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Abstract. We consider the problem of minimizing the second conformal
eigenvalue of the conformal Laplacian in a conformal class of metrics with

renormalized volume. We prove, in dimensions n ∈ {3, . . . , 10}, that a mini-

mizer for this problem does not exist for metrics sufficiently close to the round
metric on the sphere. This is in striking contrast with the situation in di-

mensions n ≥ 11, where Ammann and Humbert [1] obtained the existence

of minimizers for the second conformal eigenvalue on any smooth closed non-
locally conformally flat manifold. As a byproduct of our techniques, we also

obtain a lower bound on the energy of sign-changing solutions of the Yamabe

equation in dimensions 3, 4 and 5, which extends a result obtained by Weth [54]
in the case of the round sphere.

1. Introduction and main result

We let (M, g) be a smooth closed Riemannian manifold of dimension n ≥ 3. We
let [g] be the conformal class of the metric g. For each metric ĝ ∈ [g], we denote by
Lĝ the conformal Laplacian of (M, ĝ), i.e.

Lĝ := ∆ĝ + cn Scalĝ,

where ∆ĝ := −divĝ (∇·) is the Laplace–Beltrami operator of (M, ĝ), Scalĝ is the
scalar curvature of (M, ĝ) and cn := n−2

4(n−1) . Since M is closed, for each ĝ ∈ [g] the

eigenvalues of Lĝ form a nondecreasing sequence (λk (Lĝ))k∈N such that

λ1 (Lĝ) < λ2 (Lĝ) ≤ · · · ≤ λk (Lĝ) ≤ · · · → ∞.

For each k ∈ N, the k-th conformal eigenvalue of (M, [g]) is defined as

Λk (M, [g]) := inf
ĝ∈[g]

(
λk (Lĝ) Vol (M, ĝ)

2
n

)
,

where λk (Lĝ) is the k-th eigenvalue of Lĝ and Vol (M, ĝ) is the volume of (M, ĝ).
This invariant was first introduced and studied by Ammann and Humbert [1] and
further studied by El Sayed [17]. It is not difficult to see that if Λ1 (M, [g]) ≥ 0,
then Λ1 (M, [g]) coincides with the classical Yamabe invariant, i.e.

Λ1 (M, [g]) = inf
ĝ∈[g]

(
Vol (M, ĝ)

2−n
n

∫
M

Scalĝ dvĝ

)
,

where dvĝ is the volume element of (M, ĝ). In this paper, we consider the case
of metrics with positive Yamabe invariant. In this case, it follows from the work
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of Trudinger [52], Aubin [3] and Schoen [48] that Λ1 (M, [g]) is always attained by
some smooth positive function, and, moreover,

Λ1 (M, [g]) ≤ Λ1 (Sn, [g0])

with equality if and only if (M, g) is conformally equivalent to the round n-sphere
(Sn, g0).

In this paper, we focus on the case where k = 2 and Λ1 (M, [g]) > 0. In this
case, Ammann and Humbert [1] obtained

2Λ1 (M, [g])
n
2 ≤ Λ2 (M, [g])

n
2 ≤ Λ1 (M, [g])

n
2 + Λ1 (Sn, [g0])

n
2 . (1.1)

They also obtained that Λ2 (M, [g]) is attained provided the second inequality in
(1.1) is strict, i.e.

Λ2 (M, [g])
n
2 < Λ1 (M, [g])

n
2 + Λ1 (Sn, [g0])

n
2 (1.2)

and that if (1.2) is satisfied, then Λ2 (M, [g]) is attained at a “generalized” metric

ĝ := |u|2
∗−2

g for some u ∈ C3,ϑ (M) for some ϑ < 2∗ − 2 (see Section 2 for
more details). Ammann and Humbert also obtained in [1] that, by test-functions
computations, if n ≥ 11 and (M, g) has non-vanishing Weyl tensor somewhere, then

(1.2) is satisfied and that, for each n ≥ 3, Λ2 (Sn, [g0]) = 2
2
nΛ1(Sn, [g0]) is never

attained.

Except for the trivial case of the round sphere (Sn, g0), the existence of mini-
mizers for Λ2 (M, [g]) in dimensions 3 to 10 is an open problem. Our main result
provides a partial negative answer to this question:

Theorem 1.1. Assume that 3 ≤ n ≤ 10. Then there exist δ ∈ (0,∞) and m ∈ N
such that, for every smooth metric g on Sn, if ‖g − g0‖Cm(Sn) < δ, then

Λ2 (Sn, [g])
n
2 = Λ1 (Sn, [g])

n
2 + Λ1 (Sn, [g0])

n
2

and Λ2 (Sn, [g]) is not attained by any generalized metric.

