EXISTENCE RESULTS FOR THE HIGHER-ORDER
@-CURVATURE EQUATION

SAIKAT MAZUMDAR AND JEROME VETOIS

ABSTRACT. We obtain existence results for the Q-curvature equation of order
2k on a closed Riemannian manifold of dimension n > 2k + 1, where k > 1 is
an integer. We obtain these results under the assumptions that the Yamabe
invariant of order 2k is positive and the Green’s function of the corresponding
operator is positive, which are satisfied in particular when the manifold is
Einstein with positive scalar curvature. In the case where 2k+1 < n < 2k+3 or
the manifold is locally conformally flat, we assume moreover that the operator
has positive mass. In the case where n > 2k+4 and the manifold is not locally
conformally flat, the results essentially reduce to the determination of the sign
of a complicated constant depending only on n and k.

1. INTRODUCTION AND MAIN RESULTS

Given an integer k > 1, a smooth, closed Riemannian manifold (M, g) of dimen-
sion n > 2k and a smooth positive function f in M, we consider the equation
P = flul** 2u in M, (1.1)

where Py is the GJMS operator with leading part A*, A := §d is the Laplace-
Beltrami operator with nonnegative eigenvalues and 2j := 2n/ (n — 2k) is the crit-
ical Sobolev exponent. The so-called GJMS operators were discovered by Graham,

Jenne, Mason and Sparling [18] by using a construction based on the Fefferman—
Graham ambient metric [14, 15]. They provide a natural extension to higher orders
of the Yamabe operator [42] (k = 1) and the Paneitz—Branson operator [4, 32]

(k = 2). When u is positive, (1.1) arises in the problem of prescribing Branson’s
Q-curvature of order 2k in a given conformal class (see Branson [5]). More precisely,
the positive solutions u to the equation (1.1) correspond to the conformal metrics
u?/ ("=2k) ¢ with Q-curvature of order 2k equal to ﬁf

Let Y5, be the conformal invariant defined by

. / uPspu dug
Yo := inf <V01§ (M) / nggdi}g) = . inf M T
M u

g€ld) C= (M) . :
u>0 in M (/ U kdvq)
o [
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where [g] is the conformal class of g, and Vol (M), dvg and Qo 5 are the volume,
volume element and @Q-curvature of order 2k, respectively, of (M,q). Throughout
this paper, we assume that Y3, > 0. As is easily seen, this is equivalent to the
coercivity of the operator Py, which is also equivalent to Aj (Pag) > 0, where
A1 (Pag) is the first eigenvalue of Pag.

In the case where k = 1, it is well-known that there exists at least one positive
solution to the equation (1.1) with f = 1 if and only if Y5 > 0 (see the historic work
of Aubin [2], Schoen [36], Trudinger [11] and Yamabe [12]). In the case where k = 2,
the existence of at least one positive solution to this problem has been obtained
under positivity assumptions on the scalar curvature and @Q-curvature of order 4
(see Gursky and Malchiodi [21]) and later extended to the cases where Y3 > 0 and
Yy > 0 in dimension n > 6 (see Gursky, Hang and Lin [20]) and the case where
Y3 > 0 and Q4 > 0 in dimension n > 5 (see Hang and Yang [22,23]). This question
has also been solved by Qing and Raske [33] in the locally conformally flat case for
all orders k£ > 2, under a topological assumption on the Poincaré exponent of the
holonomy representation of the fundamental group, using an approach introduced
by Schoen [37] for K = 1. More general existence results have also been obtained
in the case where f # 1 (see among others Aubin [2], Escobar and Schoen [12],
Hebey [24] and Hebey and Vaugon [25] for k = 1, Djadli, Hebey and Ledoux [10],
Esposito and Robert [13] and Robert [34] for k& = 2, Chen and Hou [9] for k = 3
and Robert [35] for higher orders).

We let W be the Weyl tensor of (M, g) and |W| be the norm of W with respect
to g. In the case where 2k + 1 < n < 2k + 3 or (M, g) is locally conformally flat,
assuming that Ys, > 0, for every point £ € M, we let m (§) be the mass of Py at
¢ (see (3.2) for the definition of the mass). Our main result is the following:

Theorem 1.1. Let k > 1 be an integer, (M, g) be a smooth, closed Riemannian
manifold of dimension n > 2k + 1 and f be a smooth positive function in M.
Assume that Yo, > 0 and there exists a mazimal point € of f such that

Af(E)=0 ifn>2k+2 (1.2)
and
(W ()2 £ (&) +clnk)A*f(€) >0 ifn>2k+5
W (£) #0 if n =2k +4 (1.3)
m(£) >0 if 2k +1 <n <2k +3,

where ¢(n,k) is a positive constant depending only on n and k (see (2.65) for
the value of c(n,k)). Then there exists a nontrivial solution u € C?* (M) to the
equation (1.1), which minimizes the energy functional (2.1). If moreover the Green’s
function of the operator Psy is positive, then u is positive, which implies that the

Q-curvature of order 2k of the metric u*/("=2¥) g is equal to nf% .

In particular, Theorem 1.1 extends to all orders previous results obtained by
Aubin [2] for k = 1 (in this case, the positivity of the Green’s function is not an
issue), Esposito and Robert [13] for K = 2 and Chen and Hou [9] for k = 3.

In the case where f is constant, we obtain the following:
Theorem 1.2. Let k > 1 be an integer and (M, g) be a smooth, closed Riemannian

manifold of dimension n > 2k + 1. Assume that Yo, > 0 and its Green’s function
is positive. Assume moreover that if 2k +1 < n < 2k + 3 or (M,g) is locally
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conformally flat, then m (§) > 0 for some point & € M. Then there exists a
conformal metric to g with constant Q-curvature of order 2k.

Notice that Theorem 1.2 is a direct consequence of Theorem 1.1 in the case where
(M, g) is not locally conformally flat of dimension n > 2k+4. A more general result
about the locally conformally flat case will be stated in Section 3.

When (M, g) is Einstein, Fefferman and Graham [15, Proposition 7.9] (see also

Gover [17] for a proof based on tractors) established the formula
k . .
(n+2j —2) (n —2j)
Py, = A S
o E ( * dn(n—1) ’

where S is the Scalar curvature of (M, g). In this case, it is easy to see that if S is
positive, then Py, is coercive, and so Yz, > 0. Furthermore, successive applications
of the maximum principles yield that the Green’s function of the operator Py is
positive. Therefore, we obtain the following corollary of Theorem 1.1:

Corollary 1.1. Let k > 1 be an integer and (M, g) be a smooth, closed Einstein
manifold of positive scalar curvature and dimension n > 2k + 1. Let f be a smooth
positive function in M such that there exists a mazimal point & of f satisfying (1.2)
and (1.3). Then there exists a conformal metric to g with Q-curvature of order 2k
equal to ﬁ f-

The positivity of the Green’s function of the operator P, has been shown to be
true by Gursky and Malchiodi [21] and Hang and Yang [22, 23] under positivity
assumptions on the Q-curvature of order 4 and the scalar curvature or the Yamabe
invariant of the manifold. Positivity results for the mass of P, have also been ob-
tained by Gursky and Malchiodi [21], Hang and Yang [22], Humbert and Raulot [20]
and Michel [31], thus extending the positive mass theorem obtained by Schoen and
Yau [38—40] for k = 1. As far as the authors know, no such results have yet been
obtained for higher orders. As regards the case where n = 2k, we point out that
the problem of prescribing the Q-curvature involves a different equation than (1.1)
which contains an exponential non-linearity. Some references in this case are Chang
and Yang [3], Djadli and Malchiodi [11] and Li, Li and Liu [29] for k£ = 2 and Baird,
Fardoun and Regbaoui [3] for higher orders.

