41] gives a broad overview
of continuous time pedestrian models including various approaches and ranging in their mathematical
sophistication.

Finally, we emphasize that others have previously used Voronoi diagrams in multi-agent models
and control systems, and they feature prominently in the literature on epithelial and biological tissues
[42,43]. Ginelli and Chaté [44], inspired by [5], show that adapting Vicsek’s model to use a Voronoi
communication topology produces qualitatively novel behaviours—here and throughout, a ‘communi-
cation topology’ is simply the graph that determines who influences whom at a given moment of
the dynamics. Grégoire and Chaté [10] describe a minimal extension of [44], which achieves selected
coherent behaviours despite ‘unfavourable conditions’. Following the study of Ballerini et al. [5] on
comparing the communication topologies induced by metric distance versus k-nearest neighbours, the
Couzin model has also been adapted by Kolpas et al. [45] to use the Voronoi diagram (and its dual
graph) as a proxy to the k-nearest neighbour topology. We remark that the k-nearest and the Voronoi
topology are generally different graphs since the kth closest neighbour does not need to be a Voronoi

Figure 1. A Voronoi diagram and dual graph. The Voronoi diagram generated by a set of points, consisting of the solid bordered
regions, and its dual graph (dotted red) offer a natural communication topology for agent-based models and also give rise to
many broadly applicable observables. The Voronoi (dual) topology differs from other communication networks—in particular,
k-nearest neighbour—in several respects. For example, focusing on the encircled site, its second-nearest site is not among its Voronoi
neighbours at all. Moreover, different sites generally have different numbers of Voronoi neighbours.
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neighbour (for k ≥ 2), and, conversely, an agent may have more than k Voronoi neighbours (see figure
1).

Where the above models use the Voronoi topology, the multi-vehicle control system developed
by Lindhe et al. [46] considers a limited range of neighbours, as Vicsek, but from these, constructs
a Voronoi region whose geometry influences the control. We remark that Strandburg-Peshkin et al.
[47] show that Voronoi-based models empirically outperform metrical and k-nearest neighbour-based
models in the sense of information propagation through the network, at least in regimes which admit
fair comparison by their methods.

1.2. Purpose and scope of our work
First off, we do not claim that VTP is an improvement over any previous model. We are providing
a new model from the microscopic perspective (as opposed to thermodynamical/macroperspective),
described in terms of velocities (as opposed to acceleration and other inertial terms), and within the
‘school’ of Voronoi topology-induced regions of influence (as opposed to metric regions or k-nearest
influence).

The model adhering to these three categories that would be closest to ours [45] presents key
differences: (i) its repulsion component is an average while ours is simpler and swift; (ii) its repulsion
and alignment are hierarchical while ours can take effect simultaneously; and, more importantly, (iii)
our method not only uses the Voronoi topology but also gauges the geometry and ‘size’ of the personal
space to adjust the speed rather than assigning a constant value. Moreover, to keep listing fundamental
properties, our framework limits some of the assumptions made on the population when compared
with other models from §1.1: (iv) agents are not required to steer towards centres of mass nor perform
complex averaging of non-unitary vectors (more in §2.1.2). (v) We do not assume long-range attraction
or reorientation where agents need to be aware of all other agents at all times; instead, agents are
aware of only a small number of neighbours, and, through the non-locality of the Voronoi diagram,
information from far away does require several time steps to reach an agent. This reduced number
of neighbours in the communication topology leads VTP to benefit from a notion of relative distance
analogous to [4] (see §2.1.2).

We view our model—that is our scheme for synthesizing repulsion, homing and attraction—as
on one hand, rather simple and easy to implement with only two effective parameters, and on the
other hand, complex enough to exhibit a spectrum of behaviours in different scenarios. Note that
the literature has innumerably many models that target very specific scenarios (milling, jamitons,
bidirectional flows and other pedestrian dynamics, etc.) but very few can model the macroscopic
regimes of these various distinct scenarios; compare, for example, figure 2 with [37, fig. 2] and with [48,
fig. 8] or figure 3 with [20, fig 3].

On the other hand, we do acknowledge a drawback for working entirely in this discrete Voronoi
topology. The rigid non-local framework of the Voronoi diagram (with topological changes at each
time step) results in a model which is extremely difficult to analyse (even formally) in any precise
mathematical framework. Indeed, the interesting collective behaviours are not in asymptotic parameter
regimes and mean field (continuum) limits are intractable. While we certainly acknowledge this as
a weakness from a modelling point of view, we nevertheless feel the merits of our motivation, its
simple deterministic structure, its computational efficiency and its numerical predictions warrant the
presentation here. Henceforth, our analysis of the VTP method is purely numerical; however, we stress
that an additional advantage of the Voronoi setting is that it facilitates the computation of several
observables to quantify certain generic collective behaviours. As we describe in §3.1 and §4, these
include Voronoi-based notions of clustering, pressure, percolation and queuing. To our knowledge, these
observables are new in the large collective behaviour literature, and can be applied not just to our
VTP model, but to any discrete time agent-based model since these are independent of the dynamics, and
can thus be computed on simulated or real-life data provided position and orientation information is
available for every agent.

Our  goal  here  is  not  to  exhaust  the  possibilities  of  VTP nor  tailor  it  to  a  specific  biological
or  engineering system (see  §5  for  comments).  Rather,  we focus  on two canonical  scenarios:  a
point  target  and a  narrow hallway.  For  the  former,  we work on the  infinite  plane and demon-
strate  interesting behaviours,  including a  novel  breathing  regime.  For  the  latter,  we consider  a
bidirectional  flow in  a  hallway that  exhibits  lane  formations  and other  interesting pedestrian
dynamics.
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In order to appreciate the VTP model, we supplement the article with a Github site.1  Here,
one finds dynamic simulations for the runs discussed in this paper and many more. Specifically,
the site presents a mixture of real-time simulations with adjustable parameters and recorded ones:
many scenarios are explored in different spatial domains. One can download the code for further
experimentation with VTP. Readers will also find there the written Appendix which includes
various technical details and discussion.

With two controlling parameters and the inclusion of a target, it is difficult to fully exhaust
the possible behaviours of our model. Thus, in the electronic supplementary material we present
a complete numerical analysis for the simplest case: untargeted motions on two canonical compact
manifolds without boundary, the flat torus and the 2-sphere. Here, we decompose the relevant phase
diagram into five regimes; the reader is encouraged to consider the extreme regions of this diagram
as ‘test’ cases to gain intuition on the dynamics obtained when repulsion dominates over alignment or
vice versa (as the average density of agents varies). We also present in the electronic supplementary
material simulations with point targets on both the flat torus and the 2-sphere.

