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Abstract. We obtain Liouville-type results for solutions to the CR
Yamabe equation in Hn, which extend a result obtained by Jerison and
Lee for solutions in L2+2/n (Hn). We obtain our results under either
pointwise conditions or integral conditions at infinity. In particular,
our results hold for all bounded solutions when n = 2 and solutions
satisfying a pointwise decay assumption when n ≥ 3. The proofs rely
on integral estimates combined with a suitable divergence formula.

1. Introduction and main result

We consider the CR Yamabe equation

4∆bu = n2u
n+2
n in Hn, (1.1)

where Hn = Cn × R is the Heisenberg group and ∆bu := −Reuαα is the
Heisenberg sub-Laplacian (definitions are recalled in Section 2). Jerison and

Lee [11] obtained that the only solutions u ∈ L2+2/n (Hn) to (1.1) are the
functions

u (z, t) =

(
4 Imλ− |µ|2

)n/2∣∣∣t+
√
−1 |z|2 + 〈µ, z〉+ λ

∣∣∣n ∀ (z, t) ∈ Hn, (1.2)

where µ ∈ Cn and λ ∈ C are such that |µ|2 < 4 Imλ. Moreover, these
functions correspond to the extremal functions for the Sobolev inequality
in the Heisenberg group. Before Jerison and Lee established these results
for the Heisenberg group, the Sobolev inequality was first established by
Folland and Stein in [9]; see also Lu [19,20] for higher order inequalities for
more general subelliptic settings.

Garofalo and Vassilev [10] extended Jerison and Lee’s result to groups of
Heisenberg-type and partially symmetric solutions, namely solutions which
are invariant with respect to the action of the orthogonal group in the hor-
izontal layer of the Lie algebra. Due to the lack of invariance of the sub-
Laplacian with respect to the standard reflections about hyperplanes, works
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in the literature have only been able to use moving plane arguments in re-
stricted cases in this setting (see for example Birindelli and Prajapat [1] and
Garofalo and Vassilev [10]). This is in contrast with the situation for the
Yamabe equation in the Euclidean space (see Caffarelli, Gidas and Spruck [2]
and Chen and Li [5]).

In this article, we extend Jerison and Lee’s result to solutions satisfying
either pointwise conditions or integral conditions at infinity. Our first result
is the following:

Theorem 1.1. Let n ≥ 2 and u be a positive solution to (1.1) such that

u (z, t) ≤ C
(
|z|2 + |t|

)−n−2
2 ∀ (z, t) ∈ Hn\ {(0, 0)} (1.3)

for some constant C > 0. Then u is of the form (1.2).

Remark 1.2. Catino, Li, Monticelli and Roncoroni [3] recently posted an
article on arXiv, where they obtained a result in the same direction as The-
orem 1.1. In the case where n = 1, their result provides the remarkable full
classification of solutions to (1.1). In the case where n ≥ 2, they obtain the
result under the assumption that

u (z, t) ≤ C
(
|z|2 + |t|

)−n
2 ∀ (z, t) ∈ Hn\ {(0, 0)}

for some constant C > 0. In a first version of our paper, independently
from [3], we obtained Theorem 1.1 under the assumption that

u (z, t) ≤ C
(
|z|2 + |t|

)−p
∀ (z, t) ∈ Hn\ {(0, 0)}

for some constant C > 0 and p > n(n−2)
2(n−1) . This can be improved to p ≥ n−2

2 .

We point out that to obtain the limit case where p = n−2
2 , we now use an

argument from [3] in Lemma 2.2.

Remark 1.3. The classification of bounded solutions for n = 2 in Theo-
rem 1.1 is potentially useful to obtain a priori estimates near isolated blow-up
points for solutions to Yamabe-type equations in CR manifolds of dimen-
sion five, in a similar way as in the Riemannian setting (see for instance
Schoen [25, 26], Li [13, 14], Chen and Lin [6, 7], Li and Zhu [18], Druet [8],
Marques [22], Li and Zhang [15–17] and Khuri, Marques and Schoen [12]).

