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Abstract. We present a strategy for proving an asymptotic upper bound on

the number of defects (non-hexagonal Voronoi cells) in the n generator optimal
quantizer on a closed surface (i.e., compact 2-manifold without boundary).

The program is based upon a general lower bound on the optimal quantization

error and related upper bounds for the Löschian numbers n (the norms of
the Eisenstein integers) based upon the Goldberg-Coxeter construction. A

gap lemma is used to reduce the asymptotics of the number of defects to

precisely the asymptotics for the gaps between Löschian numbers. We apply
this strategy on the hexagonal torus and prove that the number of defects is

at most O(n1/4)—strictly fewer than surfaces with boundary—and conjecture

(based upon the number-theoretic Löschian gap conjecture) that it is in fact
O(logn). Incidentally, the method also yields a related upper bound on the

variance of the areas of the Voronoi cells. We show further that the bound
on the number of defects holds in a neighborhood of the optimizers. Finally,

we remark on the remaining issues for implementation on the 2-sphere.

1. Introduction

Finding the optimal way to quantize a continuous distribution over a domain
or manifold into a fixed number of points falls under the broad class of problems
referred to as Optimal Quantization. These types of problems tend to be highly non-
local and are related to the crystallization conjecture in mathematical physics ([3,
4]). Our interest here entails the minimization of energy functionals (quantization
errors) which exhibit a type of semi-locality as they can be defined in terms of
the “neighborhoods” of each point, for some suitable notion of “neighborhood”. A
natural approach along these lines is to take as the total energy the sum of individual
energies of the Voronoi cells of each point in the tessellation they generate. Indeed,
this is precisely what one obtains whenever one defines an energy density (whose
integral is the energy) that depends only on the nearest point—an obvious attempt
toward semi-locality. To this end, we investigate for each n, the variational problem

(1) minimize E(Y ) =

∫
M

min
y∈Y

%M(x, y)r dσM(x) over all Y ⊂M with |Y | ≤ n,

where M is some compact surface (a Riemannian 2-manifold, to be precise), %M
and σM are its induced distance and surface measure, and r > 0. We refer to E(Y )
as the quantization error (with respect to exponent r) in quantizing the measure
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2 ON THE NUMBER OF DEFECTS IN OPTIMAL QUANTIZERS

dσM(x) by the discrete set Y . As mentioned above, this defining integral splits
into the sum over Voronoi cells:

E(Y ) =

∫
M

min
y
%M(x, y)r dσM(x) =

∑
y

∫
Dy

%M(x, y)r dσM(x)

where Dy is the Voronoi cell containing y in the diagram generated by Y . Thus,
the Voronoi diagrams of solutions and near solutions are of central interest for this
class of problems. In this context, optimal quantization generalizes the problem of
finding the optimal centroidal Voronoi tessellation when r = 2 ([8]). These problems
are also directly linked to semi-discrete optimal transport (see for example, [5]).

There has been significant work, particularly in two dimensions, on the asymp-
totic behaviour of solutions as the number of generating points n tends to infinity.
First off, in Euclidean domains a well-known conjecture attributed to Gersho [10]
addresses the periodic nature of the configuration with least quantization error (al-
ternatively, the centroidal Voronoi tessellation with lowest energy). It asserts that
there exists a polytope V (not depending on r) which tiles Euclidean space such that
all interior Voronoi cells in the optimal configuration are asymptotically congruent
scaled copies of V . In two dimensions (where the conjecture is fully resolved), the
optimal polytope V is a regular hexagon, corresponding to an optimal placement of
points on a triangular lattice. In dimension three, the optimal polytope V is con-
jectured to be the truncated octahedron, corresponding to an optimal placement of
points on a BCC (body centered cubic) lattice (see for example, [2, 9, 7]). Voronoi
cells which include the boundary are of course irregular, the number of which in
two dimensions is O(

√
n).

Thanks to the seminal work of Gruber, the asymptotic emergence of the reg-
ular hexagonal tiling in two dimensions is totally generic. Indeed, for essentially
any compact Riemannian 2-manifold and a broad class of functions f , the Voronoi
cells tend toward nearly congruent regular hexagons (asymptotically Euclidean) ex-
cept for a vanishingly small proportion—i.e., o(n) many—of possibly non-hexagonal
cells. We refer the reader to Gruber [14, 15] for the fully general results, but we
will recall in Section 2.1 the special cases that apply to our problem.

In this article, we consider domains which are compact 2-manifolds without
boundary and address the asymptotics for the number of non-hexagons in the op-
timal configuration. Borrowing from crystallography (see for example, [6, 17, 16,
21, 18, 19]), let us make the following definition:

Definition. A (topological) defect in a quantizer Y is a non-hexagonal Voronoi
cell. We denote the number of such defects by def(Y ).

We remark that from a mathematical point of view, the issue of defects in the
optimal quantizers (and in crystallography in general) is largely open. Clearly, the
O(
√
n) many defects in the planar Euclidean case is a tighter bound than Gruber’s

general o(n). It’s also the optimal result in that case, the solutions are always
well-distributed throughout the domain and so there must be, up to a constant
factor, at least

√
n many defects due to boundary effects alone. This invites the

main question:

Question. On a closed surface, do energy minimizers have strictly fewer than
O(
√
n) many defects and if so, how much fewer?
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Here we present a strategy to answer this question in the affirmative, and more-
over produce quantitative upper bounds on the number of defects. The program is
based upon a general lower bound on the optimal quantization error (the energy)
and related upper bounds for Löschian numbers n (the norms of the Eisenstein
integers) realized using the Goldberg-Coxeter construction. A gap lemma is used
to reduce the asymptotics of the number of defects (for arbitrary n) to precisely the
asymptotics for the gaps between Löschian numbers. Whereas, our ultimate goal
is the application on the 2-sphere, here we complete the program for the hexagonal
torus; the simplest closed surface for which both Gruber’s results and the Goldberg-
Coxeter construction apply directly. It’s important to understand that, nonetheless,
the problem is non-trivial on the hexagonal torus for this surface does not admit
regular hexagonal tilings except for Löschian numbers n, while the asymptotically
optimal quantization problem concerns arbitrary (large) n. We prove that the num-
ber of defects is at most O(n1/4)—strictly fewer than surfaces with boundary—and
conjecture (based upon the number-theoretic Löschian gap conjecture) that it is in
fact O(log n). Our method also yields a related upper bound on the variance of
the areas of the Voronoi cells. We show further that the bound on the number of
defects holds in a neighborhood of the optimizers.

All of our results concern arbitrary positive exponent r > 0. Generality aside, we
feel that this choice is insightful even for readers who are only interested in r = 2,
say. Especially when r = 2, one can easily lose sight of the distinct effects due to
the value of r, the 2-dimensionality of the surface, and second order expansions of
various functions. The authors found the general r > 0 perspective enormously
helpful in teasing these apart.

Before proceeding, we wish to underscore and address a possible source of con-
fusion. Namely, the number of defects of the minimal energy n-point configuration
is not to be misconstrued with the minimal number of defects among all n-point
configurations. In fact, for some manifoldsM (including flat tori), it can be shown
that there is a configuration for every sufficiently large n whose Voronoi tessellation
consists entirely of hexagons, hence has no defects. The point is that even if a sur-
face admits configurations for all (large) n whose tessellations have no defects, their
hexagons may be far from regular. But meanwhile, due to the extremely general
results of Gruber, there is a sense in which the energy minimizers tend towards
configurations whose tessellations are almost regular hexagonal tilings. It is this
tension which introduces defects into the minimizers: it is energetically preferable
for a configuration to have as many nearly regular hexagons as possible at the
expense possibly of some non-hexagons. Indeed, we observe this phenomenon nu-
merically (for r = 2). For random initializations in the hexagonal torus for fixed
n, most algorithms almost invariably converge to defect configurations. But even a
state-of-the-art algorithm, MACN (see [12]), which is capable of finding the regu-
lar (global) minimizer for n which permit it, converges to defect configurations for
other n. An example, n = 320 is shown in Figure 1.

As we have stated, our ultimate goal is to apply this program on the 2-sphere and
obtain the same results based upon the Löschian gap conjecture. The remaining
issue is the upper bound constructions for the Löschian n based upon suitable
projections of certain Goldberg polyhedra onto the sphere. The structure of optimal
constructions on the 2-sphere is a fascinating and largely open field and includes
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Figure 1. Best configuration for n = 320 found in a run of MACN.

such problems as Smale’s 7th problem and the Thomson problem on the sphere
(both unsolved in general).

1.1. Outline. To demonstrate our main result, we will derive a lower bound on the
energy minima by direct calculation. We will then provide an exactly corresponding
upper bound along a subsequence by way of an explicit construction (the Goldberg-
Coxeter construction). Finally, using the fact that the energy minima are non-
increasing in n, we will be able to interpolate between the subsequence of tight
upper bounds while accounting for the error. We’ll see that the upper bound we
obtain for all n still matches the lower bound to leading order and it’s in the next-
order difference that the defect structure is revealed. We will also discuss stability
of the number of defects near energy minimizers. The paper is outlined as follows.