1https://jacktisdell.github.io/Voronoi-Topological-Perception

n
r
 = 84 n

l
 = 86 #iter = 750

n
r
 = 512 n

l
 = 498

(a)

(b)
#iter = 1500

Figure 2. Emerging behaviours in the bidirectional corridor (see §4). Agents Xr moving to the right are shown in orange and Xl moving
to the left in green: (a, click here to view simulation) Regime I shows significant amounts of queuing. The queuing structure (graph) Ξr is
displayed in orange and Ξl in green; and (b, click here to view simulation) Regime V shows the two subpopulations separated by a long
interface and ‘sliding’ along each other.
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Figure 3. Emerging behaviours for a single point target in the plane under Model II with n = 700 agents (see §3). From the left, (a,
click to run simulation) pinwheel ν = 3, (b, click to run simulation) ring ν = 13 and (c, click to run simulation) aligned orbiting cluster ν
= 40. The red crosshair indicates the target point in each figure.
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2. The Voronoi topological perception model
The mathematics needed to present the VTP model are minimal: basically the notion of the Voronoi
diagram is associated with a configuration of agents. While this does, however, introduce some
notation, readers may simply focus on the following intuitive definitions. For completeness (and for
those who wish to modify the GitHub code), we present the precise definitions.

Given a connected manifold Ω (prototypically a subspace of the Euclidean plane) with metric d, and
distinct points x1, …, xn in Ω, the Voronoi diagram generated by x1, …, xn is the partition of Ω into the
regions V1, …,Vn where Vi consists of all the points nearest xi, precisely,Vi = {x ∈ Ω: d(x, xi) ≤ d(x, xj)  for all 1 ≤ j ≤ n} .

The regions Vi are called Voronoi cells and are always convex polygons in the sequel.
The Voronoi diagram’s geometric dual provides a natural structure to guide the inter-agent

communication topology in our model.2 We will write i ∼ j to mean that xi and xj are adjacent in
this dual, or equivalently, that their Voronoi cells Vi and Vj share an edge. For each i, we denote by ni
the number of Voronoi neighbours, ni = #{j:j ∼ i}.
2.1. Governing equations
While the model was designed with numerous generalizations in mind, we present it here in its
simplest form with two interpretations for the magnitude of personal space (Models I and II). Our
model includes (i) the domain Ω, (ii) a set Λ of agent indices (which may change over time, as in
§4), (iii) distinct positions xi = xi(t) ∈ Ω for each i ∈ Λ, and (iv) closed (possibly empty) target regionsTi ⊂ Ω for each i ∈ Λ. Note that time here is arbitrary, and hence the discrete-time step is set to unity.
Our model views the Voronoi diagram associated with the agent positions as fundamental to their
perception (see figures 4 and 5).

At each time step t, we associate with the ith agent its displacement vector ui(t) = xi(t) − xi(t − 1). We
denote by ûi(t) the unit vector in the direction ui(t) and refer to it as the ith agent’s orientation vector at
time t. Since the time step is set to unity, we associate the magnitude of ui(t) with the ith agent’s speed
at time t. From the given initial positions and orientations, the trajectory is prescribed by a rule relatingui(t + 1) to the position and orientation vectors of the Voronoi-neighbouring agents at the previous time
step t, namely, the system evolves according to an equation of the form

(2.1)xi(t + 1) = xi(t) + f i(X(t),U(t)) for all i ∈ Λ,

2In the Euclidean metric, this dual graph is known as the Delaunay triangulation, see [49,50].

d
i
F
i

i

x
j

x
i

Figure 4. At each time step, the personal space of the ith agent is located at xi and its Voronoi-neighbouring agents (the position of
a generic neighbour is labelled as xj). The desired direction vector di associated with the ith agent determines the frontal area Fi and
frontal distance li used to evaluate the personal-space speed ρi in equations (2.7) and (2.8) for Models I and II, respectively.
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for functions f i:Ωn × (ℝ2)n ℝ2, where X  and U are shorthand for X(t) = (xi(t): i ∈ Λ) andU(t) = (ui(t): i ∈ Λ) and n = #Λ.
So, the behaviour of our model is then determined by the precise nature of f i. Because we assume

each agent has only local information, f i will only depend on a narrow subset of agents—the Voronoi
neighbours—at each instant, but their identities will change over time in general. The functions f i are
given by

(2.2)f i(X ,U) = ρidi , di =
σir̂i + νai + (1 − σi)ĥi

1 + ν .

Here, di is a weighted combination of three components r̂i, ai, ĥi, repulsion, alignment and homing,

respectively, with non-negative coefficients σi, ν and 1 − σi. Definitions of r̂i, ai and ĥi are given
in equations (2.3)–(2.5) and the weight σi in equation (2.6). The coefficient ν is dimensionless and
determines the strength of alignment compared with the combined homing–repulsion effect; ν is the
first effective parameter of our model. We then scale by ρi which depends on i’s personal space and
is defined later in equations (2.7) and (2.8). We emphasize that the components of di can be simply
explained via the schematics in figure 5, which illustrates the heart and simplicity of the VTP model.
The exact definitions of all these terms and the weight σi are necessary for the specifics of the model,
but we hope the additional mathematical notation involved does not obscure the core ideas.

Before presenting these details, we remark that equation (2.2) does not present a magnitude/direc-
tion decomposition, as di is not in general a unit vector. In a sense, di encapsulates the external
influences on i while ρi gives the speed scale i would like to achieve if allowed by di. Because of this,f i can be small for two very different reasons: ρi will be small when i has very little room to move
and di will be small if repulsion, alignment and homing nearly cancel each other. However, ∥ di ∥ is
on average bounded above by 1 + 1

1 + ν  (cf. appendix), thus making di a physically sensible direction of
motion.