The proofs of Theorems 1.1 and 1.2 are based on the approach introduced by
Aubin [2] and Schoen [30] in the case where k = 1. This approach consists in deriv-
ing an asymptotic expansion for the energy functional associated with the equation
(1.1), which we apply to a suitable family of test functions depending on a real
parameter (see (2.1) for the energy functional; see (2.5) and (3.4) for the definitions
of our families of test functions). To simplify the calculations of curvature terms,
we use the conformal normal coordinates introduced by Lee and Parker [28] and
later improved by Cao [7] and Giinther [19]. Our proof also crucially relies on the
derivation of an expression for the highest-order terms of the GJMS operators (see
(2.7)), which we obtain by using Juh!l’s formulae [27]. In the case where n > 2k +4,
the proof essentially reduces to determining the sign of a constant C' (n, k), which
appears in the energy expansion (see (2.6)). In particular, we recover the values
found in [9, 13] for C (n,k) with k € {2,3} (see Remark 2.1). We then conclude
the proof by using a minimization result in the spirit of Aubin [2] (see Mazum-
dar [30, Theorem 3]). When the Green’s function of the operator Py is positive,
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by an application of the Green’s representation formula, we obtain moreover that
the minimizing solution is positive (see the argument in [30, end of Section 3]). We
point out that at one place in the proof, namely in the very last computation to
determine the sign of C (n, k) (see (2.63)), we have used the computation software
Maple to expand a complicated polynomial with integer coefficients.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 in the
case where n > 2k + 4. In Section 3, we complete the proof of Theorems 1.1 in the
remaining case where 2k + 1 < n < 2k + 3 and we state and prove a more general
result in the case where g is conformally flat in some open subset of the manifold.
Theorem 1.2 then directly follows from this new result together with Theorem 1.1.

2. PROOF OF THEOREM 1.1 IN THE CASE WHERE n > 2k +4

Given an integer £ > 1 and a smooth positive function f in M, we let I s be
the energy functional defined as

/ uPopu dug

M
( / |“|22 d”s)
M

for all functions u € C?* (M) such that u # 0. We fix a point ¢ € M. By applying
a conformal change of metric (see Cao [7], Glunther [19] and Lee and Parker [28]),
we may assume that

Iy f,q (u) ==

n—2k (2'1)

detg(x)=1 VzeQ (2.2)

for some neighborhood € of the point £, where det g is the determinant of g in
geodesic normal coordinates at £. In particular (see [28]), it follows from (2.2) that

Ric (§) = Sym V Ric (¢) = Sym (Ricab;cd &)+ gweabf &) Wecdf (5)) =0, (2.3)

where Sym stands for the symmetric part, Ric is the Ricci tensor, and Ricgp;cq
and Wgps are the coordinates of V2 Ric and W, respectively, with the standard
convention on raising and lowering indices. By taking traces in (2.3) and using
Bianchi’s identities, we obtain

S(©)=1VS(©] =0, AS ()= ¢ [W©)F and Rie,, (&) =~ W (O (2.4)

Let g > 0 be such that the injectivity radius of the metric g at the point £ is greater
than 3rg and B (&, 3rg) C , where B (£, 79) is the ball of center £ and radius 3rg
with respect to g. We then let x be a smooth cutoff function in [0, 00) such that
X =11n [0,79], 0 < x < 1 in (rg,2rg) and x = 0 in [2ry, 00). For every u > 0, we
then define our test functions as

Uy (z) :== x (dg (2,8)) MM%U(M_l expg1 z) Vxe M, (2.5)

where d,; is the geodesic distance with respect to g, exp, is the exponential map
with respect to g at the point { and U is the function in R™ (we identify T, M with
R™) defined as

Ux) = (1+2)""7 vreR"
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It is easy to verify that U is a solution of the equation

where A is the Euclidean Laplacian.

Proposition 2.1. Let k > 1 be an integer, (M, g) be a smooth, closed Riemannian
manifold of dimension n > 2k + 4 and f be a smooth positive function in M.
Assume that g satisfies (2.2) for some point & € M. Let Iy s, be as in (2.1) and
U, be as in (2.5). Then there exists a positive constant C (n, k) depending only on

n and k (see (2.62) for the value of C (n,k)) such that as u — 0,

2k _n=2k n -1
Lipg W) =wi £©7F | (2k=11B (5 — k. 2k)

(n—2k) AF(E)
X<”2n<n—2> G

(n — 2k) ( A2 (€) <n—k><Af<e>f> )

Cdn(n-2)\2(n—4)FE)  nn-2)f)

—C (k) i W () In(1/p) + O (1) ifn=2k+4 2
o W (€ +0(1) ifn>2k+4.] )

where wy, is the volume of the standard n-dimensional sphere and B is the beta
function defined as

['(a)T"(b)
I(a+b)
Proof of Proposition 2.1. We let P be the Schouten tensor defined as

1 . S
P := 3 <R10—2 (1) g>

and B be the Bach tensor whose coordinates are given by

Bij :=Pay W," " + Py — P

;]

B(a,b) = Va,b > 0.

where Wiqjp, Pay and Pjj.q, are the coordinates of W, P and V2P, respectively.
We let (-, ) be the multiple inner product induced by the metric g for the tensors
of same rank, i.e. such that (S,7) = S%4T; , for all tensors S and T of rank
I € N. The first step in the proof of Proposition 2.1 is as follows:

Step 2.1. For every k € N such that n > 2k + 1, we have
Pop = AP + kAR (J0) + k(= 1) AR 2 (o - + (T4, V) + (T2, V?))
+k(k—1) (k—2) A3 (T3, V?) + (T4, V?))
+k(k—1)(k—2)(k—3)AF* (15, V*) + Z, (2.7)

where Z is a smooth linear operator of order less than 2k — 4 if k > 3, Z := 0 if
k <2, the functions J, and Jy are defined as
n—2

= S
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and
1({3n?—12n—4k+8 5 o 3n+2k—4
Jo = = S“—(k+1)(n—4)|P" — ——AS |,
and the tensors Ty, Ts, Tg, Ty and T are defined as
n—2
T = ——— 1)dP,
1 4(n71)VS (k—i— )6
T = %(kﬂ)
n—2 (k+1)(n—2) E+1
T3 := — - V? P SVP+2VSP +2R+P
3 6n_)VS+ 6(n—1) S 3(V +2VIP +2R xP)
B
_ 2 # 2
15(k+1)(k+2)(3P P+n—4)’
2
Ty := g(k—&- 1)VP
and
Ts;i(k+1)(5k+7P®P+V2P>,

where # stands for the musical isomorphism with respect to g (i.e. P# .= g 'P),

and VP, VOP and RxP stand for the covariant tensors whose coordinates are

given by

(OVP),; = —Py,% (VOP), == =P and (RxP);; := R, P," + Ripja P,
(2.8)

where Ripja, Pap and Pyj.qp are the coordinates of the Riemann tensor, P and V2P,

respectively.