• In Section 2, we introduce some basic definitions as well as some key theo-
retical tools.

– We state the special case of Gruber’s results which apply in this setting
and prove the following consequences. (1) The diameter and area of the
Voronoi cells of the minimizers scale like n−1/2 and n−1, respectively,
and there are uniform upper bounds on the number of cells neighboring
any given one and on the number of cells meeting at any one point. (2)
We show that in the flat case1, the average number of Voronoi edges
per cell tends to six as n→∞.

– We define the regular polygon moment µ(a, k), a function which nat-
urally arises in the leading order contribution to the energy minima,
and discuss its relevant properties.

– We provide the “ 1
n +O(e(n)) interpolation lemma”, an elementary but

paramount result. This result allows us later to fill in the gaps between

1The flat case suffices for the results of this paper but we expect this lemma to generalize
readily, in particular to the constant curvature setting.
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the values of n for which our construction gives explicit upper bounds
and estimate the worst case error incurred in doing so.

• Section 3 contains the main body of the argument. We focus on the hexago-
nal torus T and first compute a lower bound for the energy minima. We then
explain the Goldberg-Coxeter construction and relate the resulting tilings
of T to the energy, giving an upper bound on an explicit subsequence. Fi-
nally, the main theorem follows as a consequence of these bounds and the
interpolation lemma.
• In the short Section 4, we discuss the stability of the main result of Section 3,

effectively extending it to a neighborhood of each minimizer whose size we
quantify. The result we obtain is weaker than we believe is possible but
it suffices to rule out certain otherwise plausible pathologies due to the
inherently discontinuous nature of the defect counting map. It also serves
to highlight quantitatively the sensitivity to perturbations of the various
steps of reasoning in the prior sections.
• Finally, in Section 5, we discuss our work in progress adapting this argument

to the 2-sphere.

1.2. Notation. Throughout the paper, we adopt the following notational conven-
tions. M always denotes a (compact orientable) Riemannian 2-manifold with dis-
tance %M : M×M → [0,∞) and surface measure σ = σM both induced by the
Riemannian metric. As in the previous sentence, we typically omit the subscript
M on the surface measure. We typically denote points ofM with lower-case Latin
letters near the end of the alphabet w, x, y, z, . . ., possibly with subscripts or other
decorations zj , y

′, etc. Diameters of sets E ⊂M and open balls in M are denoted
by diamM(E) = supx,y∈E %M(x, y) and B(x, r) = {y ∈ M | %M(x, y) < r}, re-
spectively. Following Section 2, we are interested in the specific setting M = T =

S1×
√
3
2 S

1 of the hexagonal torus and later in more general flat tori Tγ = S1×γS1.
E always denotes the functional defined in (1) with respect to the (implicit)

exponent r. The letter r always denotes the exponent appearing in E . We will
always denote by Yn ⊂M a solution of the minimization problem (1). In particular,
Yn is (without loss of generality) a set of exactly n points. Sometimes, we’ll employ

similar notations, e.g., Y, Ỹn, Yp,q ⊂ M, for finite sets of points not necessarily
minimizers of E (but perhaps related to one Yn). Very often when working with
such a Yn, we will be interested in sums and minima over y ∈ Yn, which in context
we shall denote

∑
y · · · and miny · · · without confusion. The letter n is exclusively

used in this way, the cardinality of the solution Yn under consideration. We are
interested in large n and asymptotic/convergence statements are understood as
n → ∞ unless otherwise stated. We always denote by Dy ⊂ M the (closed)
Voronoi cell of y ∈ Yn in the Voronoi tessellation ofM generated by Yn (as defined
in the next section).

Several objects of central interest are the number of defects def(Yn) in the
Voronoi tessellation of Yn, the variance s2(Yn) = 1

n

∑
y|σ(Dy) − 1

nσ(M)|2 of the

areas of the Voronoi cells, and the set L = {p2 + pq + q2 | p, q ∈ N} of Löschian
numbers2 (equivalently, the norms of the Eisenstein integers).

We adopt the standard definitions for Bachman-Landau “big-O” notations for
asymptotic bounding and domination including O, Ω, Θ, and o. Namely, f(n) =

2https://oeis.org/A003136

https://oeis.org/A003136
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O(g(n)) whenever there is a C > 0 such that f(n) ≤ Cg(n) eventually; f(n) =
Ω(g(n)) if there is a C > 0 such that f(n) ≥ Cg(n) eventually; f(n) = Θ(g(n))
if both f(n) = O(g(n)) and f(n) = Ω(g(n)); and f(n) = o(g(n)) if for all ε > 0,
eventually f(n) ≤ εg(n). Again, these are always understood as n → ∞ unless
otherwise stated. These quantities are non-negative unless otherwise specified, e.g.,
we will sometimes write ±O(e(n)) to mean a quantity between −Ce(n) and +Ce(n)

for some positive constant C. We also write f(n) ∼ g(n) to mean f(n)
g(n) → 1 as

n→∞ (note f ∼ g is strictly stronger than f = Θ(g)).

2. Our toolkit

From a bird’s eye view, so to speak, our arguments employ four essential tools:
Gruber’s results (and some consequences thereof) concerning solutions of the min-
imization problem (1); a paramount function µ(a, k) we call the regular polygon
moment; a means of “filling in the gaps” between asymptotic estimates of non-
increasing functions about which we have only partial information; and the well-
known Goldberg-Coxeter construction. The Goldberg-Coxeter construction is best
explained when we need it so we shall withhold its discussion until the next section.
For now, we remark that the applicability of the Goldberg-Coxeter construction is
what distinguishes the orientable equi-triangulated surfaces. The first three tools,
on the other hand, are totally general and we will discuss them in turn after setting
the stage.

Given a finite set of points Y ⊂M, the (closed) Voronoi cell Dy of y ∈ Y (with
respect to Y ) is

Dy = {x ∈M : %M(x, y) ≤ %M(x, y′) for all y′ ∈ Y },

that is, Dy is the region inM consisting of all points closer to y than to any other
point of Y . A Voronoi edge is a region of overlap between two Voronoi cells and a
Voronoi vertex is a point common to three or more cells. By the degree of a Voronoi
vertex, we mean the number of Voronoi cells incident to it. Distinct y, y′ ∈ Y whose
cells share an edge are said to be Voronoi neighbors. In the flat torus, the Voronoi
cells are always convex polygons and the notions of edge and vertex coincide with
the polygonal notions. The Dirichlet-Voronoi cells tessellate the whole surface in
the sense that their union is M and their interiors are disjoint. The tessellation as
a whole is referred to as the Voronoi tessellation of Y .

2.1. Gruber’s results on optimal configurations and some lemmas. We
now recall some key results of Gruber concerning solutions of the minimization
problem (1). We refer readers to the cited works for the details and the more
general statements.

Theorem 2.1 (Gruber). Let E be the energy functional defined in (1) for any r > 0.
Suppose Yn (with |Yn| = n) attains the minimum E(Yn) for each n = 1, 2, . . . . Then
there are constants C,C ′ > 0 such that

(1) (Ω(n−1/2) uniformly discrete.) %M(y, y′) ≥ C/
√
n for all distinct y, y′ ∈

Yn,
(2) (O(n−1/2) covering radius.) miny∈Yn %M(y, x) ≤ C ′/

√
n for every x ∈M.

We say that Yn satisfying the above two properties is n−1/2-Delone. Furthermore,
if Ỹn with |Ỹn| = n satisfy E(Ỹn) ∼ E(Yn), then
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(3) the sequence Ỹn is asymptotically a regular hexagonal pattern3 of edge length

%n =
√

2σ(M)√
3n

(to borrow Gruber’s terminology) in the sense that there is a

positive sequence εn converging to 0 such that for each y ∈ Ỹn, with at most
o(n) many exceptions, there are six distinct y1, . . . , y6 ∈ Ỹn all distinct from
y such that

B(y, 1.1%n) ∩ Ỹn = {y, y1, . . . , y6}
holds where

%M(y, yj), %M(yj , yj+1) = (1± εn)%n for j = 1, . . . , 6 and y7 = y1.

Here (1± εn)%n denotes a quantity between (1− εn)%n and (1 + εn)%n.

Proof. We refer the reader to [15, Theorem 1] for the Delone properties and to [14,
Theorem 2] for the asymptotic regularity. �

Obviously, property (3) applies to the minimizers Yn themselves and this will be
enough until Section 4 when we study stability.

The n−1/2-Delone property has some immediate consequences we wish to high-
light.