Our second result (of which Theorem 1.1 is in fact a corollary) is the
following:

Theorem 1.4. Let n ≥ 2 and u be a positive solution to (1.1) such that∫
BR(0)

uq ≤ CR2 ∀R > 1 (1.4)

for some constants C > 0 and q ∈
(

2n+1
n , 2n+2

n

]
. Then u is of the form (1.2).
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It is interesting to compare (1.4) with the estimate∫
BR(0)

uq ≤ CR2n+2−nq ∀R > 1, (1.5)

which holds for all q ∈
[
0, n+2

n

]
and all positive solutions to (1.1), without

any further assumptions (see Lemma 2.5). Theorem 1.1 follows from Theo-
rem 1.4 by showing that the estimate (1.4) with q = 2n+2

n can be obtained
by putting together the pointwise estimate (1.3) with the integral estimate
(1.5). Theorem 1.4 is more general than Theorem 1.1: it applies to smaller
values of q and solutions which do not satisfy a pointwise decay condition.

We prove Theorems 1.1 and 1.4 in Section 2. The proofs use an approach
based on integral estimates. An approach of this type has recently been
used by Ma and Ou [21] for equations of type (1.1) with subcritical expo-
nents in Hn and Catino, Monticelli and Roncoroni [4] and Ou [24] (see also
Vétois [27]) for the critical p-Laplace equation in Rn. The starting point
of this method is to obtain a suitable divergence formula (see Lemma 2.1).
In our case, this formula is derived from and extends a celebrated formula
introduced and used by Jerison and Lee [11] to characterize the extremal
functions of Sobolev inequalities in the Heisenberg group and the CR Yam-
abe problem. Our extended version of this formula is comparable with the
remarkable Obata-type formula found by Ou [24, Proposition 2.3] in the con-
text of the critical p–Laplace equation in Rn (see also [23] for the original
formula discovered by Obata in his work on the conformal transformations
of the sphere). Once our divergence formula is established, we multiply it by
some cutoff functions, integrate in Hn and estimate some remainder terms
in a series of technical lemmas (see Lemmas 2.2, 2.3, 2.4 and 2.5). By pass-
ing to the limit as the cutoff functions tend to the constant function equal
to 1, we then obtain that both the torsion and Einstein curvature tensors
of the contact form associated with the function u (i.e. u2/nΘ, where Θ is
the standard contact form on Hn) vanish everywhere in Hn, from which, as
in [11], we infer that u must be of the form (1.2).

2. Proofs of Theorems 1.1 and 1.4

This section is devoted to the proofs of Theorems 1.1 and 1.4. Given a
smooth function u in Hn, we denote u0 = ∂tu and for each α ∈ {1, . . . , n},

uα = u,α = Zα (u) := ∂zαu+
√
−1zαu0

and

uα = u,α = Zα (u) := ∂zαu−
√
−1zαu0.

The vector fields {Zα, Zᾱ, ∂t} form a basis of left-invariant vector fields for
the complex Lie algebra of Hn, and they satisfy [Zα, Zᾱ] = −2

√
−1∂t. We

recall that in Hn equipped with its standard contact form, the Levi form is
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given by 2δαβ, and the sub-Laplacian can be written as

∆bu = −Reuαα := −Re
n∑

α=1

Zα (Zα (u)) .

We will write ∂u to indicate the horizontal gradient of u and

BR (0) =

{
(z, t) ∈ Hn :

(
|z|4 + t2

)1/4
< R

}
for the Korányi ball. Throughout this section, we also denote

|Vα|2 :=
n∑

α=1

VαVα, |Sαβ|2 :=
n∑

α,β=1

SαβSαβ and
∣∣Tαβ∣∣2 :=

n∑
α,β=1

TαβTαβ

for all tensors Vα, Sαβ and Tαβ.

We let u be a solution to (1.1). We define

f :=
1

n
lnu− ln 2. (2.1)

It is easy to see that (1.1) can be rewritten as

∆bf = n |∂f |2 + n e2f in Hn. (2.2)

For each α, β ∈ {1, . . . , n}, we define

Dαβ := fαβ − 2fαfβ,

Eαβ := fαβ −
1

n
fγγδαβ,

Dα := Dαβfβ,

Eα := Eαβfβ and

Gα :=
√
−1f0α + gfα,

where

g := |∂f |2 + e2f −
√
−1f0.