2.1.1. Repulsion vector r̂i
The repulsion term r̂i (figure 5) is the straightforward collision-avoidance mechanism of moving away
from closest neighbour; its use here is inspired by the work of Gonzalez et al. [51] in Voronoi energy

ĥi

Ti

xi

δi

r̂i

xi

ûi

ai
xi

(a) (b) (c)

Figure 5. Schematic of the influences on a generic agent at time t. Here, we show one agent i at position xi as well as its Voronoi cell
and Voronoi neighbours whose positions are marked with black dots. We illustrate the three components that influence i’s motion in

the triptych above. Repulsion r̂ i and homing h
^

i are weighted with coefficients σi = σ(δi /L) and convex complement 1 − σi = 1 − σ(δi /L),
respectively, where δi is the distance to i’s nearest neighbour, as shown in (b). The relative weight of alignment ai is given by the

parameter ν. From the left, the diagrams are as follows. (a) Homing. Unit homing vector h
^

i points toward target Ti, if it is non-empty
and does not contain xi. (Here the target is shown as a dot but may be any region, in general.) (b) Repulsion. Repulsion vector always
points away from nearest neighbor or domain boundary. The distance δi to this nearest neighbor determines the relative weight of r̂ i

and h
^

i. (c) Alignment. Alignment ai is given by a weighted average of the orientations of Voronoi neighbors. The circularly wrapped
weighting functions are indicated by the blue curves where the relative angle θi j (the angle between û i and û j) marked with light blue
sectors is the argument.
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minimization where experiments show that it facilitates the formation of homogeneous arrangements
of agents.

Specifically, the repulsion vectors r̂i are given by

(2.3)r̂i(X) =
xi − yi

‖xi − yi‖,

where yi is the position of the ‘obstacle’ nearest xi. Here, the word obstacle refers to the other agents
and the domain boundary, if it exists. Precisely, yi minimizes ‖xi − y‖ among y in {xj:j ≠ i} ∪ ∂Ω. In the
typical case, this is uniquely determined and we account for the edge cases by averaging.

We also define δi = ‖xi − yi‖ to be the unique distance from xi to its nearest obstacle, as indicated in
figure 5. The value δi will be used in the weighting coefficients (see §2.1.4) wherein its size is assessed
via our second parameter L, the length scale within repulsion is active.

For many parameter ranges, there is a short-time oscillatory structure to r̂i resulting from Voro-
noi–neighbour connectivity changes (see [51] for more details). In these cases, the late-time animations
show a ‘jittering’ in the individual agents’ directions. We do not see this as weakness in our model
as agents on a small time scale may very well have a frenetic nature which averages out over large
temporal and spatial scales.

2.1.2. Alignment vector ai
Alignment is illustrated schematically in figure 5c. We define the alignment vector ai by the rescaled
weighted average

(2.4)ai = ai(X ,U) = ϕi ⋅ 1ni ∑j ∼ ig(θij)ûj,
where, recall, ni is the number of Voronoi neighbours of xi and ûj = uj/ ∥ uj ∥ is the orientation vector
of agent j. Here, θij = arccos(ûi ⋅ ûj) is the angle between ûi and ûj, and g: [0, π] [0, 1] is a continuous
non-increasing function with g(0) = 1 and g(π) = 0. Thus, agent i considers the orientation of each of
its neighbours and averages, favouring those whose direction is consistent with its own (θij near 0)
and virtually ignoring those whose direction is opposed (θij close to π). The role of the weighting g
(more specifically its behaviour near 0 and π) is crucial because it may tolerate more or less sheer
in the flow depending on the modelled species. Put another way, the fact that agents can move in
opposition to one another without much affecting this term manifests in interesting ways dynamically.
For example, two opposing streams, if sufficiently sparse that repulsion is small, can pass through each
other relatively easily with agents in each stream ignoring those in the other stream while reinforcing
others in their own stream. However, an agent approaching a transversely moving group of others will
be significantly deflected by it. We will see later two-way flow wherein non-jamming behaviours are
much more accessible due to the weighting g. In the supplementary material, one also finds what we
call anti-cog collective behaviour which exhibits very high sheer in the flow and does not occur without
the fall-off of g at π.

The coefficient ϕi is simply ϕi(X) = ni/6 . To motivate this definition, we note that in any Voronoi
diagram (in the torus, sphere, plane or planar region), a typical cell has at most six neighbouring cells
(cf. appendix). So ϕi captures how ‘surrounded’ xi is in the Voronoi topology. The effect of scaling the
weighted average by ϕi is that agents with relatively few neighbours will be less strongly affected by
this alignment interaction. Conversely, without ϕi, the alignment component of i would be crippled
whenever i has many neighbours moving in the opposite direction. Overall, introducing ϕi mimics in
outcome the improvement of relative distance brought by Motsch and Tadmor [4] over [3].

Noticing that alignment at time t depends on the neighbours at time t − 1, one may point out that
since the previous time step t − 1, the neighbours j ∼ i may have changed. In particular, the neighbours
of xi(t) may include an agent j who did not neighbour agent i at t − 1 (and was therefore invisible to
them at the time); yet, according to equation (2.4), agent i is expected to have orientation information
about that agent. We argue, however, that under reasonable assumptions, this does not in fact require
agents to have any memory at all; the only assumption made is that every agent is able to infer the
orientation of their neighbours from their current body geometry in an insignificant amount of time,
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e.g. by looking at their noses, tails, etc. Concretely, at time t, agent xi(t) looks at all neighbours j ∼ i
and gauges their orientations ûj based on body geometry alone but does not need to infer any speed
information ∥ uj ∥. Should the latter be the case, then agents would indeed need the memory of their
neighbours’ positions xj(t − 1) at an earlier time. Thus, under our simple assumption on body geometry
assessment, using unit length orientations as opposed to displacement vectors in equation (2.4) indeed
makes our model ‘speed memoryless’, depending only on orientation features.

At last, we refer the reader to the appendix where a simple linearization of equation (2.4) before
rescaling by ϕi shows that our alignment component incorporates three main terms: an inertial term
aiming to preserve the heading of each agent i; a ‘traditional’ unweighted average of the neighbours’
orientation; and a third ‘curling’ term containing the nonlinear influence of the neighbours j ∼ i onto i.
2.1.3. Homing vector ĥi
The homing term is shown for a simple-point target in figure 5a. This term simply points from xi
towards the target region Ti. We define the target point xi* ∈ Ti by ∥ xi* − xi ∥ = dist (xi,Ti) . There is, in
general, an issue of uniqueness here, but, in practice, this ambiguity is inconsequential because the set

on which this definition is ambiguous has measure 0 in Ω. The homing vector ĥi is given by

(2.5)ĥi(X) = xi∗ − xi
‖xi∗ − xi‖ for xi ∉ Ti .