Corollary 2.2. SayM is compact and without boundary. Let Yn as in the previous
theorem and let Dy denote the Voronoi cell of y ∈ Yn with respect to Yn. There
exist constants D±, A±,K, L > 0 not depending on n such that for every y ∈ Yn

D−√
n
≤ diamM(Dy) ≤ D+√

n
,

A−
n
≤ σM(Dy) ≤ A+

n
.

Moreover, each y ∈ Yn has at most K Voronoi neighbors and no more than L
Voronoi cells meet at any vertex.

Remark 2.1. Because M is without boundary, the boundary of each Voronoi cell
Dy is just the union of its Voronoi edges and so there is no ambiguity in referring
to the Voronoi edges of Dy simply as edges. Furthermore, the number of edges
of Dy is, by definition, the number of Voronoi neighbors of y in Yn. Since we are
only concerned here with surfaces without boundary, we will speak interchangeably
of the number of Voronoi neighbors of a given point and the number of (Voronoi)
edges of its cell without further comment.

Proof. The diameter bounds are trivial consequences of the n−1/2-Delone properties
of Yn. The bounds on the area follow from these together with the compactness of
M (assuring bounded curvature) and the fact that M has no boundary.4

3We acknowledge the strangeness of this definition. The 1.1 is ad hoc, any 1 + δ for sufficiently

small δ would work just as well if at the expense of a greater constant in the o(n) Landau symbol.
In the interest of rigor, one might more seriously worry that this definition admits degenerate

“regular hexagons” with y located at the corner of an equilateral triangle of side length %n with

y1, y3, y5 near another corner and y2, y4, y6 near the third. But even if there were such a y, then
its y1, . . . , y6 would themselves fail to have the asymptotically regular hexagonal pattern property
(even allowing for degeneracy) and so this kind of degeneracy can only happen o(n) many times

anyway and all such y can be regarded as among the exceptions.
4The argument works just as well forM with boundary so long as the boundary is sufficiently

regular. In general, one must be careful about situations that affect the usual relationship between
area/volume and radius of balls. E.g., ifM is a region in the plane with piecewise smooth boundary

but having a point where two boundary pieces meet tangentially.
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For the upper bound on the number of edges let C,C ′ > 0 as in Theorem 2.1,
let y ∈ Yn and say y1, . . . , yk are the Voronoi neighbors of y. We know the yj are
at least C/

√
n away from each other and so the balls B(yj , C/2

√
n) are all disjoint.

But also %M(y, yj) ≤ 2C ′/
√
n by the triangle inequality (considering any point

belonging to the edge Dy ∩Dyj ). Thus, all k balls B(yj , C/2
√
n) are contained in

the ball B(y, 2C
′

√
n

+ C
2
√
n

). Since M is compact and without boundary, there are

constants 0 < α ≤ 1 ≤ β such that any ball of sufficiently small radius r has area
between απr2 and βπr2. Thus, if n is large enough,

kαπ
C2

4n
≤

k∑
j=1

σM(B(yj ,
C

2
√
n

)) ≤ σM(B(y, 2C
′+C/2√
n

)) ≤ βπ(2C ′ + C/2)2

n

so k ≤ 4β(2C ′ + C/2)2/αC2.
One argues similarly for the vertex degree bound, supposing v ∈M is a common

vertex of the cells of y1, . . . , yl ∈ Yn and considering appropriate balls. �

An intuitive, but less straightforward, consequence of Theorem 2.1 (which uses
property 3) is the following.

Lemma 2.3. Suppose M is compact, without boundary, and flat5 in the sense that
it is locally isometric to the Euclidean plane. Let Yn as in the previous theorem.
Then the average number of Voronoi edges per cell converges to 6 as n → ∞ and
is at most 6

(
1− χ

n

)
for all n where χ is the Euler characteristic of M.

Remark 2.2. If one is willing to distort Yn, say to Ỹn, then the result trivially
follows for Ỹn by Euler’s polytope formula because one can ensure, while keeping the
distortion within any desired tolerance, that the Voronoi tessellation of Ỹn only has
degree 3 vertices. Indeed, this kind of approach is extremely common when working
with Voronoi tessellations, however, such a move is not suitable here because the
central quantity of interest, the number of defects in the tessellation def(Yn), might
be sensitive even to arbitrarily small distortions in case Yn so happens to be rather
unfortunate, a possibility we cannot prima facie rule out.

Proof. The upper bound of 6−χn follows immediately from Euler’s polytope formula.
Let χ be the Euler characteristic of M, let v, e be the total number of Voronoi
vertices and edges, respectively, let ky be the number of vertices of of the cell Dy,
and let k̄ = 1

n

∑
y ky be the average. Since at least three cells meet at each vertex,

3v ≤
∑
y ky = nk̄. By Euler,

χ = v − e+ n ≤ 1

3
nk̄ − 1

2
nk̄ + n = −1

6
nk̄ + n

and so k̄ ≤ 6
(
1− χ

n

)
.

To obtain a lower bound which will show the convergence to 6, we need to work
harder. Say a Voronoi vertex is of high degree if it has degree > 3 and say a point
y ∈ Yn is nice if it witnesses the regularity property (3) of Theorem 2.1. The idea
is to show that at least one of the cells incident to any high-degree vertex must not

5The flatness assumption is not essential but it makes the proof much more readable than it

would be otherwise. In general, one works in Riemannian normal coordinates and in neighbor-

hoods which are small enough that circles, angles, etc. are as close to Euclidean as required. By
compactness, only finitely many charts are necessary and such neighborhoods are uniformly small

across M.
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be nice (intuitively, because it has an acute internal angle at that vertex). Gruber’s
result is that all but o(n) many points are nice, and so we’ll have that at most
o(n) many Voronoi vertices (out of Ω(n) many total vertices) are high degree. The
lemma then follows from an Euler’s polytope formula argument.

Let vd be the total number of vertices of degree d and let v+ =
∑
d≥4 vd = v−v3

be the number of high degree vertices. To make the proof more readable, we have
suppressed the dependence on n in the notations e, v, vd, v

+, k̄, but bear it in mind.
First, let’s see that if v+/v → 0 as n → ∞, then the conclusion of the lemma

follows. By the previous corollary, there is a uniform upper bound L on the vertex
degree for all n. Assuming v+/v → 0, take γ > 0 as small as desired and n large
enough that v+/v ≤ γ/L. Then

nk̄ =
∑
y

ky =
∑
d≥3

dvd = 3v3 +
∑
d≥4

dvd ≤ 3v + Lv+ ≤ (3 + γ)v.

Applying Euler’s polytope formula, we find χ = v − e + n ≥ 1
3+γnk̄ −

1
2nk̄ + n =

−nk̄ 1+γ
6+2γ + n and finally k̄ ≥ 6+2γ

1+γ

(
1− χ

n

)
=
(
6− 4γ

1+γ

)(
1− χ

n

)
. Together with the

upper bound k̄ ≤ 6
(
1− χ

n

)
, we have k̄ → 6 as n→∞.

So we need to show that v+/v → 0, i.e., the proportion of high degree vertices
tends to zero. Observe that Lv ≥

∑
y ky ≥ 3n and so v ≥ 3n

L = Ω(n), hence it

suffices to show v+ = o(n).
By Corollary 2.2, we may assume that n−1/2 is much less than the diameter ofM

so that, in particular, each Voronoi vertex and its neighboring points of Yn lie in a
small region isometric to the Euclidean plane. Suppose w ∈M is a vertex of degree
≥ 4. Then, by definition, there are yw1 , . . . , y

w
l ∈ Yn for l ≥ 4 all equidistant from

w, say at distance Rw = %M(w, ywi ), and there are no points of Yn strictly closer
to w. Let Cw be the (Euclidean) circle centered at w of radius Rw, thus passing
through the ywi . Say that yw1 , . . . , y

w
l are numbered in order as they appear around

one circuit of Cw. They partition Cw into l disjoint arcs, say si is the length of the
arc joining ywi to ywi+1 and assume, without loss of generality, that s1 is the least
among s1, . . . , sl. In particular, s1 cannot exceed a quarter the circumference of Cw
and so %M(yw1 , y

w
2 ) ≤

√
2Rw. Up to some choices which can be made arbitrarily,

the above determines a map w 7→ yw1 .
Recall Theorem 2.1 says that all but o(n) many y ∈ Yn are nice. Our goal is

to prove v+ = o(n) as well. Suppose, toward contradiction, that for some constant
κ > 0, there are infinitely many n for which v+ ≥ κn. For the rest of the proof,
we consider only such n. By the previous corollary, the number of vertices of each
cell is uniformly bounded by a constant K. So by the pigeonhole principle, as w
varies over the v+ ≥ κn many high-degree vertices, the image of the map w 7→ yw1
ranges over at least κn/K distinct points of Yn. So if n is large enough, most of
these (in particular at least one) are nice. Fix any such w with yw1 nice. Having
now fixed w and the ywi , let’s simplify the notation that follows by writing y = yw1
and y′ = yw2 . Again, y and y′ are special among the points of Yn whose cells

contain w for having %M(y, y′) ≤
√

2Rw. By niceness, there are z1, . . . , z6 ∈ Yn
such that Yn ∩B(y, 1.1%n) = {y, z1, . . . , z6} and all the %M(y, zj) and %M(zj , zj+1)
are (1± εn)%n where εn, %n are as in Theorem 2.1 (in particular, εn → 0).