Up to some constant factors, Dαβ and Eαβ correspond to the torsion and

Einstein curvature tensors, respectively, of the contact form u2/nΘ, where
Θ is the standard contact form on Hn. We also observe that (2.2) can be
rewritten as

fαα + ng = 0 in Hn. (2.3)

We begin with proving a divergence formula. In the case where m = 0, this
formula is due to Jerison and Lee [11]. The idea of introducing the function
|g|−m with m > 0 in this formula is inspired from a similar and remarkable
idea by Ou [24] in the context of the critical p–Laplace equation in Rn. Our
formula is as follows:
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Lemma 2.1. Let m ∈ [0, 1], n ∈ N and f be a real solution to (2.2). Then

Re
((
e(2n+m−2)f |g|−m

(
g (Dα + Eα)−

√
−1f0 (Dα − 3Eα + 3Gα)

))
α

)
= e(2n+m−2)f |g|−m

(
e2f
(∣∣Dαβ

∣∣2 +
∣∣Eαβ∣∣2)+

∣∣Dαβfγ + Eαγfβ
∣∣2

−
∣∣Dα + Eα

∣∣2 + c1 |Gα + c2Dα + c3Eα|2 + c4 |Dα + c5Eα|2 + c6 |Eα|2
)
,

(2.4)

where

c1 := 3 |g|−2
(
|g|2 −mf2

0

)
,

c2 :=
1

3

1−
2m
√
−1f0

√
|g|2 − f2

0

|g|2 −mf2
0

 ,

c3 := −1

3

1 +
2m
√
−1f0

√
|g|2 − f2

0

|g|2 −mf2
0

 ,

c4 :=
1

3

(
5− 3m+

4m (1−m) f2
0

|g|2 −mf2
0

)
,

c5 :=
(4− 3m) |g|2 −m (2 +m) f2

0 + 2m2 |g|−2 f4
0

(5− 3m) |g|2 −m (1 +m) f2
0

+
2m
√
−1f0

√
|g|2 − f2

0

(
|g|2 −mf2

0

)
|g|2

(
(5− 3m) |g|2 −m (1 +m) f2

0

) and

c6 :=
(3− 2m) |g|2 +m (5− 6m) f2

0

(5− 3m) |g|2 −m (1 +m) f2
0

.

Observe that since 0 ≤ |f0| < |g|, we obtain that for each m ∈ [0, 1],

|g|2 −mf2
0 > 0 and (5− 3m) |g|2 −m (1 +m) f2

0 > 0, hence c1, c2, c3, c4, c5

and c6 are well defined in this case.

Proof of Lemma 2.1. Jerison and Lee’s formula [11, Proposition 4.1] (see
also [21, Proposition 2.1]) gives

Re
((
e2(n−1)f

(
g (Dα + Eα)−

√
−1f0 (Dα − 3Eα + 3Gα)

))
α

)
= e2(n−1)f

(
e2f
(∣∣Dαβ

∣∣2 +
∣∣Eαβ∣∣2)+ |Gα|2 + |Gα +Dα|2 + |Gα − Eα|2

+
∣∣Dαβfγ + Eαγfβ

∣∣2). (2.5)

On the other hand, straightforward computations give

gα = Dα + Eα +Gα and gα = Dα + Eα −Gα + 2gfα,
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which in turn give(
emf |g|−m

)
α

= memf |g|−m
(
fα −

1

2
|g|−2 (g gα + g gα)

)
= −memf |g|−m−2

((
e2f + |∂f |2

) (
Dα + Eα

)
+
√
−1f0Gα

)
.

(2.6)

It follows from (2.5) and (2.6) that

Re
((
e(2n+m−2)f |g|−m

(
g (Dα + Eα)−

√
−1f0 (Dα − 3Eα + 3Gα)

))
α

)
= e(2n+m−2)f |g|−m

(
e2f
(∣∣Dαβ

∣∣2 +
∣∣Eαβ∣∣2)+

∣∣Dαβfγ + Eαγfβ
∣∣2

−
∣∣Dα + Eα

∣∣2 + ψ
)
. (2.7)

where

ψ := |Gα|2 + |Gα +Dα|2 + |Gα − Eα|2 + |Dα + Eα|2

+m |g|−2 Re
(√
−1f0 (Dα − 3Eα + 3Gα)− g (Dα + Eα)