To account for the possibilities that xi ∈ Ti or Ti = ∅, we define ĥi to be 0 if xi ∈ Ti or Ti = ∅. Thus, ĥi is a
unit vector or else the zero vector.

2.1.4. Weighting coefficients σi
The repulsion r̂i and homing ĥi appear in equation (2.2) with weights σi and 1 − σi; these are defined
by introducing the length scale L and a repulsion cut-off function σ( ⋅ ). We refer to L > 0 as the repulsive
fall-off distance that indicates the maximal distance over which a repulsive action is triggered, it can also
be used to capture the size of the agents. Precisely, after recalling that δi is the distance from xi to its
nearest neighbour or boundary (figure 5), we define

(2.6)σi = σ(δi/L),

where the function3 σ: [0,∞) [0, 1] is continuous at 0, non-increasing and satisfies σ(0) = 1 andσ(1) = 0. In this way, L is one of the two effective parameters of our model and captures the preferred

radius of empty personal space of agents. Thus, we see that the convex combination σir̂i + (1 − σi)ĥi
facilitates the following behaviour: if xi is at least a distance L from all obstacles, then full priority is

given to target seeking via ĥi. On the other hand, as obstacles encroach on xi at distances less than L,

collision avoidance via r̂i progressively takes priority over target seeking.

2.1.5. Personal-space speed

So far, we have constructed a direction vector di for the direction of movement at the tth time step.
We must now scale its magnitude with scalar ρi in equation (2.2) based upon: a speed limit (here
taken to be unity); and the agents’ frontal personal space (based upon direction di). Here, we present
two models with two possible interpretations of the ‘magnitude’ of the personal space, both illustra-
ted in figure 4. Model I is based on the area of the frontal personal space. Precisely, for xi,di ∈ ℝ2,
define H(xi,di) = {xi + w ∈ ℝ2:di ⋅w ≥ 0} to be the half-plane with inward normal parallel to di whose
boundary contains xi. Then, define4

3We take the repulsive cut-off function σ(s) =
z(1 − s)z(s) + z(1 − s)  where z(s) = exp( − 1/x) and alignment weighting functiong(s) = σ(s/π).

9
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Fi = Fi(X ,U) =
area(Vi ∩ H(xi,di)) if di ≠ 0,

1
2area(Vi) if di = 0,

where, as always, Vi is the Voronoi cell containing xi (see figure 4 for a depiction of Fi). To non-dimen-
sionalize Fi, we use the length scale L we have already introduced—the repulsive fall-off distance—and

consider the quantity Fi
πL2/2

, rescaling Fi by the area of the semicircle of radius L. Finally, to obtain a step

size from this quantity which is physically reasonable, we must enclose it in an increasing function that
behaves like the identity near zero and goes to unity asymptotically so that agents attain maximum
speed of 1 when there is nothing in their way. For this, we take the hyperbolic tangent. Thus for Model
I, the coefficient ρi is given by

(2.7)Model I: ρi = ρi(X ,U) = tanh Fi
πL2/2

.

Model II follows the same reasoning but is based upon ℓi, the length of the segment starting at the
position xi in the direction di to the boundary of the Voronoi cell Vi containing xi (see figure 4). For
Model II, the coefficient ρi is given by

(2.8)Model II: ρi = ρi(X ,U) = tanh ℓiL .

As an important point of clarification, the quantities Fi and ℓi along with their visual representation
(figure 4) do not aim to model a limited field of vision for the population. On the contrary, the VTP
framework assumes that agents have a full 360∘ awareness, Fi and ℓi are just two different ways
to gauge the size of one’s personal space once a direction di has been established. To conclude on
the definition of the VTP model, we remark that equations (2.1–2.8) only effectively depend on the
orientations {ûi(t)} but not on the speeds {‖ui(t)‖}; i.e. agents are ‘speed memoryless’ as they determine
their speed at t + 1 solely by gauging the geometry of their personal Voronoi space and by combining
unitary directions.

2.1.6. Summary of the parameters

To summarize, VTP involves two fundamental control parameters: the alignment coefficient ν and
the repulsive fall-off distance L. The former is dimensionless and determines the relative strength of
alignment ai with respect to the repulsion–homing pair, while the latter is a length scale that specifies
the preferred radius of an agent’s empty personal space. The number of agents n may be tuned but we
confine our study to n between 500 and 1000. All the other ‘weights’ are directly determined by the
local Voronoi geometry, modulo transition functions σ (for the weighting of repulsion with homing),g (for weighting neighbouring agent alignment) and tanh (for speed adjustment in ρi); for the former
two, we made canonical choices (see footnote 3). We note, however, that these transition functions can
be modified to encode constraints proper to specific populations; e.g. the canonical choice we made
for g allows for (although does not enforce) an undisturbed percolation of agents as results show in
§4.2, but a species that is highly sensitive to counterflow can be modelled using g(π) ≃ 1. We note that
there are two additional parameters which have been set to unity by rescaling: the time step and a
characteristic speed intrinsic in our definition of ρi.

4To motivate the di = 0 case, we employ a probabilistic argument. The expected value of V ∩ H(xi,di) for arbitrary xi and

measurable set V  over di from a radially symmetric distribution is half the measure of V . The proof is given in the appendix.
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3. Single-point target in the plane
3.1. Observables
To quantify our simulations in the various regimes, we consider comparable observables in addition to
the angular momentum, namely, the median (relative) radius given byrmed = rmed(X) = median

1 ≤ i ≤ n ‖xi − x̄‖,

where x̄ is the centre of mass of the xi and n = #X . This gives a measure of the size of the swarm
which is insensitive to outliers. We introduce a global pressure defined in terms of the Voronoi diagram,
namely,

P(X) = 1n∑i 1|Vi| ,
where n = #X  and |Vi| is the area of the Voronoi cell containing xi ∈ X  in the diagram generated byX . In the case that |Vi| = ∞, it is understood that 1/|Vi| = 0. This mean reciprocal area is analogous to
pressure in the following way. A back-of-the-envelop calculation (see below) suggests that, under
certain regularity assumptions, if the bounded parts of two Voronoi diagrams fill the same volume,
then the denser configuration, i.e. the one with more generators, has the larger mean reciprocal area
and this relationship is sublinear, being closest to linear when there are many more bounded than

unbounded cells. Moreover, we have the following scaling relationship P(rX) = 1rdP(X) in ℝd. So, we

have an analogue of the familiar proportionality P ∝ n/V  between pressure, number and total volume
(even though we are in an unbounded domain).