We recall that every smooth metric on Sn which is not conformally equivalent to
g0 is also not locally conformally flat. Theorem 1.1 establishes a striking dichotomy
between the case where 3 ≤ n ≤ 10 and the case where n ≥ 11. First, when
3 ≤ n ≤ 10, Theorem 1.1 has to be understood as a perturbative nonexistence
result of extremals for Λ2 (Sn, [g]) for g close to the round metric g0, the analogue of
which fails when n ≥ 11 by the results of [1]. Second, Theorem 1.1 establishes that,
when 3 ≤ n ≤ 10, (1.2) cannot be guaranteed by solely enforcing local geometric
assumptions on g. This again strongly contrasts with the results of [1] in dimensions
n ≥ 11, where a minimizer for Λ2 (M, [g]) is proven to exist for any g which is not
locally conformally flat. Determining whether (1.2) holds true and whether there
exist extremals for Λ2 (M, [g]) when 3 ≤ n ≤ 10 therefore requires new ideas.
Theorem 1.1 can be understood as a step forward in this direction : when (M, g) =
(Sn, g) it reveals that a necessary condition for (1.2) to hold is that g is sufficiently
far from the round metric g0 in a strong sense. Not being conformally diffeomorphic
to g0, in particular, is not enough, which is very surprising in view of the definition
of Λ2. How Theorem 1.1 may adapt on a general manifold is still unclear, but it
seems to hint that global infomation on (M, g) is needed to obtain (1.2).

Eigenvalue optimization problems in conformal classes have attracted a lot of
attention in recent years. When n ≥ 3 and in the case of the conformal Laplacian
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Lg which we consider here, the invariants Λk (M, [g]) that we define are the only
meaningful ones when Λ1 (M, [g]) > 0. Indeed, it is for instance proven by Ammann
and Jammes [2] that, if Λk (M, [g]) > 0, then

sup
ĝ∈[g]

(
λk (Lĝ) Vol (M, ĝ)

2
n

)
=∞.

On the other hand, in the case where Λk (M, [g]) < 0, it is natural to replace the
infimum in the definition of Λk by a supremum since otherwise Λk (M, [g]) = −∞
(see Proposition 8.1 in [1]). This therefore leads to a maximization problem, which is
very different in nature. We refer to the work of Gursky and Pérez-Ayala [20] where
this problem is studied in the case where k = 2. Most of previous work on eigenvalue
optimization problems in conformal classes of closed manifolds of dimension larger
than or equal to 2 concern the Laplace–Beltrami operator ∆g, for which again only
the maximization problem is interesting. In dimensions n ≥ 3, the maximization of
conformal eigenvalues of ∆g was recently investigated by Pétrides [41]. In dimension
2, this problem was investigated by many authors. In this case, we refer for instance
to the work of Nadirashvili and Sire [37], Petrides [39,40], Matthiesen and Siffert [32]
and Karpukhin and Stern [24,25]. To the best of our knowledge, another remarkable
feature of Theorem 1.1 is that it is the first nonexistence result of extremals for
conformal eigenvalues of any kind (for any dimension n ≥ 2 and any of the operators
∆g and Lg) for metrics that are not conformal to the round metric on Sn.

The structure of the paper is as follows. In Section 2, we discuss the connection
between the second conformal eigenvalue and sign-changing solutions of the Yamabe
equation of lowest energy. We also state a stronger result than Theorem 1.1, in
dimensions 3, 4 and 5, namely Theorem 2.1. Section 3 is devoted to a sharp
bubbling analysis of sign-changing solutions of the Yamabe equation whose energies

converge to Λ2 (Sn, [g0])
n
2 . We prove bubble-tree convergence results as well as

sharp pointwise asymptotics. We then prove Theorems 1.1 and 2.1 in Section 4.

2. The second conformal eigenvalue and sign-changing solutions of
the Yamabe equation

The second conformal eigenvalue of the conformal Laplacian has a strong con-
nection with sign-changing solutions of the Yamabe equation

Lgu = |u|2
∗−2

u in M, (2.1)

where 2∗ := 2n
n−2 is the critical Sobolev exponent. Indeed, Ammann and Humbert [1]

proved that if Λ1 (M, [g]) ≥ 0 and Λ2 (M, [g]) is attained, then there exists a sign-

changing function u ∈ L2∗ (M) such that the “generalized” metric ĝ := |u|2
∗−2

g
satisfies

λ2 (Lĝ) = Λ2 (M, [g]) and Vol (M, ĝ) = 1, i.e.