)
×
((

e2f + |∂f |2
) (
Dα + Eα

)
+
√
−1f0Gα

)
= |g|−2

(
3
(
|g|2 −mf2

0

)
|Gα|2 +

(
(2−m) |g|2 +mf2

0

)(
|Dα|2 + |Eα|2

)
+ 2

(
|g|2 −mf2

0

)
Re
(
Gα
(
Dα − Eα

))
− 4mf0

√
|g|2 − f2

0 Im
(
Gα
(
Dα + Eα

))
+ 2

(
(1−m) |g|2 +mf2

0

)
Re
(
DαEα

)
− 4mf0

√
|g|2 − f2

0 Im
(
DαEα

) )
.

By completing the squares, we then obtain

ψ = c1 |Gα + c2Dα + c3Eα|2 + c4 |Dα + c5Eα|2 + c6 |Eα|2 . (2.8)

Finally, by putting together (2.7) and (2.8), we obtain (2.4). �

We now use Lemma 2.1 to prove the following:

Lemma 2.2. Let m ∈ [0, 1), n ∈ N, f be a real solution to (2.2) and ϕ be
a smooth, nonnegative function with compact support in Hn. Then∫

Hn
Afϕ ≤ C

√∫
Hn
e(2n+m−2)f |g|−m

(
e4f + |∂f |4 + f2

0

)
ϕ−1 |∂ϕ|2

×

√∫
∂ϕ6=0

Afϕ (2.9)

for some constant C = C (m) > 0, where

Af := e(2n+m−2)f |g|−m
(
e2f
(∣∣Dαβ

∣∣2 +
∣∣Eαβ∣∣2)+ |Dα|2 + |Eα|2 + |Gα|2

)
.

(2.10)
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Proof of Lemma 2.2. By multiplying (2.4) by ϕ and integrating by parts in
Hn, we obtain∫

Hn
e(2n+m−2)f |g|−m

(
e2f
(∣∣Dαβ

∣∣2 +
∣∣Eαβ∣∣2)+

∣∣Dαβfγ + Eαγfβ
∣∣2

−
∣∣Dα + Eα

∣∣2 + c1 |Gα + c2Dα + c3Eα|2 + c4 |Dα + c5Eα|2 + c6 |Eα|2
)
ϕ

= Re

∫
Hn
e(2n+m−2)f |g|−m

(√
−1f0 (Dα − 3Eα + 3Gα)− g (Dα + Eα)

)
ϕα,

(2.11)

where c1, c2, c3, c4, c5 and c6 are as in Lemma 2.1. We observe that∣∣Dαβfγ + Eαγfβ
∣∣2 =

∣∣Dαβfγ
∣∣2 +DαEα + EαDα +

∣∣Eαβfγ∣∣2
=
∣∣Dαβ

∣∣2 |fγ |2 +DαEα + EαDα +
∣∣Eαβ∣∣2 |fγ |2

≥ |Dα|2 +DαEα + EαDα + |Eα|2

= |Dα + Eα|2 . (2.12)

Moreover, since 0 ≤ m < 1 and 0 ≤ |f0| < |g|, straightforward computations
give

c1 ≥ 3 (1−m) > 0, (2.13)

c4 ≥
5− 3m

3
> 0, (2.14)

c6 ≥
3− 2m

5− 3m
> 0 and (2.15)

|c2|+ |c3|+ |c5| ≤ C (2.16)

for some constant C = C (m) > 0. It follows from (2.13), (2.14), (2.15) and
(2.16) that

c1 |Gα + c2Dα + c3Eα|2 + c4 |Dα + c5Eα|2 + c6 |Eα|2

≥ C
(
|Dα|2 + |Eα|2 + |Gα|2

)
. (2.17)

for some constant C = C (m) > 0. On the other hand, straightforward
estimates together with Cauchy–Schwartz’ and Young’s inequalities give

Re

∫
Hn
e(2n+m−2)f |g|−m

(√
−1f0 (Dα − 3Eα + 3Gα)− g (Dα + Eα)

)
ϕα

≤
∫
Hn
e(2n+m−2)f |g|−m

((
e2f + |∂f |2

)
(|Dα|+ |Eα|)