Proof of Step 2.1. Throughout this proof, for every integer [, o’ stands for a linear

operator of order less than [ if I > 0 and o := 0 if | < 0. Juhl’s formulae [27] (see
also Fefferman and Graham [16]) give
Py, = MY — Z] §) M My MEI
k—2
1 . . -1 k—j—2
+3 2 00+ (k=g) (k=7 —1) My MeM,
j=1
N G4+ k=51 i (k=) M MM T T M METI T2 0?5 (2.9)
j=2 =1

where the operators My, My and Mg (which differ by a minus sign from the nota-
tions in [16,27]) are defined as

My =Py = A+ g,
My =P} — Py =45P% d + iy

and
Mg := Ps — 2P, Py — 2Py P, + 3P5 = 6 A¥d + s,
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where g is a smooth function in M which we do not need explicitly, o and p4 are
the functions defined as

_on=2 o __AS s?
M2 = Ha : 2(n—1) 4(n—1)2

and Ag is the tensor defined as

16
Ag = 48P#P—|—74B.
We point out that throughout this paper, we use the same sign convention for the
Riemann tensor as in the paper of Lee and Parker [28], which is the opposite of the

convention used by Juhl [27]. Straightforward expansions yield

k
n—2

j—1 k—j

+4(n71)ZA (S AF=I)

k
22
j=2

My = AF
J—1
Az 1 Ajfifl (S Ak)f‘])) +02k75

TL i=1
n—2 <& 2 b
_Ak—i- Aj_l SAk—J Ak 2 S2 2k—4
4<n71>j§;: (s857) 4 e )
k
2 k(k—1)(n— ) B
=AF ¢ AjlsAkJ+ AE=2 (g2 ) 4 o2k—4

(2.10)

and

M MMy T = AN PF AARTITE 4 AT (g AR

j—1
n f ST AT (S AT s PF AR

i=1

— (S Ak—i—l) +O2k—5
i=j+1

(k—2)(n—2) AF—3 (S P, V?) 4 o2k

(2.11)

= AN 7L PH AR I 4 ART2
n—1
and
M MMy ™72 = AV TISAFAAR T 4 0% = — AR (46, V) 0P (2.12)
and
MET MM MMy 72 = 16AT L P# dAT T P# qAR—I=2 4 o2 0
=16A"* (P@P,V*) + 02 1. (2.13)
Furthermore, by induction, one can check that

SAT = AT (S-)—j (AS) AT 425 ATH(V'S,V)+25 (j — 1) AT2 (V2 S, V?) +0% 2
(2.14)
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and

§P#dAAT = AT ((6P,V) — (P,V?)) + AT (VP +2VP +2R+ P, V?)
—2(VP,V?)) —2j(j —1) A2 (V2P,V*) + 0¥, (2.15)

where 0V P, V6P and R+P are as in (2.8). The proof of (2.15) relies on the
commutation formula

Usabed = Usedab + R aq Ueeb + REapg e + REpg Wiae + R gpe Uide + 02 U,
which gives
P dAu — A6 P* du = (P U, "y)ie — (pbe Ush). 0"
= P" (e = Uea”) = PP 0" e — 2P g uy® — 2P uy 4 0% u
=2P" (R%" waa + R wpa) — PP,  tpe — 2P uy® — 2P uy, + 0% u
= (VP +2VSP+2R«P,V?u) — 2 (VP, V?u) + o® u.
By combining Faulhaber’s formulae with (2.11)-(2.15), we obtain

k
DoATTH(SANT) = kAR (S

Jj=1

MEZD a2 (a9 )

2% (k — 1) (k — 2)
3

+k(k—1)AF2(VS,V) + AP (V28,V?) + 02 (2.16)

and
k—1
S k= ) M MM = (k= 1) (4 1) (38572 ((67.9) - (P, 5)

_2(k=2)(k=3) (k—2)(n-2)

k—4 (o2 4y
. A1 (V2 P, V) =T

Ak_3 (S P, v?)) + OQk—4
(2.17)

and
k—2
ST +1) (k=) (k-5 —1) M§~ Mgy 2
j=1
k(k—1)(k—2)(k+1)(k+2)

= 20 AF73 (A6, V2) + 0% (2.18)

k—2 j—1
STG A (k1) Y i (ki) My MM AL M
i 2k(k—1)(k—2)(_lc—3)(k+1)(5k+7)

= i AP (PP, V) + 0% (2.19)

Finally, (2.7) follows by putting together (2.9), (2.10) and (2.16)—(2.19). This ends
the proof of Step 2.1. g

The next step is as follows:
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Step 2.2. Assume that n > 2k +4 and k > 3. Then for every smooth linear
operator Z of order less than 2k — 4, as p — 0,

O(/fl) ifn=2k+4
/ U, 20, dvg = 4 ) (2.20)
M o(p*) ifn>2k+4.

Proof of Step 2.2. By rewriting the integral in geodesic normal coordinates, we
obtain

/ U, ZU, dv, = / U,ZU, dx = / 2aU0,0%U,, dx, (2.21)
M B(0,2r¢) B(0,2r¢)

|a|<2k—4
where
U (2) == p"T°U (x/p) and Z(2) = D za(2)8@ Vo€ B(0,2r0) (2.22)
|a|<2k—4

for some smooth functions z, in B (0,2r), where « is a multi-index. A straight-
forward change of variable then gives

/ 240,00, dx = 21! / Zo (uz) U (2) 80U (z) dz.  (2.23)
B(0,2r9) B(0,2r0/p)

An easy induction yields that for every multi-index «, there exists a constant Cl,
such that

n—2k+|a|

0T (2)| < Ca(L+J2*)” 2 Vo € R” (2.24)
It follows from (2.23) and (2.24) that

/ Zaﬁ'#a(a)ffu de =0 ’u2k—|a\ / (1 + |x|2 )7n+2k7\a|/2dm
B(0,2r9) B(0,2r9/p)

O (u2k=lel) if |a| >4k —n
=4:0 (,u"*% In(1/p)) if la|=4k—n (2.25)
O (u"2k) if |a| < 4k — n.
Finally, (2.20) follows from (2.21) and (2.25). O

We then prove the following:
Step 2.3. Assume that n > 2k + 4 and g satisfies (2.2) for some point £ € M.
Then, as p — 0,
-1
/ U, ARU, dvy = 225" (2 — 1) w, B (g —k, 2k) +0 (). (2.26)
M
If k > 2, then for every smooth function f in M,

22k=n=1(n — ) (k —2)lw
Ak—? _ n
U U = e T (= 2k — 2)
2k—4

! n -1
B(=-—-k—-1,1+1
XZZ;Q(l—k+2)!(2kz—l—4)!(n+l—2k—1)! (5 i+1)

f©ut
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{21n(1/u) ifn=2k+4 andlk?}
n .
B (5 +1—-2k,2k—1— 2) otherwise

O(p') ifn=2k+4
+ ( . ) . (2.27)
o(u) if n > 2k + 4,
for every smooth, covariant tensor T of rank 1,
22k=n=2(n — 2k) (n — 1)! (k — 2)!w
T Ak_Q = — nT(l 4
/M( aqu) Uudvg (n_2) (TL—4) (n—2k—2) sa (f)M

2k—4
l! n -1
B(-—-k—1,01+1
Xl:zk;Q(l—k+2)!(2k—l—4)!(n+l—2k)! (3 1+1)
2In (1/p) ifn=2k+4andl=Fk—2
X
B(g+172k,2k7172) otherwise

4 ; _
+{O(u) ifn=2k+4 (2.28)

o(,u4) ifn>2k+4
and for every smooth, covariant tensor T of rank 2,
22k=n=4 (n — 2k) (n — 1)! (k — 2)!w,
(n—2)(n—4)(n—2k-2)
2k—4 1

/ (T,V?U,) A* 72U, dv, =
M

n -1
2 L
XlH(l]”2)!(2]“54)!(n+l2k+1)!B(2 F-1,0+1)

X —2(n—4)(n+2l—2k)B<%—2k+l+1,2k—l—2)T“a (€) 2

n =2k +2) (T (&) + T, (§) — (n+20 —2k) T,%" (€)) 1’
21n (1/p) ifn=2k+4 andlzk—?})

n .
B (§+l—2k,2k‘—l—2) otherwise

_|_

X

— =/~

O(p') ifn=2k+4
+ <4) . (2.29)
o(u) if n > 2k + 4.
If k > 3, then for every smooth, covariant tensor T of rank 2,
, 22k=n=5 (n — 2k) (n — 1)! (k — 3)!w
T 2 Ak—3 - _ nTa 4
/M(  V2UL) AFU dog (n—2)(n—4) (n— 2k — 2) « (©)n
2k—6
(n+20 —2k) 1! n -1
B(=-—-k-1 1
Xl;g(l—k+3)!(2k—l—6)!(n+l—2k+1)! (2 k-1i41)
2In(1/p) ifn=2k+4andl=k—-3
X n
B(—+l72k+1,2k7l73) otherwise
2
O(pY) ifn=2k+4
+ (4) ) (2.30)
o(,u) ifn>2k+4
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and for every smooth, covariant tensor T of rank 3,