The ‘back-of-the-envelop’ calculation suggested above is as follows. Let {Vi}1 ≤ i ≤ n be a Voronoi

diagram in ℝd whose bounded part has total volume V . Without loss of generality, say {Vi}i ≤ n0 are all
and only the bounded cells for some n0 < n. Suppose that the bounded cells are equi-distributed in the
sense that |Vi| = V /n0 for each 1 ≤ i ≤ n0. Of course, this assumption is almost impossibly restrictive but
one can argue that the pressure is stable under small perturbations.5 The pressure is given by

P = 1n∑i 1|Vi| = 1n ∑i ≤ n0

1|Vi| = 1n ∑i ≤ n0

n0V = n0n n0V .

If n0 ∼ n − Cn1/d, as is typical. Then fixing V , we have

PV ∼ (n − Cn1/d)2n = n − O(n1/d),
where the error term O(n1/d) is positive.

3.2. Results

Since the domain ℝ2 with a single-point target is invariant under scaling, one might be tempted to
conclude our choice of the repulsive fall-off distance L is inconsequential.6 While this is not exactly
the case, we set L = 1 for our analysis of the single-point target and refer to the appendix for further
explanation/justification. With L = 1 fixed, we study empirically the long-term evolution of the system
for different numbers of agents n and values of the alignment strength ν. We take as the initial state
uniformly random positions within a square of area n/2 centred about the target point and unit
velocities with uniformly random directions (the initial speed has no effect on the dynamics since the
previous speed is forgotten at each step, cf. §2.1.5). The long-term dynamics are robust to the initial
conditions; we chose a square simply because (pseudo)random points in a square are easily generated.

5Specifically, by first restricting to a sufficiently large closed ball including the bounded part of the Voronoi diagram and change, one

can argue that for any ε small enough, there exists δ > 0 such that if ‖xi − xi′‖ < δ for each i and also xi′ is in the convex hull of the

perturbed points if and only if xi belongs to the convex hull of the original points, then (1 + ε)−1P ≤ P′ ≤ (1 − ε)−1P. The details
are provided in the appendix.
6Simulations on the VTP site for point targets on compact manifolds without boundary do vary L.

11
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231537

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

un
e 

20
24

 

https://jacktisdell.github.io/Voronoi-Topological-Perception/
https://jacktisdell.github.io/Voronoi-Topological-Perception/


The area of n/2 is comparable to the eventual size of the swarm (for a wide range of values of ν) and
so this choice shortens the transient. The choice here which most significantly affects the dynamics
is having the initial configuration centred on the target. Even if this is not so, we have found the
long-term behaviour to be robust but having the target point outside the initial swarm often results in
transient regimes lasting hundreds or thousands of iterations. For both Models I and II, for small ν, the
homing effect drives the swarm into a disc centred on the target and the velocities are uncorrelated.
The equilibrium density of this disc is about where homing and repulsion are balanced and this
depends on the shape of the fall-off function for repulsion. As exemplified in figure 3c, for very largeν, the swarm forms a rolling cluster that itself orbits the target point while individuals make periodic
near passes to the target point (‘near’ relative to the rest of the swarm). Due to the strong alignment,
agents are very nearly aligned at each fixed time.

The intermediate values of ν observe more interesting dynamics. First let us address Model II
in which speed updates depend on the length ℓi; recall equation (2.8). Increasing ν from the lower
extreme, one sees an increase in the angular momentum (with respect to the centre of mass and to
the target) achieved by the swarm (after an initial transient) as the velocities become more correlated.
Enter the pinwheel regime shown in figure 3a. The agents occupy a disc whose centre averages near
the target with roughly uniform density and rotate in the same direction about the target. Agents
on the outer edge of the swarm tend to move faster than others, having relatively long distances
ℓi ahead. Further increasing ν, the centre of the pinwheel becomes unstable and a cavity opens up,
entering the ring regime shown in figure 3b. The rings form robustly after a typical transient of a few
hundred iterations for sufficiently small ν, with the ring diameter increasing with ν for each fixed n.
As previously mentioned, the ring regime gives way to the orbiting cluster regime, figure 3c, for largeν fixed; however, one can coax the swarm into still larger rings at greater values of ν by first lowering
and then gradually increasing ν during the simulation. The stability of these large coerced rings is
unclear.

Model I, in which speed depends on the area of the forward area Fi, exhibits qualitatively different
dynamics in the intermediate ν regime which we refer to as a breathing regime. Here, like Model II,
the swarm forms a vortex about the target (after a short transient) and this vortex is filled for smallν and cavitated for larger ν. Unlike Model I, the size of the vortex is not constant in time. Rather, the
cavity slowly grows over time between intermittent ‘inspiral collapses’; figure 6 shows these periodic
collapses under the observables of median radius rmed and pressure P. The slow growth of the ring
seems in part due to the fact that agents on the outer edge tend to have extremely large (or infinitely
large) forward areas Fi (see figure 4), and so move at nearly top speed, much faster than their inner
neighbours. This speed difference causes the outermost agents to spiral further outward which in turn
enlarges the Voronoi cells and the areas Fi of their inner neighbours, propagating the speed increase
inward. However, as the central cavity grows, so do the Voronoi cells of the innermost agents. The
collapses occur when an agent on the inner edge of the ring deviates towards the centre (e.g. due to
repulsion from an outer neighbour) and, having a large area Fi ahead, deviates significantly. This effect
propagates backward through alignment and the resulting enlargement in the Voronoi cells of trailing
neighbours.

4. The bidirectional hallway
To showcase how our VTP framework naturally incorporates sources and sinks, we address its
predictions in a narrow corridor Ω with two subpopulations looking to enter by each end and exit
through the opposite one while interfering with each other throughout their crossing. Specifically; Ω
is represented by a rectangle of width 1 and large enough length, the number of agents n = n(t) = #Λ(t)
varies since the index set Λ(t) = Λr(t) ∪Λl(t) of all agents inside the hallway is no longer constant in
time and consists of agents Xr = {xi(t)}i ∈ Λr(t) entering by its left edge and targeting its right edge (i.e.
the entire right side represents the target Ti for i ∈ Λr) together with the analogous subpopulationXl = {xi(t)}i ∈ Λl(t) moving from right to left. Note that once an agent enters it can only exit through its
corresponding target as all three other walls repel it. Details of the (stochastic) process governing the
sources are discussed in the appendix.
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4.1. Observables
To quantify the distinct behaviours exhibited by this bidirectional flow, we employ the following
observables:

First the polarization proper to each subpopulation

Sr, l(U) = 1
#Λr, l ∑i ∈ Λr, l ûi .