+ |f0| (2 |Dα|+ 2 |Eα|+ 3 |Gα|)
)
|∂ϕ|

≤
∫
Hn
e(2n+m−2)f |g|−m

(
e2f |∂f |

(∣∣Dαβ

∣∣+
∣∣Eαβ∣∣)+ |∂f |2 (|Dα|+ |Eα|)

+ |f0| (2 |Dα|+ 2 |Eα|+ 3 |Gα|)
)
|∂ϕ|



8 JOSHUA FLYNN AND JÉRÔME VÉTOIS

≤ 1

2

∫
Hn
e(2n+m−2)f |g|−m

((
e2f + |∂f |2

)
ef
(∣∣Dαβ

∣∣+
∣∣Eαβ∣∣)

+ 2 |∂f |2 (|Dα|+ |Eα|) + 2 |f0| (2 |Dα|+ 2 |Eα|+ 3 |Gα|)
)
|∂ϕ|

≤ C

√∫
Hn
e(2n+m−2)f |g|−m

(
e4f + |∂f |4 + f2

0

)
ϕ−1 |∂ϕ|2

×

√∫
∂ϕ 6=0

Afϕ (2.18)

for some constant C > 0 which does not depend on anything. Finally, by
combining (2.11), (2.12), (2.17) and (2.18), we obtain (2.9). �

The next three lemmas will be used to estimates the terms in the right-
hand side of (2.9). First, we prove the following:

Lemma 2.3. Let m ∈ [0, 1], σ ∈ R, ε > 0, n ∈ N, f be a real solution to
(2.1) and ϕ be a smooth, nonnegative function with compact support in Hn.
Then∫

Hn
e(2n+m−2)f |g|−m f2

0ϕ

≤ C
∫
Hn
e(2n+m−2)f |g|−m

(
e4fϕ+ |∂f |4 ϕ+ ϕ−3 |∂ϕ|4 + ε−2ϕ1−2σ

+ ε
(
|Dα|2 + |Eα|2 + |Gα|2

)
ϕ1+σ

)
(2.19)

for some constant C = C (n) > 0.

Proof of Lemma 2.3. By observing that f0α =
√
−1Gα−

√
−1 gfα and using

(2.3) and (2.6), we obtain

Im
((
e(2n+m−2)f |g|−m f0fαϕ

)
α

)
= e(2n+m−2)f |g|−m

(
nf2

0 − e2f |∂f |2 − |∂f |4
)
ϕ

+ Im
(
e(2n+m−2)f |g|−m fα

(
|g|−2 (√−1

(
|g|2 −mf2

0

)
Gα

−mf0

(
e2f + |∂f |2

) (
Dα + Eα

) )
ϕ+ f0ϕα

))
. (2.20)

By integrating (2.20) in Hn, we obtain∫
Hn
e(2n+m−2)f |g|−m f2

0ϕ

=
1

n

(∫
Hn
e(2n+m−2)f |g|−m

(
e2f |∂f |2 + |∂f |4

)
ϕ
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− Im

∫
Hn
e(2n+m−2)f |g|−m fα

(
|g|−2

(√
−1
(
|g|2 −mf2

0

)
Gα

−mf0

(
e2f + |∂f |2

) (
Dα + Eα

) )
ϕ+ f0ϕα

))
. (2.21)

Straightforward estimates together with Young’s inequality give∫
Hn
e(2n+m)f |g|−m |∂f |2 ϕ ≤ 1

2

∫
Hn
e(2n+m−2)f |g|−m

(
e4f + |∂f |4

)
ϕ

(2.22)

and

− Im

∫
Hn
e(2n+m−2)f |g|−m f0fαϕα

≤
∫
Hn
e(2n+m−2)f |g|−m |f0| |∂f | |∂ϕ|

≤ 1

4

∫
Hn
e(2n+m−2)f |g|−m

(
2f2

0ϕ+ |∂f |4 ϕ+ ϕ−3 |∂ϕ|4
)
. (2.23)