3 o3 226 (n —2k) (n — 2k +2) (n — 1)! (k — 3)wy
/M(T’v Un) A0 dvy = (n—2)(n—4) (n—2k—2)

< (T, (&) + T, (&) + 19" (&) u*
2k—6

(n+20—2k) 1! n -1
B(-—-k—-1,1+1
Xl;g I —k+3) 2k —1—6)!(ntl_2k+2) (5 i)
2In (1/p) ifn=2k+4andl=%k—-3
X n
B<§+l—2k—|—1,2k—l—3) otherwise

A
+{O(u) ifn=2k+4 (2.31)

o(,u4) if n > 2k + 4.
If kK > 4, then for every smooth, covariant tensor T of rank 4,
22k=n=8 (n _2k)(n — 2k +2) (n — 1)! (k —4) w,
3(n—2)(n—4)(n—2k—-2)
x (T,%" (€) + T, (&) +T,% (€)) u*

2k—8

/M (T,V*U,) A" U, dv, =

-1

(n+20—2k) (n+2l -2k +2)1! n
——k—-1,0+1
Xl;4 Ikt 2k — -8 (n11—2k+3) (5 41)
21In (1/p) ifn=2k+4andl=k—4
B<ﬁ+l—2k+2,2k—l—4) otherwise
2
O(u") ifn=2k+4
(i) / (2.32)
o(,u) if n > 2k + 4.

Proof of Step 2.53. We let j and [ be two integers such that
max(2(k—-1-2),0)<j<k—1 and max(k—4,0)<I1<k

and T be a smooth, covariant tensor of rank j. By using geodesic normal coordi-
nates, we obtain

/ (T,VU,) A'U,, dvy — / (T,V'U,) AU, do,
M B(&,m0)

= 21(7#22@:# dx

/B(O,Qro)\B(O,rg)
% / oz (070,) (070, )de,  (2.33)
(0727‘(])\B(07T0)

| <j |az| <207 B

where ﬁu is as in (2.22) and

x) = Z 210 (2)0 and  Zy (z):= Z Z9.0 () 0% Vax € B(0,2rg)

|| <j |a] <21
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for some smooth functions z1 o and z2 o in B (0,2r9). By proceeding as in (2.23)-
(2.25), we obtain

/ 21,022,00°20,0° U, dx = O (u" %) . (2.34)
B(O,QT‘())\B(O,T())

It follows from (2.33) and (2.34) that

T,VU,) AU, dv, = T,ViU,) AU, dv, + O (u"=2F) . (2.35)
v Iz w4 B(e.ro) iz w4l

By using (2.2) and rewriting the integral in the right-hand side of (2.35) in geodesic
normal coordinates, we obtain

J
/ (T,V7U,) AU, dvg = / T oexpe Up i, ...i, Mg Uy dz, (2.36)
B({,To) j'=0 B(OJ’O)

where Uu,il‘..iﬂ = glin-i;r) (Uu o expf) and the tensor T is defined as

Pir iy T if j' =3
A J :: . . 5
—Th e i <

where Féllzg; is the generalized Christoffel symbol such that Féllzef; is symmetric
indy,...,% and

-1
N (SRR IY
u;elu.e]- - u,el...ej - E Fel...eJ- u,il...i]»/
§'=0

in geodesic normal coordinates. By using (2.36) together with a straightforward
change of variable and a Taylor expansion, we then obtain

/ (T,ViU,) A'U, dv,
B(&,m0)
J

= S [ s (exp () Uiy () AU () da
= B(0,r0/1)

J R S P
— ' T“"'Zj/’zj'+1"‘7’j/+j” (5)

§ : § : 11

j'=max(2(k—1-2),0)  j"”=0 I
J

l Z max(5,2k—21—j"
X / U>i1~-ij/xij/+1 e xij/+j// AO de + O H X( J )
B(0,r0/w)

§'=0

o / |x|max(j’+2l—2k+5,0) |U,¢1...ij«A6 U| dx). (2.37)
B(0,ro/1)
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On the other hand, by using (2.24), we obtain

5,2k—21—j' max(j'+21—2k+5,0 1
Hmax( J )/ |J3‘ ( ) |U,i1...ij/A0 U| dr
(0,r0/ 1)

o o _2n4j’+2l-ak
=0 (urrlax(5,2k—2l—_] ) /B(O o |x|max(] +21—2k+5,0) (1 + |.’L"2) il dx>
TO/ K

O (') ifn=2k+4
o wtn=: 30
o (,u ) otherwise.
It follows from (2.35), (2.37) and (2.38) that
' 7 3 4+20—2k+4 h—20—j 4"
[avmsie- % e
M j/=max(2(k—1—2),0) =0 J
i ...i‘/,ij/ ..Aij/ G X . . . l
X Tt g (g)/B(OJO/H) Uiyoiiy @iy iy Do Unda
O(ut) ifn=2k+4
(4) ) (2.39)
O(/J ) ifn>2k+4.

An easy induction gives

G2l iiam
Uty 0= 32 =g %"V )
m=0

n
X E 52}7(1)1}7(2) T 5iu(2m71)ia(27n)xia(27n+1) Ty Vz € R", (2'40)
ceB(j)

where r := |z|°, U (r) := U (z) = (1 + 7’)(%771)/27 G (j) is the set of all permuta-
tions of (1,...,7) and &i_ i, 2+ + s Oig(am—1)io(am Stand for the Kronecker symbols.
Furthermore, it is easy to see that

DU(r)=(-1Y 27 (n—2k)(n—2k+2) - (n—2k+2j -2 (L+r)"" =
2(—1) 4! n ) -1 _n=2k+42j
- 2T g (1 41) s 2.41
(n— 2k —2) (2 E-Lj+1) (14n) (241)
Another induction yields
221411 LU (k411 —1)
(n—2k—2) (k- 1)l &= (' — DI (2 D)
! _ ol
AU (w) = ><B<f—k—1l’+1) (A4 252 g cp (242)
-1 "
92k (2% — 1)IB (g fk,2k) 1+r) "5 if1=k

for all z € R™. In the case where j =0, =k and T' = 1, it follows from (2.42) that

n —1 p(ro/n)
/ UAEU dx = 2251 (2k — 1)l w,_1 B (— —k, 2k> / o dr,
B(0,r0/ 1) 2 0 (1 + T)
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where w,—1 = Vol (S"™!, go) is the volume of the standard (n — 1)-dimensional
sphere. On the other hand, in the case where [ < k, by putting together (2.40)—
(2.42) , we obtain

3i'/2]

—

Al 2241 ) 2
Ui @iy Ty Udx =
/B(O,ro/u) e #4170 (n — 2k —2)° (k—l—l)!l,z:

=l m=0

(1)) T (k4 1=V = DV —m)! (
=DV~ )l (7 — 2m)! 2

n —1 plro/m)? ntj 45" —2m—2
XB(*_k_l’jl—m—i—l) / :
0

—k—1,1’+1)71

2
9 1 et —m+l —2k dr Z Qi 1yin(2)
+7) s€6(j")

T 6ia(2m—1)io(2m) /Sn—l Yigamsry " YigunYijn " Yijym dvg, (y) - (2.44)

A standard computation gives

/(7'o/u)2 a1y, {QIn(l/u) +0() ifb=a
0

- = 2.45
(1+7)" | B(ab—a)+0(E** ) ifb>a. (2.45)

On the other hand, by using the fact (see for example Brendle [6, Proposition 28])
that for every homogeneous polynomial @ of degree j > 2,

-1
/Sni1 D (y) dvg, (y) = T 17 =2) Jsuo A2 (y) dvg, (y),

another induction yields that when j is even,

_ (n=2wp1 n—2 j+2
/an Yir - Yi; dvg, (y) = 201 (j/2)12 B

2 7 2
X Z 5%(1)%(2)"'§ig(j,1)¢a(j). (2.46)
ceS(j)

The integral in (2.46) vanishes when j is odd. By observing that

_ n n
w, =2""1B (5, 5) Wno1, (2.47)

we obtain that for even j,
—2 j+2 227" (n — 1)1 (§/2)! wn !
p(n=2it2)_ (n .) /2)!wn o nREIY (us)
2 2 (n=2)(n+35/2—1wp_1 27 2
By using (2.45)—(2.48) together with the identity
g(n ntd +i"—2m ‘1B n+j§ 443" —2m n+j — i+ 20 — 4k
2’ 2 2 ’ 2
(j—ugj” +n—m— 1)!
(n+3 =m0 =2k = 1) (L5 26—~ 1)!