∫
M

|u|2
∗

dvg = 1

(see [1, Section 3.2] for the rigorous definition of λ2 (Lĝ) when u ∈ L2∗ (M) \ {0}). It
is also shown in [1] that u is a second “generalized” eigenvector associated to λ2 (Lĝ),
which implies that u ∈ C3,ϑ (M) for some ϑ < 2∗ − 2 and, up to a renormalization
factor, u can be made into a sign-changing solution of (2.1) with energy∫

M

|u|2
∗

dvg = Λ2 (M, [g])
n
2 .
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Furthermore, in this case u is a sign-changing solution of (2.1) of least energy among
all sign-changing solutions, and it has exactly two nodal domains. We again refer to
[1, Section 3] for more details. As mentioned in the introduction, (1.2) is sufficient
to ensure that Λ2 (M, [g]) is attained. Equation (2.1) has to be understood as the
Euler-Lagrange equation for minimizers of Λ2 (M, [g]). Its hidden meaning is that,

for a generalized metric ĝ := |u|2
∗−2

g attaining Λ2 (M, [g]), λ2 (Lĝ) is simple. This
unusual feature for an eigenvalue optimization problem is a direct consequence of
the definition of Λ2 (M, [g]) as an infimum (see for instance [20, Remark 6.1] for a
detailed explanation).

A consequence of Theorem 1.1 is that, for every smooth metric g on Sn sufficiently
close to g0 in Cm (Sn) for some sufficiently large m ∈ N, there does not exist any
sign-changing solution u of (2.1) such that∫

Sn
|u|2

∗
dvg ≤ Λ1 (Sn, [g])

n
2 + Λ1 (Sn, [g0])

n
2 .

Theorem 1.1 thus gives a lower bound on the energy of sign-changing solutions
of the Yamabe equation (2.1) on the sphere of dimension lower than or equal to
10 when equipped with metrics sufficiently close to the round metric. In fact, in
dimensions 3, 4 and 5, we obtain a stronger result:

Theorem 2.1. Assume that n ∈ {3, 4, 5}. There exist δ, ε ∈ (0,∞) and m ∈ N
such that, for every smooth metric g on Sn, if ‖g − g0‖Cm(Sn) < δ, then the energy

of every sign-changing solution of the Yamabe equation

Lgu = |u|2
∗−2

u in Sn

is greater than 2Λ1 (Sn, [g0])
n
2 + ε.

Theorem 2.1 extends a result obtained by Weth [54] in the exact case of the
round sphere. Notice, however, that the result of Weth [54] holds for all dimensions
n ≥ 3. This is specific to the exact case g = g0. Indeed, as shown by the results of
Ammann and Humbert [1], at least in the case where n ≥ 11, Theorem 2.1 is false
when g is not conformal to g0.

We prove Theorems 1.1 and 2.1 in the next two sections. By using (2.1) together
with a contradiction argument, which is explained in details at the beginning of
Section 3, the proof of Theorems 1.1 and 2.1 amounts to ruling out the existence
of sequences (uk)k∈N of sign-changing solutions of (2.1) with g = gk, where gk
converges to g0 in Cm (Sn) as k →∞ for all m ∈ N such that the energies of (uk)k
converge to 2Λ1 (Sn, [g0])

n
2 . In dimensions 6 to 10, we assume in addition that,

for each k ∈ N, Λ2 (Sn, [gk]) is attained by the generalized metric |uk|2
∗−2

gk. The
proof of Weth [54] in the case where gk = g0 for all k ∈ N relies on the symmetries
of (Sn, g0) and uses the action of the conformal group of the sphere on the sign-
changing solutions of the Yamabe equation. In our setting, however, the metrics
(gk)k do not have any symmetries in general, and we need to perform a much finer
asymptotic analysis of (uk)k. As a first result, in Lemma 3.1, we prove that (uk)k
behaves like the difference between two positive solutions of the Yamabe equation
on the sphere (see (3.12)). This amounts to say that Λ2 (Sn, [gk]) is asymptotically
attained by the disjoint union of two round spheres. The rest of Section 3 is devoted
to obtaining sharp pointwise estimates for the blow-up of (uk)k, which, in particular,
captures the local geometry of (gk)k. This refined blow-up analysis is based on
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iterated estimates and makes crucial use of arguments previously developed in the
context of positive solutions (see the work of Chen and Lin [7], Schoen [49, 50], Li
and Zhu [30], Druet [15], Marques [31], Li and Zhang [28, 29] and Khuri, Marques
and Schoen [26]; see also the counterexamples in high dimensions of Brendle [4]
and Brendle and Marques [5] and the survey article by Brendle and Marques [6])
and more recently in the context of sign-changing solutions (see Premoselli [42] and
Premoselli and Vétois [44–46]). We finally prove Theorems 1.1 and 2.1 in Section 4
by using the analysis developed in Section 3.