In a similar way, we obtain

− Im

∫
Hn
e(2n+m−2)f |g|−m−2 fα

(√
−1
(
|g|2 −mf2

0

)
Gα

−mf0

(
e2f + |∂f |2

) (
Dα + Eα

) )
ϕ

≤
∫
Hn
e(2n+m−2)f |g|−m |∂f | (|Dα|+ |Eα|+ |Gα|)ϕ

≤ 1

4

∫
Hn
e(2n+m−2)f |g|−m

(
3 |∂f |4 ϕ+ 3ε−2ϕ1−2σ

+ 2ε
(
|Dα|2 + |Eα|2 + |Gα|2

)
ϕ1+σ

)
. (2.24)

Finally, by combining (2.21), (2.22), (2.23) and (2.24), we obtain (2.19). �

Now, we prove the following:

Lemma 2.4. Let m ∈ [0, 1], σ ∈ R, ε > 0, n ≥ 2, f be a real solution to
(2.1) and ϕ be a smooth, nonnegative function with compact support in Hn.
Then ∫

Hn
e(2n+m−2)f |g|−m |∂f |4 ϕ

≤ C
∫
Hn
e(2n+m−2)f |g|−m

(
e4fϕ+ ϕ−3 |∂ϕ|4 + ε−2ϕ1−2σ

+ ε
(
|Dα|2 + |Eα|2 + |Gα|2

)
ϕ1+σ

)
(2.25)

for some constant C = C (n) > 0.
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Proof of Lemma 2.4. By using (2.3) and (2.6) together with fαβfαfβ =

fαDα + 2 |∂f |4 and fβαfαfβ = fαEα − g |∂f |2, we obtain

Re
((
e(2n+m−2)f |g|−m |∂f |2 fαϕ

)
α

)
= e(2n+m−2)f |g|−m

(
(n− 1) |∂f |4 − (n+ 1) e2f |∂f |2

)
ϕ

+ Re
(
e(2n+m−2)f |g|−m fα

(
|g|−2

((
|g|2 −me2f |∂f |2 −m |∂f |4

)
×
(
Dα + Eα

)
−m
√
−1 |∂f |2 f0Gα

)
ϕ+ |∂f |2 ϕα

))
. (2.26)

By integrating (2.26) in Hn, we obtain∫
Hn
e(2n+m−2)f |g|−m |∂f |4 ϕ

=
1

n− 1

(
(n+ 1)

∫
Hn
e(2n+m)f |g|−m |∂f |2 ϕ

− Re

∫
Hn
e(2n+m−2)f |g|−m fα

(
|g|−2

((
|g|2 −me2f |∂f |2 −m |∂f |4

)
×
(
Dα + Eα

)
−m
√
−1 |∂f |2 f0Gα

)
ϕ+ |∂f |2 ϕα

))
. (2.27)

For each ρ > 0, straightforward estimates together with Young’s inequality
give∫

Hn
e(2n+m)f |g|−m |∂f |2 ϕ ≤ 1

2

∫
Hn
e(2n+m−2)f |g|−m

(
ρ−1e4f + ρ |∂f |4

)
ϕ

(2.28)

and

− Re

∫
Hn
e(2n+m−2)f |g|−m |∂f |2 fαϕα

≤
∫
Hn
e(2n+m−2)f |g|−m |∂f |3 |∂ϕ|

≤ 1

4

∫
Hn
e(2n+m−2)f |g|−m

(
3ρ |∂f |4 ϕ+ ρ−3ϕ−3 |∂ϕ|4

)
. (2.29)

In a similar way, we obtain

− Re

∫
Hn
e(2n+m−2)f |g|−m−2 fα

((
|g|2 −me2f |∂f |2 −m |∂f |4

) (
Dα + Eα

)
−m
√
−1 |∂f |2 f0Gα

)
ϕ

≤
∫
Hn
e(2n+m−2)f |g|−m |∂f | (|Dα|+ |Eα|+ |Gα|)ϕ
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≤ 1

4

∫
Hn
e(2n+m−2)f |g|−m

(
3ρ |∂f |4 ϕ+ 3ρ−1ε−2ϕ1−2σ

+ 2ε
(
|Dα|2 + |Eα|2 + |Gα|2

)
ϕ1+σ

)
. (2.30)

Finally, by putting together (2.27), (2.28), (2.29) and (2.30), and letting ρ
be small enough, we obtain (2.25). �

Next, we prove the following:

Lemma 2.5. Let R > 1, n ∈ N, r ∈ [0, 2], q ∈ [0, n+ 2] if r = 0, q ∈
[0, n+ 2− r) if r ∈ (0, 2] and f be a real solution to (2.2). Then∫

BR(0)
eqf |∂f |r ≤ CR2n+2−q−r, (2.31)

for some constant C = C (n, q, r) > 0.