Observe that Rw cannot be too large compared to %n, lest one of the zj lie
in the interior of B(w,Rw). On the other hand, if Rw is too small relative to
%n, then y′ will be so close to y that niceness is violated. We’ll see presently
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that the former forces the latter, thus obtaining a contradiction. Let ε > 0 small
enough that (1 + ε)

√
2/3 < 1. Fix δ > 0 small enough (say 1

1−δ ≤ 1 + ε/2) and,

subsequently, n large enough that 1+εn
1−δ ≤ 1 + ε. Take ϑ > 0 small enough that

cos(π6 +ϑ) ≥ (1−δ)
√
3
2 . Note that ε, δ, and ϑ do not depend on n or w or any other

peculiarities, they are universal constants. Consider the angle αj = ∠zjyzj+1. This
angle is as large as it can possibly be if %M(y, zj) = %M(y, zj+1) = (1− εn)%n and
%M(zj , zj+1) = (1 + εn)%n in which case, sin

αj
2 = 1

2
1+εn
1−εn . Since εn → 0, we can

therefore ensure that αj ≤ α∗ := π
3 + 2ϑ by taking n large enough.

Summarizing so far, each cyclically consecutive pair zj , zj+1 are separated by an
angle of no more than α∗ with respect to y. This puts an upper bound on Rw for
if the interior of B(w,Rw) contains an arc of angle > α∗ of the circle centered at
y of radius (1 + εn)%n, then B(w,Rw) necessarily contains some zj . The extremal
situation, with Rw taking the maximum possible value R∗, is illustrated in Figure 2.
At least one zj lies in the shaded region of the diagram (possibly on its boundary) so

if Rw is any larger, then this region is interior to B(w,Rw). We obtain (1+εn)%n
2R∗ =

cos(α∗/2) = cos(π6 + ϑ) ≥ (1− δ)
√
3
2 and thus Rw ≤ R∗ ≤ 1+εn

1−δ
%n√
3
≤ (1 + ε) %n√

3
.

y

×
w

R∗

(1 + εn)%n(1− εn)%n

α∗

2
α∗

2

Figure 2. Extremal situation near nice y ∈ Yn with high degree
vertex w. By niceness, some point of Yn must lie in the shaded
region (possibly on its boundary). Meanwhile, since w is a vertex
of the cellDy, no point of Yn can lie on the interior of the solid circle
(center w, radius Rw = R∗). This lets us calculate the maximum
possible radius R∗.

Remember that y′ is less than a quarter way around Cw from y, so %M(y, y′) ≤
√

2Rw ≤ (1 + ε)
√

2
3%n. This is definitely ≤ %n, hence y′ is among the zj . But then

%M(y, y′) ≥ (1− εn)%n. So

(1− εn)%n ≤ %M(y, y′) ≤ (1 + ε)

√
2

3
%n

and εn ≥ 1−(1+ε)
√

2
3 > 0, thereby contradicting the fact that εn → 0. Therefore,

there can be no such positive constant κ and so v+ = o(n). Having already shown
that v = Ω(n), this proves the claim that v+/v → 0. �
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2.2. The regular polygon moment µ(a, k). Here we introduce a key function,
the regular polygon moment µ(a, k), and comment on its important properties.

For a > 0 and k an integer ≥ 3, let R(a, k) ⊂ R2 be (the interior of) a regular
k-gon of area a centered at the origin and define

µ(a, k) =

∫
R(a,k)

‖x‖r dx =
k

r
2 + 1

( a

k tan π
k

) r
2+1

∫ π/k

0

1

cosr+2 θ
dθ.

The explicit formula on the right is straightforward to obtain and is perfectly well
defined for non-integer k ≥ 3. Thus, we take this formula as the definition of
µ : (0,∞)× [3,∞)→ R. The polygon moment has the following key properties we
will use freely in our arguments to come.

(1) (Monotonicity in sections.) µ(a, k) is increasing in a for each fixed k (ob-
viously) and decreasing in k (toward the disc limit

∫
‖x‖≤

√
a/π
‖x‖r dx > 0)

for each fixed a.
(2) (Fejes Tóth’s moment lemma.) If P ⊂ R2 is any convex polygonal region

with k sides and area a, then∫
P

‖x‖r dx ≥ µ(k, a),

that is, the ‖·‖r moment of any convex polygon (with respect to any origin
after a translation) is no less than the moment of the regular polygon of
the same area and having the same number of sides. See [23] for a proof.

(3) (Uniform decay as a→ 0 of least eigenvalue of the Hessian.) In [13], Gruber
proves convexity of µ by showing positive definiteness of the Hessian. We
require a strengthening of this result, namely, we want an explicit lower
bound on the least eigenvalue of the Hessian near a = 0 which holds uni-
formly for all k in any given compact interval. We make this precise in the
following lemma.

Lemma 2.4. Let λ0 = λ0(a, k) be the least eigenvalue of the Hessian of µ. For any
K ≥ 3, there are constants εK , CK , C

′
K > 0 such that CKa

r
2+1 ≤ λ0 ≤ C ′Ka

r
2+1 for

all k ∈ [3,K] whenever a < εK .

Remark 2.3. The conclusion of this lemma is a strictly stronger assertion than
merely λ0(a, k) = Θ(a

r
2+1) as a → 0 for each k ∈ [3,K] because we are further

claiming that the same constants εK , CK , C
′
K (depending only on K) witness this

asymptotic relation uniformly for all k ∈ [3,K]. In other words, the constants
CK , C

′
K do the job on the entire rectangle (0, εK ]× [3,K].

Proof. Following Gruber’s calculation6 from [13] in the special case of f(t) = tr,
one finds that the second partial derivatives of µ are of the form

µaa = a
r
2−1A(k), µak = a

r
2B(k), µkk = a

r
2+1C(k)

and the determinant of Hessian is

µaaµkk − µ2
ak = arD(k)

6His “lengthy calculation” on [13, p. 294] has some typos but they are all easily fixed and
the final line is correct, as the reader is welcome to verify. For those who wish to do so, we
mention that the only step he omits which we feel is not immediately clear is, in his notation,

the equality
2a cos π

v
v sin π

v

∫ π/v
0 g′

(
h

cos2 π
v

)
sin2 ψ
cos4 ψ

dψ =
sin π

v
cos π

v
K − I but this is merely an integration by

parts exercise.
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where A,B,C,D are each continuous on [3,∞) and do not depend on a. Further-
more, A and D are strictly positive. (This of course suffices to demonstrate positive
definiteness.)

Now fix K ≥ 3. Letting a∗ =
( inf[3,K] A

sup[3,K]|C|
)1/2

> 0 (where this is understood

as a∗ = +∞ if sup[3,K]|C| = 0), we have that µaa − µkk = a
r
2−1(A − a2C) > 0

whenever a < a∗. Hereafter, assume a < a∗.
Considering the characteristic polynomial of the Hessian of µ, we obtain an

explicit expression for λ0 in terms of the derivatives of µ using the quadratic formula:

2λ0 = (µaa + µkk)−
√

(µaa + µkk)2 − 4(µaaµkk − µ2
ak)

= (µaa + µkk)−
√

(µaa − µkk)2 + 4µ2
ak

= (µaa + µkk)− (µaa − µkk︸ ︷︷ ︸
>0

)

√
1 +

( 2µak
µaa − µkk

)2
= a

r
2−1
[
(A+ a2C)− (A− a2C)

√
1 +

( 2Ba

A− a2C

)2]
Define F : (−a∗, a∗) × [3,K] → R by F (a, k) =

√
1 +

(
2Ba

A−a2C
)2

. Since A > 0, it

follows that F (·, k) is four times continuously differentiable (in fact, analytic) at
a = 0 for each fixed k. By Taylor’s theorem (for functions of one variable), for each
a ∈ [0, a∗/2],

F (a, k) = 1 +
2B2

A2
a2 +

1

4!
Faaaa(ξ, k)a4

for some ξ ∈ (0, a) ⊂ [0, a∗/2] (which may depend on k). Substituting this into the
preceding equation and combining like terms in a yields

2λ0 = a
r
2−1
[

2

A
(AC −B2)a2 − 1

4!
(A− a2C)Faaaa(ξ, k)a4

]
Now, Faaaa is continuous (as a function of two variables), hence bounded on
[0, a∗/2]× [3,K]. Recall, A and C are also continuous. So take

α =
1

4!
sup

(a,k)∈[0,a∗/2]×[3,K]

|A− a2C| · sup
(ξ,k)∈[0,a∗/2]×[3,K]

|Faaaa(ξ, k)| <∞

and note that α depends only on K.
Observe also that AC −B2 is just a rescaling of the determinant of the Hessian,

namely, AC − B2 = a−r(µaaµkk − µ2
ak) = D(k). Recall that D and A are both

strictly positive and continuous on [3,∞) and thus, 0 < β ≤ D
A ≤ γ < ∞ where

β =
inf[3,K]D

sup[3,K] A
and γ =

sup[3,K]D

inf[3,K] A
depend only on K.