This is a simple yet efficient order parameter widely used in the literature to measure heading
consensus. Note that 0 ≤ Sr, l ≤ 1 and that we measure it for each subpopulation individually since
the global polarization taken over i ∈ Λ is expected to be systematically small due to the symmetry of

the scenario. We then measure overall polarization with S = 1
2(Sr + Sl).

Better suited to a bounded domain than the pressure P, we use the clustering energy

E(X) =
n ⋅ 18 3
5 |Ω|2 ∑i ∈ Λ Vi‖x − xi‖2dx,

to infer the overall spatial distribution of agents. As opposed to the Voronoi pressure from §3.1, this
function measures the variances of {Vi}i ∈ Λ with respect to {xi}i ∈ Λ and thus, as agents are ‘better
centred’ within their own Voronoi regions, the value of E decreases. Although this quantity arises
frequently apropos of centroidal Voronoi tessellations (see [52]); to our knowledge, it has so far been

absent in the vast literature of collective behaviour. Here, the constant 5 |Ω|2n ⋅ 18 3
 represents the total

variance of n regular hexagons tiling the domain Ω and is just a scaling allowing to compare values
of E as n(t) changes. Moreover, E(X) ≥ 1 for any spatial configuration X . The reader is referred to
Gonzalez et al. [51] for more detail and properties of E.

To quantify percolation, i.e. the extent to which agents of a subpopulation entwine and venture into
the other subpopulation, we define the Voronoi interface lengthI(X) = ∑i ∈ Λr; j ∈ Λl |∂Vi ∩ ∂Vj | ,
which is simply the total Euclidean length of the Voronoi boundaries separating the subpopulations.

Finally, a key structural behaviour that we wish to shed light on is queuing, namely, we wish to
quantify a very specific type of ordered behaviour among agents of the same subpopulation who not
only exhibit orientation consensus and certain spatial cohesion but also ‘align behind each other’
to form lanes oriented along the path towards their common target; this behaviour is anticipated in
confined pedestrian scenarios (see [37,48]) but has also been observed for species in the wild (e.g. [53]).
To this end, we define queuing structures Ξr and Ξl, weighted graphs which inherit part of the topology
from the dual of the Voronoi diagram and also incorporate geometrical features about the current state
(xi,ui)i ∈ Λr, l. Subsequently, an observable Q(Ξr, l) that measures their ‘queuing quality’ is defined.

For the purposes of this discussion, let DT(X) denote the graph dual to the Voronoi diagram
generated by X  and let Dr, l its restrictions to the r, l subpopulations. Note that in general, Dr ≠ DT(Xr).

20
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6000 7000 8000 9000 10000

Figure 6. Example of the breathing regime observed under Model I for a single-point target in the plane. Here, there are n = 700
agents and the alignment strength is ν = 8. The curve (black) is the median radius of all agents (against time), i.e. the median distance
to the centre of mass of the swarm. The secondary curve (green) is the Voronoi pressure. Each is non-dimensionalized with a suitable
power of L (although here L = 1). The initial spike in pressure is clipped for space but the maximum is approximately 60. Click here to
run a corresponding simulation.
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Although any definition making up a reasonable queuing structure is highly subjective and open to
debate, we postulate that the weighted graph Ξr (and its analogous Ξl) needs to verify at least these
four properties to intuitively showcase lane formations:

(i) Ξr is a subgraph of Dr,
(ii) each vertex of Ξr has degree 1 or 2,

(iii) Ξr is a forest, i.e. a (possibly disconnected) acyclic graph,
(iv) if an edge eij of Ξr joins xi and xj, then its weight should be smallest in the case where the

orientations ûi, ûj and homing vectors ĥi, ĥj all coincide.

The intuition behind these requirements is that after identifying each connected component of Ξr, l with
a distinct lane:

(i) two agents are contiguous in a lane only if they are from the same subpopulation and are
Voronoi neighbours (and thus may interact via repulsion and alignment),

(ii) a lane has no singleton vertices and is not ramified,
(iii) a lane does not close on itself,
(iv) we can locally quantify lane edge quality based on three simple geometrical elements; the

orientations of the endpoint agents, their relative position and their homing. The smaller the
weight, the more in sync the pair of agents is towards their common target region.

We refer to the appendix for details on the ad hoc construction of Ξr, l we used in our work below and
stress that there are, in general, many different graphs satisfying these postulates at any given time t.
Results can thus fluctuate as variations of this construction are explored.

At last, let {ℒm}m = 1
M  represent the collection of M lanes composing Ξr (i.e. its connected components),

and then define the queuing quality observable Qr = Q(Ξr) by

Qr = n
#vert(Ξr) 1M ∑m = 1

M weight(ℒm)
#edge(ℒm) 2 ,

where #vert(Ξr) is the number of vertices of the whole queuing structure, Ξr is the number of edges
of the lane ℒm and weight(ℒm) is the total weight of (the edges of) the lane ℒm. Indeed, this quantifies
queuing according to four criteria: number of lanes M, overall number of edges of each lane (i.e.
topological length of lanes), overall weight of each lane and number of agents belonging to Ξr. As
each one of these individual criteria improves while keeping the other three fixed, the value of Qr
decreases. Thus, it is sensible to associate ‘good’ queuing with ever lower values of Qr . We define Ξl
and Ql = Q(Ξl) analogously; the overall queuing quality in the hallway at any given time is then captured

using Q = 1
2(Qr + Ql).

In conclusion, besides the classical polarization, we have introduced observables to measure
clustering, percolation and queuing that take advantage of and very naturally combine the (dual) Voronoi
topology intrinsic to our model with elementary geometric features (position, angles and distances).
We stress that these observables are parameterless and can be computed on any simulated or recorded
data since they are independent of the model’s dynamics. This means that they can be used as ‘metrics’
to quantify differences between qualitative regimes, and, thus, can be used in optimizing a model’s
parameter values to best fit observed data.