XB(n+j’—j”+21’—4k j”—j’+4k—21’)
2 ’ 2 ’
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we obtain that if j' + 7" is even, then

(TO/H) ntji' +57—2m—2
/0 1+ T)”+j’fm+l’*2k dr Sn—1 Yiomyn) " YignYijpn =Ygy dvg, (y)

ol=n—i'=i"+2m (1 _ 1)1,

("ﬂ'/*m“'*%*l)!(J —i' 4ok I — ) (Hﬂfm)!

2In(1/pu) + 0O (1) ifn+j —j"+20' —4k =0
(n+j’—j”+2l’—4k j”—j’+4k—2l’>
X B )
2 2
FO (I IR 0 < g - 2 — 4k <n
X Z 5%’(a<zm+1)>ia/<o<2m+2>> "'5io/<o<j/—1>)ia’<a<j’>)
o eb(S i’ m d)
X 6i0/(j/+1)ia/(]»/+2) e 5ia/(j’+j”—l)ia’(j’+j”)7 (249)

where

Syt it = (0 2m+1),...,0("),7 +1,...,5 —|—j”)

and & (Sj/ j».m,») stands for the set of all permutations of Sj: j» m . In the case
where j =0, =k and T =1, (2.26) follows from (2.35), (2.36), (2.43), (2.45) and
(2.47). On the other hand, in the case where [ < k, by combining (2.39), (2.44) and
(2.49) (and replacing j” by j'—2m’+21—2k+4 form’ € {0,...,|j' /2] +1—k + 2}
so that j' + j” is even and 0 < j”" < j' 4 21 — 2k + 4), we obtain

2k—n—2 ( Li'/2]

T,ViU,) AU, dv, = " n
/M( ) AU vy (n— 2k —2)%( 1—1 Z Z 2

I’=l j’=max(2(k—1—2),0) m=0

Li"/2]+1—-k+2 92m’—j' 11 (k+1—1U—=1Dle(n k5, LU,mm) M4_2m/

2 =D =) (k+1—1U —m/ + DI(j’ —2m + 21 — 2k + 4)!

m’=0

% B (5 _ k; _ 1 l/ + 1) T’Ll 2 N ’+1-"i2(j’—m’+l—k+2) (g)

X E g 6i0(1)i0(2) e 6ig(2ryy;—1)ia(27n)

o€6(j') o/ €S(S)r i1 —om! y21—2k+a,m,0)

X 5%'<o<2m+1>>io’<a<zm+z>> o '5ia'<a<w—1>>io’<au'>>

x 6ia/(j/+1)ia/(j/+2) T 5ia/(2(j/7m/+l7k+2)71)i0/(2(j/7m/+lfk+2))
2In (1/u) + O (1) ifn=2k+4,"=0land m' =0
B (g—l—m’+l’—l—k—2,k+l—l’—m'—|—2) —|—o(,u2m/) otherwise

4y e
{O(,u) ifn=2k+4 (2.50)

0(u4) if n > 2k + 4,
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where

" —1
c(nk,§' 1,0 mm') = (—1) "™ B (g —k—1,§ —m+ 1)

(" —m)!
m! (7 —2m)(n+35 —m+U—-2k—1D (G —m—-—m'+1—k+2)!"

X

Straightforward computations yield

Z Z 5io<1>ia<2) "'5io<zm—1)ia<2m>5%’(a(2m+1>>io'<o<2m+2>>
0€& (") 0’ €S(S 11 m )
C Vel o =) et (0 () Vel 1) b 742y T e (i = 1) B (747

0 0. 1)
1 iij:j”:m:O
26,4, if j/=43"=1and m=0
2(2—m)biyiy ifj/=2,7"=0andm <1

=16 (51'11'261'31'4 + 5i1i35i2i4 + §i1i46izi3) if j/ = j// =2andm=0
4(51‘”‘251‘31‘4 if j/ = j// =2and m=1
2 (4 —2m)! (6i1i25i3i4 + 0iyis0igiy + 52’12’451‘21‘3) if j/ =3, j// =land m<1
8 (4 - Zm)' (5i1i26i3i4 + GiyigOiniy + 61’12’461‘21‘3) if j/ =4, j// =0and m < 2.

(2.51)

On the other hand, by using (2.3) and the fact that for all a,b,¢,d,e € {1,...,n},
in geodesic normal coordinates,

Jab (E) - 6111), gab,c (f) =0 and gab,cd (5) = % (Racdb (5) + Radcb (5)) 5
and
Zc (f) =0, Zc,d (f) = % (Rabdc (f) + Racdp (f)) and nge (f) =0,
we obtain
T(€)=T() if j=0
T, (&) =T° (¢) ifj=1
{f ©=0, T,"©)=T,"(9), T.%"(©=T.%" <§>} N
and T, (€) =T, (&) =T, (&)
{1“ (=0 and T, () +T,", () +T%" (€) } i3
=T,%, (&) +T," (&) +T%", (€)
T,%°(€) + T, ™ (&) + T, " (€) = T,% 1 (&) + T, ™ (6) + T, (€) if j = 4.

2.52
We then obtain (2.27) by putting together (2.50), (2.51) and (2.52) and usirfg the)z
identities
n—2k—2
(n+1 —2k—1)!

c(n,k,0,k—2,1',0,0) = 5
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and

B(%+l’—2k,2k—l’+4)
Ak —1)2k—-1—2) _n ,
- 9 = B<§+l—2k,2k—l—2).

The estimates (2.28)—(2.32) follow in the same way from (2.50), (2.51) and (2.52)
by using the identities

n—2k —2)(n—2k)
4(n+1 =2k
n—2k—2)(n—2k)(n—2k+2)
32(n+1 —2k+1)! '
2% (nk, 2,k — 2,1,0,1) + ¢ (n, k, 2,k — 2,1, 1,1)
=4dc(n,k, 2,k —2,1',0,0) + ¢ (n, k,2,k —2,1',1,0)
=2 (n,k, 2,k — 3,1,0,0) + ¢ (n, k, 2,k — 3,1',1,0)
(n—2k—2)(n—2k) (n+2l' —2k)
8(n+1"—2k+1)! ’
24e (n, k, 3,k — 3,1/,0,0) + 2¢ (n, k, 3,k — 3,1/, 1,0)
(n — 2k —2) (n — 2k) (n — 2k + 2) (n + 2I' — 2k)
- 8(n+1 —2k+2)! ’
24c (n,k, 4,k —4,1',0,0) + 2c (n, k, 4,k —4,1',1,0) + ¢ (n, k, 4,k — 4,1',2,0)
(n—2k—2)(n—2k)(n—2k+2)(n+2l' —2k) (n+ 2" — 2k + 2)
64(n 10 — 2k +3)!

c(n,k,1,k—2,1',0,0) :_(

c(n,k,2,k—2,1',0,0) = (

and
B<g+l’—l—k—2,k+l—l’+2)
ZWB<2+Z’—Z—k72,k+Z—Z’+1)
R
This ends the proof of Step 2.3. =

As regards the integral in the denominator of Iy ¢4 (u), we obtain the following:

Step 2.4. Assume that n > 2k + 1 and g satisfies (2.2) for some point £ € M.
Then, for every smooth function f in M, as up — 0,