In all, we have that

a
r
2−1
(
2βa2 − αa4

)
≤ 2λ0 ≤ a

r
2−1
(
2γa2 + αa4

)
provided a ≤ a∗/2. Finally, if a2 ≤ β/α (where again, this imposes no restriction at
all if it should happen that α = 0), then βa2 ≤ 2βa2−αa4 and 2γa2 +αa4 ≤ 3γa2

and thus 1
2βa

r
2+1 ≤ λ0 ≤ 3

2γa
r
2+1 whenever a ≤ min{a∗/2,

√
β/α}. �
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2.3. Interpolating between partial asymptotic upper bounds. The last tool
we need before moving on to the main results is a means of asymptotically estimat-
ing a function on the natural numbers for which we only have partial information.
Looking ahead a little, we will produce by constructive methods explicit asymp-
totic upper bounds for the minimum E(Yn) but only on a certain infinite family of
values of n, not on all n. Nonetheless, we can use the obvious fact that E(Yn) is
non-increasing as a function of n to “fill in the gaps”, as it were, by appealing to
the following lemma.

To state the lemma, we must introduce the notion of a gap function. For an
unbounded set S of natural numbers, if s ∈ S, write s+ for the next highest element
of S above s, i.e., s+ = minS \ [0, s]. Define

gapS(n) = s+ − s where s ∈ S is such that n ∈ [s, s+).

We’ll say an unbounded set S satisfies the small gap condition if gapS(n) = o(n)
as n→∞.

For an arbitrary set S, the gap function gapS may be very erratic. Sometimes,
it is convenient to consider instead max gapS(n) = maxm≤n gapS(m). Obviously,
max gapS is non-decreasing and gapS ≤ max gapS . Moreover, if gapS ≤ u for some
non-decreasing u, then max gapS ≤ u.

Lemma 2.5 ( 1
n + O(e(n)) interpolation). Let F : N → R+ be a non-increasing

function. Suppose S ⊆ N satisfies the small gap condition and that

F (n) =
1

n
+O(e(n)) for all n ∈ S

for some e : R+ → R+ (the “error function”) such that

(1) e(n) = o(n−1) as n→∞,
(2) e is non-increasing,
(3) e has the following homogeneity property: for all α > 0, there is β > 0 such

that for all sufficiently large n, the inequality e(αn) ≤ βe(n) holds.

Then,

F (n) =
1

n
+O(max(n−2 gapS(n), e(n))) for all n ∈ N.

Moreover, this bound is sharp in the sense that possibly there is a constant C > 0
such that F (n) ≥ 1

n + Cn−1 gapS(n) infinitely often. In other words, under these

hypotheses, one cannot generally attain a o(n−2 gapS(n)) bound.



14 ON THE NUMBER OF DEFECTS IN OPTIMAL QUANTIZERS

Proof. By the small gap condition, assume n is large enough that gapS(n) ≤ n/2.
Let s ∈ S such that n ∈ [s, s+). Then,

F (n) ≤ F (s) since F is non-increasing,

=
1

s
+O(e(s)) since s ∈ S,

=
1

n
+
n− s
sn

+O(e(s))

≤ 1

n
+

gapS(n)

(n− gapS(n))n
+O(e(n− gapS(n)))

bc. n < s+ = s +
gapS(n) and e is non-
increasing,

≤ 1

n
+ 2 · gapS(n)

n2
+O(e(n/2)) since gapS(n) ≤ n/2,

=
1

n
+O(max(n−2 gapS(n), e(n)))

by the homogeneity
property of e.

For the sharpness result, one need only consider the function G given by G(n) =
F (s) for all n ∈ [s, s+), i.e., the extension of F � S which is constant on each
interval [s, s+). One checks that for each n of the form n = s+ − 1, one has

G(n) ≥ 1
n + gapS(n)

n2 . Since there are infinitely many such n and G itself satisfies
the hypotheses on F , this yields a sufficient example. �

Remark 2.4. The lemma as stated above is more general than we will require in
what follows. In particular, on the hexagonal torus, it will turn out that the error
function e is identically zero. Aside from the fact the general proof is elementary, we
feel the more general lemma is worth stating because it is the core of the method.
The problem of producing tight upper bounds on E(Yn) for all n is very difficult
for myriad topological and geometric reasons. The interpolation lemma allows us
to consider only “good” n for which we can exercise tight control over the error, so
long as they do not thin out too much as n→∞.

3. The hexagonal torus

For any lattice Λ in R2, the quotient T = R2/Λ is a flat torus, a parallelogram
with its opposite sides identified, as depicted below. We consider in this section the

so-called hexagonal torus where Λ is spanned by (1, 0) and ( 1
2 ,
√
3
2 ). Two ways of

conceiving of this surface are shown in Figure 3. (The parallelogram is a rhombus
with acute angle π/3.) The arguments that follow generalize to a boarder class of
flat tori with certain aspect ratios.

We now state the main theorem of this section and a more simply stated corollary.
The proof shall be divided into several lemmas.

Theorem 3.1. Let Yn ⊂ T with |Yn| = n be a minimizer of E for each n. Then the
number of defects in Yn is O(gapL (n)) and the variance (i.e., the average squared
deviation from the mean) of the areas of the Voronoi cells is O(n−1 gapL (n)) where
L = {p2 + pq + q2 | p, q ∈ N} is the set of Löschian numbers (and gapL is as in
§2.3).

Corollary 3.2. The minimizer Yn has no more than O(n1/4) many defects and
the variance of the areas of the Voronoi cells is at most O(n−3/4).
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Figure 3. Two equivalent representations of the hexagonal torus.
The name obviously refers to the representation on the left but the
rhombus representation on the right (particularly with side length
1) is more convenient for our purposes. Moreover, our results gen-
eralize to other parallelograms akin to this rhombus as discussed
at the end of the section.

· · ·

Figure 4. Visualization of gapL . The left endpoint of the hori-
zontal axis represents 1 and the base of each square is an interval
between consecutive Löschian numbers. Thus, the upper edges
of the squares (with their left endpoints only) form the graph of

gapL . The curve is the graph of of the upper bound 2
√

6n1/4 + 3.

Proof of corollary. Obviously, assuming Theorem 3.1, it suffices to show gapL (n) =
O(n1/4). We provide an elementary proof adapted from that in [22] of the Bambah-
Chowla theorem (which originally appeared in [1]). A nice generalization (which
includes our case) appears in [20].

First, the set of Löschian numbers is equivalently L = {p2 + 3q2 | p, q ∈ N}
(see for instance [24]). Now, we’ll show that for every real t ≥ 1, there are integers

p, q such that t < p2 + 3q2 < t + 2
√

6t1/4 + 3. Let p, q be the integers satisfying
√
t− 1 < p ≤

√
t and s < q ≤ s+ 1 where s =

√
t−p2
3 . Then

t = p2 + 3s2 < p2 + 3q2 = t− 3s2 + 3q2 ≤ t+ 6s+ 3

and 3s2 = t− p2 < t− (
√
t− 1)2 = 2

√
t− 1 < 2

√
t hence s <

√
2
3 t

1/4.

Now, take any n ≥ 1 and let ` < `+ be the consecutive Löschian numbers for
which ` ≤ n < `+. By the above, taking t = `, there is some Löschian number `′ in
the interval (`, `+2

√
6`1/4+3) and clearly ` < `+ ≤ `′ (since `+ is the least Löschian

number above `). Thus, gapL (n) = `+ − ` < 2
√

6`1/4 + 3 ≤ 2
√

6n1/4 + 3. �

It is speculated that gapL (n) is in fact O(nδ) or even O(log n). Nevertheless, an
upper bound of O(n1/4), being strictly better than O(

√
n), provides an affirmative

answer to the main question in the case of the hexagonal torus.
Before proceeding, we make some remarks on the theorem.
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Remark 3.1. The function gapL (visualized in Figure 4) is positive so O(gapL (n))
is a sensible expression which defines a class of positive functions on N. But ad-
mittedly, gapL is a rather strange function to appear in a big-O expression. In
particular, it is definitely not non-decreasing. In fact, gapL (n) = 1 infinitely often
since p2 + pp+ p2 = 3p2 and (p− 1)2 + (p− 1)(p+ 1) + (p+ 1)2 = 3p2 + 1 for every
p ≥ 1 and similarly, gapL (n) ≤ k2 infinitely often for every k. If one wants a non-
decreasing function, the conclusion of the theorem holds with gapL (n) replaced by
maxm≤n gapL (m) but we encourage the reader to take onboard the result involving
the honest gap function, even if it is a somewhat unorthodox big-O assertion. Just
take care when working with expressions like O(gapL (n)).