Proof of Lemma 2.5. We let η be a smooth cutoff function in Hn such that
η ≡ 1 in B1 (0), η ≡ 0 in Hn\B2 (0) and 0 ≤ η ≤ 1 in B2 (0) \B1 (0). For
each R > 1, we define

ηR (z, t) := η
(
R−1z,R−2t

)
∀ (z, t) ∈ Hn.

For each θ > 1, by using (2.3), we obtain

Re
((
eqffαη

θ
R

)
α

)
= eqf

(
(q − n) |∂f |2 − ne2f

)
ηθR + θeqfηθ−1

R fα (ηR)α .

(2.32)
By integrating (2.32) in Hn, we obtain∫

Hn
eqf
(

(n− q) |∂f |2 + ne2f
)
ηθR = θ

∫
Hn
eqfηθ−1

R fα (ηR)α . (2.33)

For each ρ > 0, straightforward estimates together with Young’s inequality
give∫

Hn
eqfηθ−1

R fα (ηR)α ≤
∫
Hn
eqf |∂f | ηθ−1

R |∂ηR| (2.34)

≤ 1

4ρ

∫
Hn
eqfηθ−2

R |∂ηR|2 + ρ

∫
Hn
eqf |∂f |2 ηθR (2.35)

provided we choose θ > 2. If q > 0, then another application of Young’s
inequality gives∫

Hn
eqfηθ−2

R |∂ηR|2 ≤ Cρ
∫
Hn
ηθ−q−2
R |∂ηR|q+2 + ρ

∫
Hn
e(q+2)fηθR (2.36)

for some constant Cρ = Cρ (q) > 0, provided we choose θ > q+2. Moreover,
straightforward estimates give∫

Hn
ηθ−q−2
R |∂ηR|q+2 ≤ CR2n−q (2.37)

for some constant C = C (n, q) > 0. By choosing ρ small enough and putting
together (2.33), (2.35), (2.36) and (2.37), we obtain (2.31) for q ∈ [0, n)
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when r = 2 and q ∈ [2, n+ 2) when r = 0. In the case where 0 < r < 2 and
2− r ≤ q < n+ 2− r, Hölder’s inequality gives∫

BR(0)
eqf |∂f |r ≤

(∫
BR(0)

e(q+r)f

) 2−r
2
(∫

BR(0)
e(q+r−2)f |∂f |2

) r
2

≤ C
(
R2n+2−q−r) 2−r

2
(
R2n+2−q−r) r2

= CR2n+2−q−r

for some constant C = C (n, q, r) > 0, thus (2.31) still holds in this case. In
the case where 0 ≤ r < 2 and 0 ≤ q < 2− r, Hölder’s inequality gives∫

BR(0)
eqf |∂f |r ≤

(∫
BR(0)

1

) 2−q−r
2
(∫

BR(0)
e

2q
q+r

f |∂f |
2r
q+r

) q+r
2

≤ C
(
R2n+2

) 2−q−r
2
(
R2n

) q+r
2

= CR2n+2−q−r

for some constant C = C (n, q, r) > 0, thus (2.31) still holds in this case.
Finally, in the case where r = 0 and q = n + 2, by using (2.33) and (2.34),
we obtain ∫

BR(0)
e(n+2)f ≤ CR−1

∫
B2R(0)

enf |∂f | ≤ C ′Rn

for some constants C = C (n) > 0 and C ′ = C ′ (n) > 0, thus (2.31) still
holds in this case. �

Now, we can prove Theorems 1.1 and 1.4, starting with Theorem 1.4:

Proof of Theorem 1.4. We let u be a solution to (1.1) satisfying (1.4). We
let f be as in (2.1). We let η and ηR be as in the proof of Lemma 2.5. For
each m ∈ [0, 1) and θ > 2, by applying Lemma 2.2 with ϕ = ηθR, we obtain∫