. W, wnAf (€) p? wa A2 f (&) p*
/MfUi dv, = 27f(5) T (= 9) + 35 (= 2) (n — 4) +o(u4). (2.53)

Proof of Step 2.4. By observing that Uiz does not depend on k in B(0,7), we
obtain that (2.53) is in fact identical to an estimate obtained by Esposito and
Robert [13] in the case where k = 2 (note that in our case, Ric (§) = 0 and VS (§) =
0 since we are working with conformal normal coordinates, see (2.3) and (2.4)). O

We can now end the proof of Proposition 2.1 by putting together the results of
Steps 2.1— 2.4:
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End of proof of Proposition 2.1. We assume that k& > 2 and refer to Aubin [2] for
the case where k = 1. By using (2.53), we obtain

(fesas) ™ =)™ 050

_n—2k A2 (k) (AF(E)*) . o
dn (n —2) (2(n—4)f(§) n(n—Q)f(§)2>'u + (u)] (2.54)

We let Jy, Jo, Th, To, T3, Ty, T and Z be as in Step 2.1. Since k£ > 1, by integrating
by parts, we obtain

/ U A (U, dvg = / A (LU, AF2U, dv,
M M
= /M (U ATy —2(VJ1,VU,) + JLAU,) AF 72U, dv,.  (2.55)
By integrating by parts again, it follows from (2.7) and (2.55) that
/ U, Py, do, — / U, AR, dv, + k/ (((k—1) Jo + AT U,
M M M
+((k—1)Th — 2V, VU,) + ((k — 1) Ty — J1g,V?U,) )A*2U,, dv,

+k(k—1) (k- 2)/ (75, V?U,) + (T4, V?U,)) AF 73U, do,
M

+k(k—1)(k—2)(k—3)/

(Ts, V*U,) A" U, dv, + / U,ZU, dvg. (2.56)
M M

By using (2.4), we obtain

2
_ W)

12(n—1)
By using (2.3), (2.4) and (2.57) together with straightforward computations, we
obtain

Paa;bb (5) = Pab;ab (6) = Pab;ba (5) = (257)

(T3) () = g ey WO =~ 2 W) g,
and
(T (€)+ (T3), % (€) + (T3)" (6) = s IW (O
— T (TS 00" (O + (TS 9.0, (6 + (V59 0)%) " (©))
and
(T3 + (T () + (T €) = ~ 525 W ()

WP
10n(n—1)(n+2)
By using these identities together with (2.30)—(2.32) and observing that
(VS ®g,V?U,) = —A(VS,VU,) —2(V?S,V?U,) — (V*S,VU, ®g),

(9@ 9)a"" (&) + (92 9)ap™ (&) + (9@ 9)as™ (€)).
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and

1

(V25)," (6) = 5 W (O =~ W (O 0, (&),

we obtain that for k& > 3,
/ (T3, V?U,) A*3U, dv,
M

O(p') ifn=2k+4
o(;ﬁ) ifn>2k+4

n+3k+1

~ S WO [ (AU AU, v, + {

4 .

n+3k+1 2/ ko O(u*) ifn=2k+4
=W U AU, dog + 2.58
36n(n—1)| ©l M P o (Y ifn>2k+4( )

and

N TS /
/M (T8, V*0,) A0, vy =~ | (A9,

O(p') ifn=2k+4

1 9 3 > k—3
+ — W (" AU, + (V3S, VU, ® g) |A* 73U, dv, +
3n| €3] u ( p g) rerg 0(u4) ifn>2k+4

_ k+1 9 -
- 3n(n—-1)(n+2) /M (|W(f)| U#+3TL(VS,VUM))A U, dv,
4 .
k+1 / k=3 (o3 O(p') ifn=2k+4
B U,AR (VRS VU, ® g) du, +
(n—1)(n+2) Jy " ( 1 ® g) dvg o(it) ifn>2k+4,
(2.59)
and for k > 4,

/M (T5,V*U,) A" U, dv,

kD)W QP 2 k—4 O(p') ifn=2k+4
- 10n(n—1)(mt2)/M(AU")A U"dvﬁ{o(lﬁ) ifn>2k+4

_ (kWP b O(uY) ifn=2k+4
= 10n(n—1)(n+2)/MUﬂA Uﬂdvg—k{o(/ﬁ) 0> 2% 44 (2.60)

It follows from (2.56) and (2.58)—(2.60) that

/MUMP%UMdvg=/MUMA’“UHdvg+k/M (((k—l)J2+AJ1
((k—l)(k:—Q)(n—i—Sk:—i—l) (k—l)(kz—2)(k—|—1)(3k:+1))|W<£)|2)UH

36m (n —1) 30n (n—1)(n+2)
(k+1)(k—1)(k—2)
(n—1)(n+2)

+ ((k — )Ty — 2V, — VS, vm)

+((k—1)Ts — J1g,V?U,) >A’“2U“ dv,
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k(k+1) (k—1) (k-2
*/MU”( (-1 (n+2)
4 ifn=2k+4
+{ if n > 2k 4+ 4.

Stralghtforward computations together with (2.3
n—2

N (V38, VU, ® g)) dv,

(2.61)

), (2.4) and (2.57) give

Ji(§) =0 and AJy(§) = Wn-1) W (&),
3n+2k—4
J2 (§) = TTm—1) W (€)%,
(T3 (©) = ~ 5ty W (O,
(T2)," (§) =0
and o
(TQ)aa;bb (g) = (TQ)ab;ab (g) = (TQ)ab;ba (f) = _W_F—l) |W (5)'2 .

By using these identities together with (2.20), (2.27)—(2.29), (2.54

obtain that (2.6) holds true with C (n, k) defined as

(n—3)(n—5)k!

Ok = =) =2k —2)

2k—4

I
XZZ U—k+2)(2k—1—4)(n+l—2k+1)

) and (2.61), we

<8(n+l2k)(n+12k+l)

y 3n—|—2k; ) n-2 (k-1 (k-2 (n+3k+1)
24 36n
(k- )(k+1)(3k+1) - - —9
30n(n+2) +4(n—2k)(n+1—-2k+1) 12
=1 Entak-2) (1) (-1 (k-2)
72 6(n+2)
+(n_2k)<(k+1)(k1)(n2k2l+4)
18
~ (n=2)2(n—2k+2)—n(n+20—2k)
24
5 n By L . 1 2X{l:k72} 1fn=2k+4
x (E_ o +) B(g+172k,2k7172) otherwise
B (n—3)(n—>5)k!
~ 5760n (n +2) (k — 1) (n — 2k — 2)
2k—4
|
y Z e(n, k1)
et (I =k +2)! 2k —1—4) (n+1—2k+1)!
1 2X{l:k—2} if n =2k +4
B(Y k-1,0+1 2.62
% ( +) B(g+172k,2k7172) otherwise, 0%



HIGHER-ORDER Q-CURVATURE EQUATION 21

where

cnk, ) :=4(n+1-2k)(n+1—-2k+1)(5n(n+2) (k—1) (3n + 2k — 4)
—30n(n+2)(n—-2)—20n+2)(k—1)(k—2)(n+3k+1)
+24(k-1)(k—2)(k+1)(Bk+1))+20n(n—2k) (n+1—2k+1)
x(6(n+2)(n—2)—(n+2)(k—1)Bn+4k—-2)+12(k+1)(k—1)(k—2))
+on(n+2)(n—2k)4(k+1)(k—1)(n—2k—20+4)
—-3(n—2)(2(n—2k+2)—n(n+2l-2k)).