Remark 3.2. The fact that gapL is unbounded follows from the well-known fact
|L∩[0,n]|

n ∼ C√
logn

for a constant C as n → ∞, i.e., the asymptotic density of L

is like C/
√

log n, which in turn is a special case of a classical result of Bernays in
his 1912 dissertation. This is the sense in which the average gap between Löschian
numbers below n is proportional to

√
log n. Nota bene, the average gap size below

n is not to be confused with the average over all m ≤ n of the gap containing m,
for the larger gaps of course contain more of these m than each “typical” gap. This
distinction amounts to the average of the side lengths of the squares in the diagram
in Figure 4 versus their average area.

The structure of the proof is as follows. As in the theorem statement, let Yn
denote a minimizer of E having exactly n points.

(1) First, we provide an asymptotic lower bound on E(Yn) whose leading order
term involves regular hexagons and whose next highest order term is related
to the number of defects. The key tools here are the properties of µ(a, k),
detailed in §2.2.

(2) We then give an asymptotic upper bound for E(Yn) along a certain subse-
quence (related to L ) which coincides with the previously obtained lower
bound to first order, thus squeezing the second order term.

(3) Finally, using the fact that E(Yn) is non-increasing in n, we apply the in-
terpolation lemma to “fill in the gaps” between values for which we already
have an upper bound.

Lemma 3.3 (Lower bound). There is a constant α > 0 such that for every λ < 1,
if n is sufficiently large,

E(Yn) ≥ 1

n
r
2
µ(σ(T), 6) +

α

n
r
2+1

(
ns2(Yn) + λ def(Yn)

)
where µ is as in §2.2 and s2(Yn) = 1

n

∑
y|σ(Dy) − σ(T)/n|2 with Dy the Voronoi

cell of y and def(Yn) is the number of defects. (The notation s2 is intentionally sug-
gestive of population variance, although the data σ(Dy) are of course not random.)

Before we give the proof, this lemma warrants some commentary.

Remark 3.3. The second term on the right of the above inequality is not self-
evidently of lower order than the first term but this is indeed so as E(Yn) =
n−r/2µ(σ(T), 6) ± o(n−r/2) (see [14]). The inequality is written in a way that
will be convenient later when comparing with the upper bound.
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Remark 3.4. This lower bound, as stated, is particular to the flat case where we
can apply the moment lemma directly. However, the same lower bound holds to
within ±O(n−

r
2−1) in many other cases. For example, on the 2-sphere, one can

employ gnomonic projections to reduce to the Euclidean setting while controlling
the error. Constant negative curvature surfaces admit analogous projections. In the
non-constant curvature setting, one cannot hope for such projections which take
Voronoi cells to Euclidean polygons, but one still has natural projections where
approximate polygons will do.

Remark 3.5. Note that while this provides a lower bound on minimum energy,
i.e., the energy of the optimal point configuration Yn, it does not necessarily hold
for arbitrary point configurations because the bound itself depends on the point
configuration. Indeed, one can easily construct severe examples Xn having, say,
only quadrilateral cells, so that def(Xn) = n. In this case, the analogous lower
bound is merely E(Xn) = Ω(n−r/2).

Proof. For each y ∈ Yn, let Dy be the Voronoi cell of y with respect to Yn. Recall,
Dy is always a convex polygon. Let ay = σ(Dy) be the area of Dy and let ky
denote the number of edges of Dy. Let ā = 1

n

∑
y ay and k̄ = 1

n

∑
y ky denote their

averages. By Corollary 2.2, the diameter of Dy is O(1/
√
n). In particular, the

periodic structure of the torus has no bearing on distances between points within
any one cell and so Dy can be regarded as a Euclidean planar region by considering
a chart that contains it. In local coordinates covering any one cell, we may replace
%T(x, y) by ‖x − y‖ (the usual Euclidean 2-norm) and the surface measure dσ(x)
by the Lebesgue measure dx without issue, and we shall do so without further
comment.

By the moment lemma,

E(Yn) =
∑
y∈Yn

∫
Dy

‖x− y‖r dx ≥
∑
y

µ(ay, ky).

Taking the first order Taylor expansion of each term about (ā, k̄) with the Lagrange
form of the remainder we obtain

(2)
∑
y

µ(ay, ky) ≥ nµ(ā, k̄) +
1

2
inf

(a,k)∈Rn
λ0(a, k)

∑
y

‖(ay, ky)− (ā, k̄)‖2

where λ0(a, k) is the least eigenvalue of the Hessian of µ at (a, k) and Rn ⊂ R2 is
smallest rectangle that contains all the (ay, ky).

Let’s address the first term on the right of inequality (2). Since the Dy partition
T, we have ā = 1

n

∑
y ay = σ(T)/n. Since the torus has Euler characteristic 0,

Lemma 2.3 yields k̄ ≤ 6. Since µ(a, k) is decreasing in k for fixed a,

(3) nµ(ā, k̄) = nµ
(σ(T)

n
, k̄
)

= n−r/2µ(σ(T), k̄) ≥ n−r/2µ(σ(T), 6).
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We now turn our attention to the second term of (2). Fix θ ∈ (0, 1) as small as
desired. By Lemma 2.3, we may assume n is large enough that |k̄ − 6| ≤ θ whence∑

y

‖(ay, ky)− (ā, k̄)‖2 =
∑
y

|ay − ā|2 +
∑
y

|ky − k̄|2(4)

≥
∑
y

|ay − ā|2 +
∑

y∈Yn, ky 6=6

|ky − k̄|2

≥
∑
y

|ay − ā|2 +
∑

y∈Yn, ky 6=6

(|ky − 6| − |6− k̄|)2

≥ ns2(Yn) + (1− θ)2 def(Yn)

where def(Yn) is the number of defects (non-hexagonal cells).
Lastly, let’s consider the eigenvalue. Taking constants A± and K as in Corol-

lary 2.2 so that A−
n ≤ ay ≤ A+

n and ky ≤ K for all y ∈ Yn, we obtain Rn ⊆
[A−n , A+

n ]× [3,K]. Then, taking εK , CK > 0 as in Lemma 2.4, we may assume n is
large enough that A+/n < εK and so

(5) inf
Rn

λ0 ≥ inf
[
A−
n ,

A+
n ]×[3,K]

λ0 ≥ inf
[
A−
n ,

A+
n ]×[3,K]

CKa
r
2+1 ≥

CKA
r
2+1
−

n
r
2+1

.

Substituting inequalities (3), (4), (5) into (2) yields the result (with constants

α = CKA
r/2+1
− and λ = (1− θ)2). �

Lemma 3.4 (Upper bound via the Goldberg-Coxeter construction). For each p, q ∈
N (not both 0), there is a point configuration Yp,q ⊂ T with

E(Yp,q) =
1

nr/2
µ(σ(T), 6).

where n = |Yp,q| = p2 + pq + q2. Hence E(Yn) ≤ E(Yp,q) for all such n where Yn is
the minimizer.

Proof. The following construction is illustrated for (p, q) = (2, 1) in Figure 5. Let

Λ ⊂ R2 be the lattice spanned by ~u = (1, 0) and ~v = ( 1
2 ,
√
3
2 ). For p, q ∈ N not

both zero, let s2 = p2 + pq + q2 and let ∆p,q be the closed equilateral triangular
region (of side length 1) in the plane having one vertex at the origin and the other
at 1

s (p~u+ q~v) ∈ 1
sΛ. (Of course, there are two such triangles but it does not matter

which we take.) Divide T into two equilateral triangles, say T1 and T2, of side
length 1 in the obvious way and assign them consistent orientations (since T itself
is orientable). Identify Ti with ∆p,q, call the identification fTi : ∆p,q → Ti, such
that fi preserves orientation. In other words, the identifications fTi are such that
the orientations of the images are consistent. Finally, set Yp,q =

⋃
i fTi(

1
sΛ∩∆p,q).

Since 1
sΛ is invariant under the rotations of ∆p,q, it follows that Yp,q does not

depend on which particular isometries fTi are used in the construction, since they
are related to each other by a rotation of ∆p,q. (Notice also that the reflection of
Yp,q is none other than Yq,p so it makes no difference which orientation we pick for
T or which of the two possible triangles in the plane we took ∆p,q to be, the same
set of patterns Yp,q are witnessed as we vary p, q ∈ N.)