4.2. Results
Because n(t) varies, its underlying degree of freedom is best represented by a constant quantity Ls
called the source length scale that accounts for the preferred interpersonal distance of agents entering
the hallway. Specifically, if there is a half disc of radius Ls centred somewhere on the entrance that
is devoid of any agents, there is a large probability that a new agent will enter through that gap.
Thus, the smaller Ls is the larger the influx. Full detail on this stochastic entry process is presented in
the appendix, but we remark that: (i) the inflow rate (in agents per time unit) is not constant and
will diminish as the hallway becomes obstructed near the sources; and (ii) using Ls to quantify inflow
allows for a convenient comparison with the intrinsic repulsion length scale L.
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Consequently, on top of our model’s parameters ν and L, the exogenous quantity Ls also plays a
crucial role in the dynamics. However, we claim that to qualitatively survey the emergent behaviours,
one can categorize ν as either ‘weak’ or ‘strong’ and focus on the pair (L, Ls) to draw a phase diagram
since:

— weak alignment dynamics (0 < ν ≤ 1) are dominated by repulsion and homing, thus L and Ls take
precedence over ν,

— strong alignment (ν ≥ 2) renders the influences of L and Ls harder to predict. As will be presen-
ted below; larger ν values are characterized by the presence of vorticity due to non-negligible
counterflow sheer.

We emphasize that, as opposed to the case Ω = ℝ2 from §3, the now present size and boundary effects
make little to no qualitative difference between using Model I and Model II. In other words, as part of our
observations, we encountered that having a non-negligible agent density on a restricted space produces
very similar outcomes when agents base their speed upon personal forward area Fi or on personal distance
ahead ℓi, i.e. using equation (2.7) versus equation (2.8). For thoroughness, we included the results obtained
with Model II in the appendix but the remainder of §4 will focus on Model I.

4.2.1. Weak alignment

Figure 7 presents the phase diagram (L, Ls) for ν = 1 under several quantities. The maximal number of
agents allowed to enter Ω was set to 1000 at each source and the dynamics evolved over t = 1, …, 1500
iterations. The four observables shown are averaged over the tail t ∈ [500, 1500] to avoid any transient.

When looking at the number of agents that entered and exited by the time tmax = 1500, a clear
bifurcation line γ1500 emerges, where on one side the inflow is large enough (Ls small enough) to
produce a complete occlusion of the hallway, and on the other side we see a full crossing of Ω since
(almost) all agents having entered manage to exit through their respective target. The bifurcation line
was numerically found to be

γ1500: Ls = 1.93 L + 1.7 ⋅ 10−3

Remarkably, γ1500 also signals a sharp transition under each of the four observables we defined in §4.1;
clearly the non-trivial dynamics are found over Ls ≥ γ1500 where large polarization S and low clusteringE indicate long-lasting and orderly migration uniformly distributed in space.

Furthermore, over the same region, percolation I decreases with Ls while the overall queuing Q is
optimal when closest to γ1500 and increases again as we stray away from the bifurcation. The latter
increase in Q is to be expected since our alignment components {ai} (equation 2.4) only consider
orientation and not position; thus according to this modelling choice, as the density in the hallway
decreases (increase in Ls), agents are no longer prompt to press together and organize in lanes.
Conversely, the smooth gradient of Q we observe above γ1500 in figure 7 comes to validate our
definitions for Ξr, l and Q as being sensible constructions of what can intuitively be considered queuing.

Note that the measurements made for weak alignment are robust under the change of the random
generator of the entry process.

At last, since our simulations are carried out in finite time and with finite maximal number of agents
entering Ω, the bifurcation we measured may very well change with either quantity. Specifically, while
the transition curve from complete occlusion to full migration can only move upwards in the phase
diagram as we increase the time evolution of the dynamics; we conjecture that, as tmax ∞ and with
an infinite number of agents at disposal, there exists a limiting curve γ∞ representing the ‘true’ critical
bifurcation between eventual occlusion and sustained migration.

We conclude on weak alignment with four specific regimes I–IV produced with L = 0.0833 (the
smallest L value shown in figures 7 and 8); their main characteristics are listed below and the ani-
mations of their time evolution are found in the Github site (click on the regime labels below for the
corresponding simulation):

— Regime I. Here Ls = 0.1875 is above the theoretical γ∞ and shows a large sustained percolation
from the beginning, we are in the optimal queuing region (lowest Q values).
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— Regime II. Very similar to Regime I in the long term with the difference that Ls = 0.1750 being
slightly smaller (larger influx) forces a turbulent transient before a long-lasting equilibrium with
great queuing is established.

— Regime III. Here Ls = 0.1687 is found between γ1500 and γ∞, meaning that a full occlusion
eventually settles sometime after tmax = 1500. Nonetheless, for t ≤ tmax we see an interesting
mixture of percolation, queuing and turbulence.

— Regime IV. Ls ≪ γ1500 produces a trivial regime where full occlusion settles in very fast and no
interesting formations emerge.

Note that, by changing L we obtain similar qualitative behaviours as above provided Ls is found
in the corresponding regions, i.e. the behaviours remain comparable but with a more or less densely
populated corridor.

4.2.2. Strong alignment

Compared with weak alignment, the case ν ≥ 2 exhibits dynamics that are not as predictable. While
the two extreme cases, i.e. Ls sufficiently large and sufficiently small, still produce steady unobstructed
migrations and full obstructions, respectively; the transition from one to the other is quite blurry and
significantly richer in dynamics thanks to the sheering effects capable of producing a large amounts of
vorticity.

Figure 8 shows the (L, Ls) phase diagram for ν = 2, where the maximal number of agents allowed
to enter Ω was set to 1500 at each source and the dynamics evolved again over t = 1, …, 1500. There a
dashed grey line indicates where the blurry transition away from the steady migration region begins.
We remark for the sake of thoroughness that the data were found to be robust under the random entry
generator of agents for the region above the grey line but not below it.

Although lacking a well-established and robust region in the phase diagram, we have identified one
persistent emergent behaviour famously known in the literature (see [54]):

— Regime V. Each subpopulation flows on respective sides of the corridor creating almost no
percolation and an interface between them along the length of the hallway.