By letting k :=34a, n =2k +4+ b and | := k — 2 4 ¢ and using the software

Maple to expand the expression of ¢ (n, k,1), we then obtain

c(n,k,1) = 4(15ab* + 1200ab + 3880ab + 1920 + 10656a + 480b + 4528a* + 624a>
+ 400? + 450ab* + 80a>b + 80a%b? 4 32a*)c? + 2(71552a2b + 4149124 + 500a2b
+ 247984ab + 31840a° + 53660ab® 4 3200a* 4 640a°b* + 11020b> + 150ab*
+ 128a® 4 9056a°b + 660b* + 161440a> + 448a*b + 15b° + 311040b + 10520ab?
+ 4830ab® 4 426240 + 85840b%)c + 128a° 4 576a°b + 1088a*b* + 1020a°b>
+ 560a2b* + 150ab® 4 15b° + 3904a® + 14720a*b + 21896a°b* + 15940423
+ 5640ab* 4 7200° + 49408a* + 149280a°b 4+ 167032a%b* + 81120ab> + 13780b*
+ 3320964 + 754720a%b + 563824ab® + 1342406° + 12503044 4 1900224ab
+ 704640b% + 2499840a + 1900800b + 2073600. (2.63)

Since all the coefficients in this expression are positive, it follows that C (n, k) is

positive whenever k > 3, n > 2k +4 and [ > k — 2. Furthermore, in the case where
k=2and =0, we find

c(n,2,0) =5n(n+2)(n —4)*(n* —4n —4) >0 Vn > 8.

Therefore, in all cases, we find that C (n,k) is positive. This ends the proof of
Proposition 2.1. ([l

We can now prove Theorem 1.1 by using Proposition 2.1.

Proof of Theorem 1.1 in the case where n > 2k 4+ 4. Let £ € M be a maximal point
of fand § = ¢*(=2g be a conformal metric to g such that (&) = 1 and
detg(xz) = 1 for all z in a neighborhood of the point &. Notice that since £ is
a maximal point of f, if Agf(§) = 0, then Vif = 0 for all j € {1,2,3}. In
particular, since ¢ (§) = 1, it follows that

Apf(€) =0 and AZF(6)=A2f(9), (2.64)

where Ay and Aj are the Laplace-Beltrami operators with respect to the metrics g
and g, respectively, and the covariant derivatives, the Ricci tensor and the multiple
inner product in the right-hand side of the second identity are with respect to the
metric g. Let ¢ (n, k) be the constant defined as
0 ifn=2k+4
c(n,k):= (n—2k)(2k —1)!
8n(n—2)(n—4)C(n,

(2.65)

k)B(g—mk)_l if 0> 2k + 4,
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where C (n, k) is as in (2.6) (see also (2.62)). By applying Proposition 2.1 together
with (2.64) and the fact that || is conformally invariant, we then obtain that if
(1.2) and (1.3) hold true, then

n—2k

I pg (1) < wa (21%1)'13(771@ Zk) 1(maxf(:1:))_ " (2.66)

zeM

inf
u€eC?k(M)\{0}

On the other hand, by conformal invariance of the operator Pyj, we obtain

inf I ¢ 5 = inf 1, . 2.67

wecz (an oy " () wecz (ap oy T () (267)

By putting together (2.66) and (2.67) and applying Theorem 3 of Mazumdar [30],
we then obtain that the conclusions of Theorem 1.1 hold true. O

Remark 2.1. From (2.62), we recover the values found by Esposito and Robert [13]
for C(n,2) (see (21) and (22) in [13]) and Chen and Hou [9] for C(n,3) (see
Proposition 3.1 in [9]), namely

T ifn=238
C(n2) = 12
(n,2) = (n—4) (n®* —4n—4)
ifn>9
96 (n — 6) (n — 8)
and
21 ifn =10
C(n,3)= —6) (3n* — 24n> — 4n? 4 208n + 384 2.68
(n:3) =1 (n=6) (30" — 240" — 4n” + 208n + )ifnzll. (2.68)

768 (n — 10) (n — 8)

More precisely, to obtain (2.68) from (2.62), we use the identities

n -1 n 4
B(f—4,2) B(f— : ): > 11
2 5 %3)=aT1 fornz

and
n -1 n n—4
R — — = — >
B(2 4,3) B(2 4,2) — Jorn>11,
and to obtain (2.68) from the formulae in [9], we use the identities
257" (n—3)(n—1)w,
B(2 41,2 5)=
(3+15-5)= (n—10) (n —8) (n — 6) wm_
and

3n® —18n* —52n>+200n> +800n+768 = (n + 2) (3n* — 24n® — 4n* + 208n + 384) .

3. THE REMAINING CASES

This section is devoted to the proof of Theorem 1.1 in the remaining case where
2k +1 < n < 2k + 3 together with the following result in the case where g is
conformally flat in some open subset of the manifold:
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Theorem 3.1. Let k > 1 be an integer, (M, g) be a smooth, closed Riemannian
manifold of dimension n > 2k + 1 and f be a smooth positive function in M.
Assume that Yar, > 0 and there exists a mazimal point & of f such that m (§) > 0
(see (3.2) for the definition of the mass), VIf(§) =0 for all j € {1,...,n — 2k}
and g is conformally flat in some neighborhood of the point . Then there exists a
nontrivial solution u € C** (M) to the equation (1.1), which minimizes the energy
functional (2.1). If moreover the Green’s function of the operator Py is positive,
then w is positive, which implies that the Q-curvature of order 2k of the metric
u? ("=2K) g is equal to ﬁf

Notice that Theorem 1.2 is now a direct consequence of Theorems 1.1 and 3.1.

Throughout this section, we fix a point £ € M and assume that 2k +1 < n <
2k + 3 or g is conformally flat in some neighborhood of £. In these cases, our proofs

are based on the method of Schoen [36] for the resolution of the remaining cases
of the Yamabe problem, which has been extended to the k = 2 case by Gursky
and Malchiodi [21] and Hang and Yang [22,23]. We consider a family of global test

functions involving the Green’s function and derive an expression for the energy
functional I ¢4 (see (2.1)) associated with the equation (1.1). Then, analogously
as in the case n > 2k 4 4, by using the expansion obtained in Proposition 2.1, we
obtain the existence of a nontrivial solution to the equation (1.1) under a positivity
assumption on the mass of the operator Pyy.

We now discuss the definition of the mass. By applying a conformal change of
metric, we may assume that

g satisfies (2.2) in some neighborhood Q of £ if 2k +1 <n <2k+3 21

g is flat in some neighborhood €2 of ¢ if n > 2k + 4. (3.1)
Then, in the geodesic normal coordinates at £ determined by g, the Green’s function
Gox () := Goi, (x, ) of the operator Py has the expansion

Gor (2) = bg dg (2, " +m (€) + o (1) (3.2)

as * — & (see Lee and Parker [28] for £k = 1 and Michel [31] for k& > 2), where
m (§) € M is called the mass of the operator Py at the point £ and the constant
by is defined as

b;}c = k-1 k=—D!'n—2)(n—4) - (n—2k)wp_1.

It is important to point out that the sign of m (£) does not depend on our choice
of conformal metric (see Michel [31, Théoréme 3.1]).