The Voronoi tessellation of Yp,q consists of n = |Yp,q| congruent regular hexagons.
(One way to see that they are all congruent regular hexagons is to note the transla-
tion invariance of the construction. One can cut and glue the rhombus representing
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p

qs

Figure 5. The Goldberg-Coxeter construction for (p, q) = (2, 1)
yields the point configuration Y2,1 ⊂ T with n = |Y2,1| = 7
whose Voronoi tessellation is the well-known tiling of T by seven
congruent regular hexagons. (In the proof, we scale by 1/s so
that the rhombus is congruent for all p, q.) The area of each of
the two large triangles (with solid edges) is clearly s2 times that
of each small dashed triangle, hence the number of hexagons is
2s2 · 3/6 = s2 = p2 + pq + q2 (the total number of small trian-
gles within the rhombus times the number of vertices per triangle
divided by six since each hexagon shares the vertices of six trian-
gles).

the torus so as to view any desired point of Yp,q as away from the “boundary”.)
It remains to show that n = p2 + pq + q2. Consider the triangulation dual to the
Voronoi tessellation. This is simply the image of the triangulation of the plane
with vertex set 1

sΛ by small equilateral triangles of side length 1/s. Since ∆p,q is

an equilateral triangle of side length 1, it contains exactly s2 small triangles in total
(whether or not some are only partly inside ∆p,q). So the image in T = T1∪T2 con-
tains exactly 2s2 small triangles whose vertices form Yp,q. Each such small triangle
has exactly three vertices and each vertex is shared by exactly six small triangles
so |Yp,q| = 1

6 · 3 · 2s
2 = s2 = p2 + pq + q2. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let L = {p2 + pq + q2 | p, q ∈ N} be the set of Löschian
numbers, as in the theorem statement, and let S = {p2 | p ∈ N} be the set of
squares. Obviously, S ⊆ L , so gapL ≤ gapS (as functions on N). Thus,

gapL (n) ≤ gapS(n) = (b
√
nc+ 1)2 − b

√
nc2 = 2b

√
nc+ 1 = o(n)

so L satisfies the small gap condition. Therefore, applying Lemma 2.5 with

F (n) = n
r
2
−1

µ(σ(T),6)E(Yn) and e = 0 to interpolate the partial upper bound obtained
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in Lemma 3.4 yields

E(Yn) ≤ 1

nr/2
µ(σ(T), 6) +O

( 1

n
r
2+1

gapL (n)
)
.

In light of the lower bound from Lemma 3.3 taking λ = 1
2 say, it must be that

ns2(Yn) + 1
2 def(Yn) = O(gapL (n)). Both these terms are non-negative, so the

bound holds for each term individually, i.e., def(Yn) = O(gapL (n)) and s2(Yn) =
O(n−1 gapL (n)). �

An important point here is the crucial role played by the binary quadratic form
p2+pq+q2. In particular, the authors first considered only the more obvious tessel-
lations Yp,0 arising in the q = 0 case. These tessellations are “aligned”, so to speak,
with the torus itself and it is quite transparent that one can partition T into p2 many
congruent regular hexagons (up to a constant factor). The problem is that the val-
ues n = p2 are too sparse in N, they thin out too rapidly. Namely, gap{p2|p∈N}(n) =

Θ(
√
n) and the interpolation lemma only gives E(Yn) ≤ 1

nr/2
µ(σ(T), 6) +O(n−

r+1
2 )

from which we can conclude only that def(Yn) = O(
√
n), a non-trivial result, but

not a strong enough one to answer our main question. Recall, the whole point is to
demonstrate that surfaces without boundary can achieve strictly fewer than O(

√
n)

many defects.
Generalizing the above reasoning, the key observation is that the Goldberg-

Coxeter construction can be carried out on any orientable surface without boundary
that can be obtained by gluing congruent equilateral triangles together along their
edges. Whether or not the lower bound holds on every such surface (to within a
tolerable error) is a delicate matter in general. However, our arguments work just

as well in the special case of flat tori Tγ = S1×γ
√
3
2 S

1 where γ is a positive rational
number. The lower bound argument we gave for the hexagonal torus T = T1 applies
verbatim to Tγ . The upper bound is essentially the same except that we now have
2ab big triangles that make up Tγ where a, b are integers with γ = a/b. Following
the same reasoning as before, the upper bound is obtained for all n ∈ abL . Thus,
the analogue of Theorem 3.1 holds with gapL (n) replaced by gapabL (n). For any
unbounded S ⊆ N and constant k > 0, we can express gapkS in terms of gapS as
gapkS(n) = k · gapS(n/k). It follows that the O(n−1/4) corollary holds for every
Tγ and likewise, if gapL (n) = O(log n), then so is the number of defects in the
optimizer of Tγ .

4. Stability

Here, we demonstrate a certain fairly weak stability result. We do not mount a
detailed investigation, but merely reinforce the main result Theorem 3.1 by show-
ing that it holds in some neighborhood of the minimizer Yn. The worry is that
def(Yn), being integer-valued, is not continuous with respect to perturbations of
Yn, and so might conceivably skyrocket even for arbitrarily small perturbations. In
other words, it might happen that O(gapL (n)) many defects is only attained on
some pathological (e.g., measure zero) set which happens to include the minimiz-
ers Yn. The purpose of this section is to rule out this possibility by showing that
all configurations Ỹn in a sufficiently small open neighborhood of Yn also attain
O(gapL (n)) many defects.

For each n, let δn : Yn → M and write |δn| = maxy∈Yn %M(y, δn(y)). Think
δnYn as a perturbation of Yn by no more than |δn|.
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Theorem 4.1. Let Yn ⊂ T with |Yn| = n be a minimizer of E for each n and let
δn : Yn → T be perturbations as above. The following hold.

(1) For any closed manifold M and for every r > 0, if |δn| = o(n−1/2), then
δnYn satisfy the n−1/2-Delone properties and E(δnYn) ∼ E(Yn).

(2) In the special case of the hexagonal torus M = T, If r ≥ 1 and |δn| =

O(n−3/2) or r < 1 and |δn| = O(n−
1
2−

1
r ), then the number of defects in

δnYn is O(gapL (n)).

Proof. We argue by showing that the argument for Theorem 3.1 generalizes to the
perturbed configurations. The n−1/2-Delone properties are easy. Say C,C ′ > 0 as
in Theorem 2.1 witness the Delone properties for Yn. Since |δn| = o(n−1/2), assume
n is large enough that |δn| ≤ min{C/3

√
n,C ′/

√
n}. Then if y, y′ ∈ Yn are distinct,

%M(δny, δny
′) ≥ %M(y, y′)− %M(y, δny)− %M(y′, δny

′) ≥ C√
n
− 2|δn| = C/3

√
n.

So the sequence δnYn is Ω(n−1/2) uniformly discrete. Take x ∈M, then

min
ỹ∈δnYn

%M(x, ỹ) = min
y∈Yn

%M(x, δny) ≤ min
y∈Yn

%M (x, y) + |δn| ≤ 2C ′/
√
n.

Therefore the sequence δnYn has the O(n−1/2) covering radius property.
That E(δnYn) ∼ E(Yn) is more subtle. First consider the r ≥ 1 case.

0 ≤ E(δnYn)− E(Yn)

=

∫
M

(
min
y′

%M(x, δny
′)r −min

y
%M(x, y)r

)
dσ(x)

=
∑
y

∫
Dy

(
min
y′

%M(x, δny
′)r − %M(x, y)r

)
dσ(x)

≤
∑
y

∫
Dy

(
%M(x, δny)r − %M(x, y)r

)
dσ(x)

=
∑
y

∫
Dy

rξr−1y (%M(x, δny)− %M(x, y)) dσ(x)

where the minima and sums in the above expressions are taken over y, y′ ∈ Yn and,
employing the mean value theorem, each ξy is a number strictly between %M(x, y)
and %M(x, δny) (unless these happen to be the same value, in which case the whole
term vanishes anyway).

Since x ∈ Dy, we find 0 ≤ ξy ≤ max{%M(x, y), %M(x, δny)} ≤ %M(x, y) +

%M(x, δny) ≤ 2%M(x, y) + %M(y, δny) ≤ O(n−1/2) + |δn| = O(n−1/2) (because
Yn has the O(n−1/2) covering radius property). Hence, if r ≥ 1, then ξr−1y =

O(n−
r−1
2 ). The second factor in the integrand might have either sign but clearly

|%M(x, δny)− %M(x, y)| ≤ %M(y, δny) ≤ |δn| so

(6) |E(δnYn)− E(Yn)| ≤
∑
y

∫
Dy

O(n−
r−1
2 ) · |δn| dσ

= O(n−
r−1
2 ) ·

∑
y

σ(Dy) · |δn| = O(n−
r−1
2 )σ(M)|δn| = O(n−

r−1
2 )|δn|.
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Now consider r < 1. For each n and y ∈ Yn, let Ey = B(y, |δn|) ∪ B(δny, |δn|).
Then, excising each Ey, we obtain

0 ≤ E(δnYn)− E(Yn)

≤
∑
y

∫
Dy\Ey

(%M(x, δny)r − %M(x, y)r) dσ(x)

+
∑
y

∫
Dy∩Ey

(%M(x, δny)r − %M(x, y)r) dσ(x)

≤
∑
y

∫
Dy\Ey

rξr−1y (%M(x, δny)− %M(x, y)) dσ(x)

+
∑
y

∫
Dy∩Ey

(%M(x, δny)r + %M(x, y)r) dσ(x)

Since x ∈ Dy, we have %M(x, y) = O(n−1/2) and %M(x, δny) ≤ %M(x, y) +

|δn| = O(n−1/2), so the integrand in the second term is O(n−r/2). Since M
is compact, σ(Ey) = O(|δn|2). Thus, the whole second term of the above is∑
y O(n−r/2)O(|δn|2) = O(n−r/2+1|δn|2).