This regime is shown in figure 2b; it reminds of a separated two-phase fluid flow along a pipe.
To show the reader other observed behaviours, the Github site also contains these regimes:
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Figure 7. The (L, Ls) phase diagram for Model I in the bidirectional corridor with weak alignment ν = 1: the length scale L for repulsion
and the preferred empty length scale at the sources Ls are at play (resolution of 65 × 65 points). (Left) The number of agents having
entered and those having completed their crossing by the time tmax = 1500, a sharp bifurcation between full occlusion and sustained
migration is marked by the line γ1500: Ls = 1.93L + 1.7·10−3 (Centre and right) The observables I,Q,E and S and (percolation, overall
queuing quality, clustering and overall polarization) from §4.1 are averaged over the time tail t ∈ [500, 1500]. Remarkably, the same
line γ1500 shows a clear phase transition under each of our four observables. The region LS ≥ γ1500 is characterized by the same
number of entering and exiting agents as well as small E and large I; this translates to long-lasting sustained migrations with agents
uniformly distributed. Moreover, the smooth increase of Q away from γ1500 comes to further validate our postulates for the weighted
graphs Ξr,l as producing a sensible notion for queuing.
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— Regime VI. With ν = 2, one subpopulation overcomes and manages to split the flow of the other
in two; thus creating two interfaces along the length of the corridor. Here the (L, Ls) values are in
the blurry transition region showcased in figure 8.

— Regime VII. With ν = 5, vorticity completely dominates. Visually, this more resembles the
growing and collapsing of mills in §3 than an ordered flow.

To conclude with the bidirectional corridor we remark that although the orientation of agents can be
rather noisy when clustered together due to the nature of the repulsion components r̂i, the dynamics
do average out over medium time scales and avoid the ‘freezing by heating’ effect known to disrupt all
lane formation when noise is too great (see [55]).

5. Concluding remarks and future directions
We summarize our two main contributions:

— We present a model for the collective behaviour of agents based entirely on exploiting the
local Voronoi topology (a natural notion of personal space) and geometry to synthesize three
components—repulsion, homing and alignment. We show how this simple model can, with at
most two controlling parameters, exhibit a variety of collective behaviours in different scenarios
that can be visually explored in the Github site7: rotating pinwheels, steady and breathing rings,
different types of steady and ‘chaotic’ migrations across a hallway (in particular, formation of
queues), highly polarized regimes with general velocity consensus, jamitons (i.e. stop-and-go
waves) and full crystallization.

— We introduce and present several novel observables based entirely on the Voronoi diagram to
quantify certain generic collective behaviours. These observables, decoupled from the dynamics,
can be applied to any discrete agent-based model or to empirical data.

The numerical implementation of the VTP model is particularly simple in two dimensions. Indeed,
simulations can be run and viewed in real time. The model and observables can easily be implemented
in three dimensions as all the components have natural generalizations in three dimensions; the only
caveat is that the Voronoi connectivity (Delaunay graph) is computationally expensive. Nevertheless,
software is available.

7https://jacktisdell.github.io/Voronoi-Topological-Perception
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Figure 8. The (L, Ls) phase diagram for Model I on the bidirectional hallway under strong alignment ν = 2: repulsive length scale L
versus the preferred empty length scale at the sources Ls (resolution of 65 × 65 points). (Left) The number of agents having entered
and those having completed their crossing by the time tmax = 1500 . (Centre and right) The percolation, queuing, clustering and
polarization observables (I,Q,E and S) averaged over the time period t ∈ [500, 1500]. The transition between steady unobstructed
migrations and full obstruction of the hallway is quite blurry as opposed to its sharp counterpart for the case ν = 1 shown in figure 7.
The region of steady unobstructed migration (i.e. small L and large Ls ) that is qualitatively similar to its counterpart for ν = 1 is found
above the dashed grey line Ls = 2.58L – 3.7 × 10−2; there the data are robust under change in the random generator of the agent’s
entry. On the other hand, below the grey line the dynamics are rather unpredictable and showcase important vorticity.
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While this is beyond the scope of the present work, a natural question to address is the extent one
can use VTP to study the collective behaviour of a particular biological system. Moreover, it would be
instructive to present a comparison of VTP with other models and a comparison with empirical data.8

Here, we remark that in addition to the controlling parameters ν and L, there are two unexplored
degrees of freedom: (i) the structure of the function σ for repulsion weighting; and (ii) the function g
for weighting neighbouring agent alignment. In both cases, we made canonical choices and verified
the numerical stability with respect to these choices. However, one could tailor these, perhaps with
data, to particular systems. For example, one could allow σ to eventually become negative, capturing
attraction/aggregation at larger length scales. One could also explore the effects of the function ρ for
speed adjustment.

We further emphasize that with minimal modifications the model can be applied to an extremely
broad class of situations. With no modification whatsoever, the model as presented here allows for
(i) any convex domain with or without boundary and (ii) arbitrarily many distinct classes of agents
seeking distinct targets (each of which can be any subset of the domain). With minimal modification,
our model can be made to (iii) include sources and sinks of agents (as in §4.2) and (iv) support
non-convex domains so as to include obstacles (interior walls, pillars, …) in the environment. Such
obstacles can be viewed as ‘holes’ or ‘inlets’ in the domain. The necessary modification to the model for
such domains has to do with the Euclidean distance. A metric can be defined which is consistent with
our assumptions for agents’ perception, and whose Voronoi diagram remains the natural fundamental
structure upon which to construct VTP. While the modification is simple and natural, it does present
certain computational difficulties in running simulations and this is the subject of current work. This
raises the broader issue of constructing different metrics with which to build the Voronoi diagram.
Voronoi diagrams in arbitrary metrics are much less well understood and computational methods
involving them are lacking. Nonetheless, the question of determining the ‘right’ metric for a given
set-up under VTP is intriguing.

Three other possible generalizations are as follows: (i) the alignment ai of a population with higher
situational awareness can be computed within a greater Voronoi radius, i.e. neighbours of neighbours,
neighbours of neighbours of neighbours and so on. This can be implemented without a significant
increase in computational complexity as one needs only compute powers of the already obtained
adjacency matrix. Moreover, this property need not be the same among all agents. Indeed one might
introduce variety among the agents both with respect to alignment and repulsion. (ii) Limited vision
of the target regions can be modelled within the topological framework by allowing non-zero homing
only when the target region is with some fixed number of Voronoi cells. We remark that the notion
of topological radii naturally allows the integration of a component of attraction for aggregation in a
more classical zone-based context. Specifically, alignment and attraction can act over concentric ‘layers’
having increasing Voronoi radii. (iii) The original VTP model as well as its possible extensions can be
brought to heterogeneous crowds where agents act and respond differently to stimuli. An important
example is when only a fraction of ‘active’ agents are mindful of their targets; very much like the
effective leadership analysis performed in [30], the amount of target knowledge transferred to ‘passive’
agents can be studied to test the relevance of the VTP framework in the context of panic crowd
dynamics.
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