Now that the mass is defined, we consider the regular part of the Green’s func-
tion, which plays a crucial role in the proofs of our theorems. It follows from (3.2)
that there exists a continuous function hgy in M such that hoy (§) = m (§) and

Gk (2) = by dg (,6)° " + hop (z) Vo e M\ {¢}. (3.3)

Furthermore, we have that hor, € C*° () in the case where g is flat in  and
hor € W2kP(Q) for all p € [1,n/(n—4)) if n > 5 and p € [1,00) if n € {3,4}
in the case where 2k +1 < n < 2k + 3 and g satisfies (2.2) in Q. This follows
from classical elliptic regularity theory (see Agmon, Douglis and Nirenberg [1])
together with the fact that Pophop = AFhor = 0 in © in the case where g is flat
in Q@ and Porhor = O(d, (&*™) in Q in the case where g satisfies (2.2) in Q
(see [31, Lemme 2.2]).
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For every p > 0, letting x and U, be as in Section 2, we consider the test
functions V), defined as

Vi (2) = Uy (2) b5 1% (x(dy (2,€))har () + (1 = x (dg (x,€))) Gar () (3.4)

for all x € M. Note that V,, € W?2k:2n/(n+2k) (M) 50 that in particular the integral
Sy VuPorV, dog is well defined. We then obtain the following:

Proposition 3.1. Let k > 1 be an integer, (M, g) be a smooth, closed Riemannian
manifold of dimensionn > 2k+1, f be a smooth positive function in M and & be a
point in M such that VI f (£) =0 for all j € {1,...,n — 2k} and (3.1) holds true.
Let Iy, ¢4 be as in (2.1) and V, be as in (3.4). Then, as p — 0,

1 n—2k

g (Vi) = writ (21@71)']3(771@ Qk) e

x <1 ~b,1B (g g)_l B (g B)m (&) p" % + o (u" ") ) (3.5)

Proof of Proposition 3.1. The first step in the proof is as follows:

Step 3.1. Assume that g satisfies (3.1) for some point € € M. Then, as u — 0,

—1
/ Vi PorV, dug = 225w, (2k — 1)1 B (f —k,2k)
M

(rensn (3 5) "B () meu o). o

Proof of Step 3.1. We write

Vi (@) = b;}c H

(CL‘) + (UH (CL’) — MHE%X (dg (l‘,f)) dg (5575)2’67”)

W (@)

for all z € M\ {¢}. Straightforward estimates give

/ VMPQICV;L d’Ug = / VuP2kWu dvg
M B(&,2m0)

:/ (U + b 1™ hak ) P,
B(ﬁ,’l‘o)

+ O un_;k/ | Por W, dug
B(&,2r0)\B(&,r0)

n—z<k

= / Uy Pox W, dvg + bk ™= haow P W, dv,
B(&,r0)

B(f,’l"o)
+O<un—2k Z /
‘a|§2k‘ B(0,2r0)\B(0,r0)

:/ U Pox W duog + b5 0=
B(&,r0)

We claim that

o (2 +1aP) F ]

dx)

/ hok Pox W, dvg + o(u™~2%). (3.7)
B(&,r0)

n—2(k—2)

| Pk W, — A*U,| < Cu™ 7 dy (,6)°™" Vo € B(&mo) \ {¢} (3.8)
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for some constant C' independent of x, p and £. Assuming (3.8) and proceeding as
in Step 2.3, it then follows from (3.7) that

/ V, PoV, dv, = / U AU, dvg + b7 % "= / hor A*U, dv,
M B(&,ro) ’ B(&,r0)

2k—n

+0 ,u"’z(k’l)/ |x\27" (MQ + \x|2 )kT dr | +o (‘un72k)
B(O,’I‘o)

n—2k

:/ U, ARU, da + b4 i
B(0,r0) ’

Ly plro/w? ms2
_ 921 (95 _ 1)1 n_ ' / e
227 (2% — 1) w1 B (5 — k,2k) < 0 e

(ro/p)? TnT_2

+ b;lkm &) un_%/ Mdr) +o0 (,u"_zk)
o 1n™

= 92k=n (9 _ 1)lw, B (g — 21<;)_1
(remin(55) B () mow o).

Therefore, it remains to prove (3.8) to complete the proof of Step 3.2. Notice that
(3.8) is clearly satisfied with C' = 0 in the case where n > 2k + 4 and g is flat
in . Therefore, we may assume in what follows that we are in the case where
2k + 1 <n <2k + 3 and g satisfies (2.2) in Q. By using (2.7), we obtain

/ ho (expE x) A’S[NI# dr+o (,u"fzk)
B(O,To)

Py, = AF + kAR () 4+ k (k= 1) A2 (T, V) + (Te, V?))
+k(k—1)(k—2)AF3(Ty, V3 + 2, (3.9)

where Z is a smooth linear operator of order less than 2k — 3 if k > 2, Z := 0 if
k = 1. By induction, one can check that

AP () = JARFY = 2(k = 1) (VJ, VAF2) 4 0273 (3.10)
AM2(T, V) = (T, VAF2) + 0773, (3.11)
AF2 (T, V?) = (T, VPAFT2) — 2 (k — 2) (VT3 VPAF3) 40273 (3.12)

and
ATy, V?) = (Ty, VEAP3) 4 02F 73, (3.13)

where 02*73 is as in the proof of Step 2.1. It follows from (2.3), (2.4) and (3.9)-
(3.13) that

% (k — 1) (k +1)

Py W, = A"W, + ((Ric, VPA*2W,,) — (6 Ric, VA* 2,

3(n—2)
— (k—2) (VRic, V*A*2W,) ) + O (dg (,6)2 [V221W, |
2k—4
4y (0 [VHW, |+ Y (VW) (3.14)

=0
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in M\ {¢}, uniformly with respect to p and €. By using geodesic normal coordinates
together with (2.3) and a Taylor expansion, it follows from (3.14) that

(P2kWu — AkUﬂ) (exp§ x) = (P2kWu — AkWM) (exp6 x)
2k—4
-0 (|g;|2 [V2E=2, (2) | + o] [VH2W, () | + ) [VIW, () |) (3.15)
§=0
uniformly with respect to x € B (O r0) \ {0}, 1 and f, where
Wi (@) = 0" U (/) ~ e

Similarly as in (2.40), we obtain that for every j € N, there exists a constant C;
independing of x and p such that

VW, (@) [ = p™ 5 [WW (/)]
Li/2]
Z 2k—n— 4J+4m ] 2m }(9] mW (T/M )’ (316)

for all z € B(0,70)\ {0}, where r := |z|* and
W(z)=W(r):=(1+ r)(2k—n)/2 _ p(2k—n)/2

Furthermore, it is easy to see that

2kn212

|oIW (r)| < Cjr (3.17)
for some constant C} independent of 7. We then obtain (3.8) by putting together
(3.15)—(3.17). This completes the proof of Step 3.1. O

Step 3.2. Assume that g satisfies (3.1) for some point £ € M. Let f be a smooth
function f in M such that VI f (£) =0 forallj € {1,...,n —2k}. Then, as u — 0,

[ aman, =2 (s© 20,8 (5.5) B (50) F@m©u

+ o0 (u"2k) ) (3.18)

Proof of Step 3.2. By using a Taylor expansion together with straightforward esti-
mates, we obtain

M B(§,m0)

-7 [ Uﬁzdvg+2}§b;}m"32k / FhaU2
(&;m0) B(&,ro)

n 2k
n—2k+1 1% n— H n
+0 / <x| + <2 2) + pn2k (2 2) )dm-i—u
B(0,r0) p? + || p2 + ||

*Edug + O (1)

(ro/p)? 252
Wn, nWwy, e roz dr e
Q)+ S Om© e [ ro (™). (3.9
2 n—2 0 (1 + 7«) 2
Then (3.18) follows from (2.45), (2.47) and (3.19). O

We can now end the proofs of Proposition 3.1 and Theorems 1.1 and 1.2.
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End of proof of Proposition 3.1. We obtain (3.5) by putting together (3.6) and
(3.18). O

Proofs of Theorem 1.1 in the case where 2k +1 <n < 2k + 3 and of Theorem 5.1.
Let £ € M be a maximal point of f such that V7 f (¢) = 0forall j € {1,...,n — 2k}
(notice that for a maximal point, this is equivalent to (1.2) in the case where
2k +1 < n < 2k+ 3). By applying Proposition 3.1 together with a conformal
change of metric, we then obtain that if m (£) > 0, then there exists a function
V € W2k:2n/(+2k) (A1) \ {0} such that

n—2k
Lijy (V) <wi (2k—1)1B (g - k,2k>_1 (gg\}(f (x))_ "
Notice that W2k:27/(n+2k) (M) < L2k (M) so that a density argument gives
2k n -1 -k
seontl g () < (26 1)!B (5 — 2k) (E%f (z))
We can then conclude the proofs of Theorems 1.1 and 3.1 by applying Theorem 3
of Mazumdar [30]. O
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