For the first term, since x 6∈ Ey, we have ξy ≥ min{%M(x, y), %M(x, δny)} ≥ |δn|.
Then, since r < 1, we have∑

y

∫
Dy\Ey

rξr−1y |%M(x, δny)− %M(x, y)| dσ(x) ≤
∑
y

∫
Dy\Ey

r|δn|r−1|δn| dσ(x)

≤ O(|δn|r) ·
∑
n

σ(Dy) = O(|δn|r) · σ(M) = O(|δn|r).

Altogether,

(7) |E(δnYn)− E(Yn)| = O(|δn|r) +O(n−
r
2+1|δn|2)

for r < 1.
Inspecting (6) and (7) we see that for all r > 0, if |δn| = o(n−1/2), then |E(δnYn)−

E(Yn)| = o(n−r/2). Since E(n) = Θ(n−r/2), this gives E(δnYn) ∼ E(Yn) for all such
perturbations δn. This completes the first part of the theorem.

Now consider specifically the hexagonal torusM = T. Notice that Corollary 2.2
has nothing to do with the optima Yn in particular, rather it holds of any point
configurations Ỹn with the n−1/2-Delone property. Thus, it holds equally for the
perturbations δnYn with |δn| = o(1/

√
n). Moreover, since E(δnYn) ∼ E(Yn), it

follows that δnYn has the asymptotically regular hexagonal pattern property of
Theorem 2.1. Together, this means Lemma 2.3 holds for δnYn and Lemma 3.3
holds for all δnYn with |δn| = o(n−1/2).

For r ≥ 1 and |δn| = O(n−3/2), Equation (6), Lemma 3.4, and Lemma 2.5 yield

E(δnYn) ≤ E(Yn) +O(n−r/2−1) ≤ 1

nr/2
µ(σ(T), 6) +O(n−r/2−1 gapL (n)).

Since Lemma 3.3 holds for δnYn, we have def(δnYn) = O(gapL (n)), as we had for
Yn.

For r < 1 and |δn| = O(n−
1
2−

1
r ), Equation (7) yields, E(δnYn) ≤ E(Yn) +

O(n−
r
2−1) + O(n−

r
2−

2
r ) = E(Yn) + O(n−

r
2−1) and the conclusion follows as in the

r ≥ 1 case. �
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Remark 4.1. Let us mention that the argument just given is quite robust. In
particular, it has nothing really to do with the Löschian gaps gapL (n) specifically,
rather it bounds def(δnYn) in terms of the second order contribution to E(Yn),

def(δnYn) ≤ O
(
n
(
nr/2E(Yn)− µ(σ(T), 6)

))
,

and so any future improvement of the second order bound on E(Yn) will carry over

to the |δn| = O(n−
1
2−max{1, 1r }) perturbations.

This result is somewhat unsatisfactory in that O(n−3/2) (and O(n−
1
2−

1
r ) in the

r < 1 case) is much smaller than the Θ(n−1/2) distance between nearby points
of Yn, so we are here considering only very small perturbations. Nonetheless, the
result suffices for the non-pathology claim we set out to show, if crudely.

We find it curious that not until this section has the r < 1 situation behaved any
worse than the intuitively much nicer r ≥ 1 case. Whether the O(n−3/2) for r ≥ 1

or the O(n−
r
2−

1
r ) for r < 1 perturbation bounds can be improved or shown to be

optimal is unclear. We will not endeavour to do so here but we wish to comment
on some of the issues involved, at least in the r ≥ 1 case. Maybe one has the
thought that |δn| = o(n−1/2) should suffice to maintain the asymptotic bound on
the number of defects, since n−1/2 is roughly the separation between nearby points
of the optima Yn. However, it seems consistent with what we know that, infinitely
often, the minima Yn, while having very few defects, might have relatively many
near defects. More precisely, say a Voronoi cell Dy is an ε-near pentagon if it is a
hexagon but exactly one of its sides has length ≤ ε. Sweeping many details under
the rug, for any sequence εn = o(n−1/2), one can use the previous theorem and
some Voronoi tessellation witchcraft to bound the number of εn-near pentagons in
Yn. The basic idea is that there is a sequence of perturbations δn whose size |δn| is
related directly to εn which, in effect, collapses the εn short edge of a non-negligible
proportion of the εn-near pentagons, turning them into genuine pentagons, while
maintaining the number of sides of all other cells. Now, the resulting configurations
will be highly atypical, having many high degree vertices, but the point is merely
to hint at how it might be the case that a relatively small perturbation (o(n−1/2)
but not O(n−3/2)) of the optima could significantly increase the number of defects.
After all, our results on defects place no restrictions on the number of near defects
and Gruber’s asymptotically hexagonal pattern property only bounds them by o(n).
The other trouble when it comes to reasoning about whether such irregular optima
Yn actually obtain is that the only optima we actually have systematic access to
are those for n ∈ L , which are perfectly regular, and indeed should be robust to
o(n−1/2) perturbations.

5. Adapting to the sphere

Our present work concerns the adaptation of these methods to the 2-sphere.
Figure 6 shows an example of a numerically obtained low energy configuration on
the sphere for n = 2500 and r = 2. The toolkit of Section 2 applies equally well
to the spherical case (with suitable modifications to the proof of Lemma 2.3). A
lower bound on the minimum energy can be obtain analogously to Lemma 3.3 by
passing from each Voronoi cell Dy to its gnomonic projection centered at y. The
Voronoi cells are (small) convex spherical polygons so their gnomonic projections
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Figure 6. Example of low energy configuration on the sphere
highlighting defects for n = 2500 and r = 2 obtained by state-
of-the-art numerical methods. This figure is reprinted from [11]
with permission from the author.

are convex Euclidean polygons and the moment lemma applies. The projections
collectively incur an error within O(n−2), which can be tolerated.

Lemma 5.1. Let Yn ⊂ S2 be a minimizer of E with |Yn| = n for each n. Then
there is a constant α such that for every λ < 1,

E(Yn) ≥ 1

n
µ(σ(S2), 6) +

1

n2
(
ns2(Yn) + λ def(Yn)

)
−O(n2).

Proof sketch. The proof is essentially the same as that of Lemma 3.3 but we replace
each (spherical) cell Dy with ϕy(Dy) where ϕy is the gnomonic projection centered
at y. By direct calculation in suitable coordinates, one finds∣∣∣∣∫

Dy

%S2(x, y)r dσ(x)−
∫
ϕy(Dy)

‖x‖r dx
∣∣∣∣ = O(n−

r
2−2).

Since gnomonic projection maps convex spherical polygons to convex Euclidean
polygons (with the same number of sides) we may apply the moment lemma to
each ϕy(Dy). Moreover, the total area of the projected cells is within tolerance of
σ(S2). �

The upper bound, on the other hand, poses a much more serious difficulty.
Obviously, the Goldberg-Coxeter construction does not apply directly since the
sphere is not made up of Euclidean equilateral triangles. The strategy instead
is to carry out the Goldberg-Coxeter construction on the regular icosahedron and
transport the structure to the sphere without creating too great an error. The most
naive attempt, radially projecting the point configuration from the icosahedron to
the sphere fails, the distortion is not sufficiently uniform across the surface. Our
goal is to find a distortion of the icosahedron itself which “cancels out” the distortion
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due to radial projection. A map which achieves this in the manner required turns
out to be a rather tall order.

It’s worth noting that if this program can be carried out successfully, the upper
bounds will be obtained by spherical partitions very closely related (indeed, combi-
natorially equivalent) to the traditional Goldberg polyhedra. (This investigation is
what originally motivated this construction before we realized the comparative sim-
plicity of the toroidal analogue.) Thus, we hope to establish not only a Löschian gap
bound on the spherical topological defects, but more importantly, an understand-
ing of this phenomenon in terms of a family of extremely nice spherical partitions
(essentially Goldberg polyhedra) whose density as n→∞ is related to the Löschian
numbers.
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