Hn
Afη

θ
R ≤ CR−1

√∫
Hn
e(2n+m−2)f |g|−m

(
e4f + |∂f |4 + f2

0

)
ηθ−2
R

×
√∫

B2R(0)\BR(0)
Afη

θ
R (2.38)

for some constant C = C (m, θ, ‖∂η‖∞) > 0. By using (2.38) and Lemma 2.3

with ϕ = ηθ−2
R , σ = 2

θ−2 and ε = ρR2 for some small ρ > 0, we obtain(∫
Hn
Afη

θ
R

)2

≤ CR−2

(∫
Hn
e(2n+m−2)f |g|−m

(
e4fηθ−2

R + |∂f |4 ηθ−2
R

+R−4ηθ−6
R

))(∫
B2R(0)\BR(0)

Afη
θ
R

)
(2.39)
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for some constant C = C (n,m, θ, ‖∂η‖∞) > 0, provided we choose θ > 6.

By using (2.39) and Lemma 2.4 with ϕ = ηθ−2
R , σ = 2

θ−2 and ε = ρR2 for
some small ρ > 0, we obtain(∫

Hn
Afη

θ
R

)2

≤ CR−2

(∫
Hn
e(2n+m+2)f |g|−m

(
ηθ−2
R +R−4e−4fηθ−6

R

))
×

(∫
B2R(0)\BR(0)

Afη
θ
R

)

≤ CR−2

(∫
B2R(0)

e(2n−m+2)f
(

1 +R−4e−4f
))

×

(∫
B2R(0)\BR(0)

Afη
θ
R

)
(2.40)

for some constant C = C (n,m, θ, ‖∂η‖∞) > 0. By letting m = n (2− q) + 2
and using (1.4), we obtain∫

B2R(0)
e(2n−m+2)f ≤ CR2 (2.41)

for some constant C = C (n, q, f) > 0. Moreover, in the case where 2n −
m − 2 > n + 2, i.e. n −m > 4, by using Hölder’s inequality together with
(2.41) and Lemma 2.5, we obtain∫

B2R(0)
e(2n−m−2)f ≤

(∫
B2R(0)

e(2n−m+2)f

)n−m−4
n−m

(∫
B2R(0)

e(n+2)f

) 4
n−m

≤ C
(
R2
)n−m−4

n−m (Rn)
4

n−m

= CR6− 4(2−m)
n−m

= o
(
R6
)

as R→∞. (2.42)

When 2n−m− 2 ≤ n+ 2, a direct application of Lemma 2.5 gives∫
B2R(0)

e(2n−m−2)f ≤ CR4+m

= o
(
R6
)

as R→∞. (2.43)

It follows from (2.40), (2.41), (2.42) and (2.43) that(∫
Hn
Afη

θ
R

)2

≤ C
∫
B2R(0)\BR(0)

Afη
θ
R

for some constant C = C (n, q, θ, ρ, f) > 0, which in turn gives∫
Hn
Afη

θ
R →

∫
Hn
Af = 0 as R→∞. (2.44)
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It follows from (2.44) that Dαβ ≡ 0 and Eαβ ≡ 0 in Hn for all α, β ∈ {1, 2}.
We then conclude as in [11] that u is of the form (1.2). �

Proof of Theorem 1.1. By using (1.3) and Lemma 2.5, we obtain that for
each R > 1, ∫

B2R(0)\BR(0)
u

2n+2
n ≤ CR2−n

∫
B2R(0)\BR(0)

u
n+2
n

≤ C ′R2, (2.45)

for some constants C,C ′ > 0 independent of R. By using (2.45) together
with the fact that u is bounded in B2 (0), we obtain∫

BR(0)
u

2n+2
n =

∫
B

21−[log2(R)]R
(0)
u

2n+2
n +

[log2(R)]∑
k=2

∫
B

22−kR(0)\B
21−kR(0)

u
2n+2
n

≤
∫
B2(0)

u
2n+2
n + C ′

[log2(R)]∑
k=2

22−2k

R2.

≤ C ′′R2.

for some constant C ′′ > 0 independent of R. By applying Theorem 1.4, we
then obtain that u is of the form (1.2). �
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