Although similar at first glance, the settings of Theorems 1.1 and 2.1 are quite
different from that of the celebrated compactness result of Khuri, Marques and
Schoen [26]. We point out two crucial differences: first, since the functions (uk)k
change sign, the concentration points are neither isolated nor simple; second, since
gk → g0 as k →∞ in Cm (Sn) for all m ∈ N, the Riemannian masses of the metrics
(gk)k converge to 0 at any point of Sn, so that no local sign restriction argument
is available to rule out blow-up. Therefore, and unlike in [26], our contradiction
does not originate from a local sign restriction due to the Positive Mass Theo-
rem. In dimensions 3, 4 and 5, instead, we obtain a contradiction by means of a
Pohozaev-type identity in a region where we observe that a large virtual mass is
created solely by the interaction between the two bubbles. In dimensions 6 to 10,
the Pohozaev-type identity is not sufficient to conclude since additional lower-order
terms appear which involve more of the geometry of the metrics (gk)k at the concen-
tration points. In this case, we still manage to obtain a sharp asymptotic estimate
on Λ1 (Sn, [gk]) (see (4.2)). We then obtain a contradiction with this estimate by
doing another estimation of Λ1 (Sn, [gk]) based on a better family of test-functions,
which construction again relies on the analysis of Section 3. The contradiction
when 6 ≤ n ≤ 10 thus really comes from the minimality of Λ2 (Sn, [gk]).

There is an abundant literature on sign-changing solutions of the Yamabe equa-
tion. In addition to the above-mentioned articles of Ammann and Humbert [1],
El Sayed [17] and Gursky and Perez-Ayala [20], we also refer on this topic to the
historic work of Ding [14] and the more recent work of Clapp [8], Clapp, Pistoia
and Weth [11], del Pino, Musso, Pacard and Pistoia [12, 13], Fernandez, Palmas
and Petean [18], Fernandez and Petean [19], Medina, Musso and Wei [35], Musso
and Medina [34], Musso and Wei [36], Premoselli and Vétois [44] and Weth [54] in
the case of the sphere, Clapp and Fernandez [9] in the case of manifolds satisfying
some symmetry assumptions and Clapp, Pistoia and Tavares [10], Premoselli and
Robert [43] and Premoselli and Vétois [46] in the case of more general manifolds.
Other results in this spirit have been obtained for some classes of sign-changing
solutions of equations with different potential functions than the Yamabe equa-
tion (see our previous articles [44, 45, 53]). Theorems 1.1 and 2.1 can also be seen
as a continuation of our study, initiated in [46], of minimal energy sign-changing
blowing-up solutions of the Yamabe equation.

3. Asymptotic analysis and symmetry estimates

The section and the next are devoted to the proofs of Theorems 1.1 and 2.1.
We begin with recalling some well-known facts about constant-sign solutions of
the Yamabe equation in Rn and Sn. By splitting the solutions into positive and
negative parts, it is easy to see that there does not exist any sign-changing solution
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of the Yamabe equation

Lg0u = |u|2
∗−2

u in Sn. (3.1)

with energy smaller than or equal to 2Λ1 (Sn, [g0])
n
2 . Moreover, according to the

classification result of Obata [38], every nonzero nonnegative solution of (3.1) has

energy equal to Λ1 (Sn, [g0])
n
2 and is either constant or of the form

u =

(
2
√
n (n− 2)µ

2µ2 +
(
4− µ2

)(
1− cos (dg0 (·, x))

))n−2
2

for some x ∈ Sn and µ ∈ (0, 2). We also recall that, letting ξ be the Euclidean
metric on Rn and ∆ξ := −

∑n
i=1 ∂

2
yi , the stereographic projection gives a bijection

between the solutions of (3.1) and the solutions u of the equation

∆ξu = |u|2
∗−2

u in Rn, (3.2)

which belong to the energy space D1,2 (Rn) defined as the closure of C∞c (Rn) with

respect to the norm ‖∇·‖2L2(Rn). By using this bijection, we obtain that every

nonzero nonnegative solution of (3.2) has energy equal to Λ1 (Sn, [g0])
n
2 and is of

the form

u =

(√
n (n− 2)µ̃

µ̃2 + |· − y|2

)n−2
2

for some y ∈ Rn and µ̃ ∈ (0,∞), and that there does not exist any sign-changing

solution u ∈ D1,2 (Rn) of (3.2) with energy smaller than or equal to 2Λ1 (Sn, [g0])
n
2 .

It is well-known that the positive solutions of (3.2) are the extremals for the Sobolev
inequality in Rn, i.e.

Λ1 (Sn, [g0]) = inf
v∈C∞c (Rn)\{0}

∫
Rn
|∇v|2 dy(∫

Rn
|v|2

∗
dy

)n−2
n

,

where dy is the volume element of (Rn, ξ).
We prove Theorems 1.1 and 2.1 by contradiction. From now until the end of

the paper, we assume that 3 ≤ n ≤ 10. We assume that there exists a sequence
(gk)k∈N of smooth metrics on Sn such that, for each m ∈ N, gk → g0 in Cm (Sn) as

k → ∞ and for each k ∈ N, there exists a sign-changing solution uk ∈ C3,ϑ (Sn),
ϑ < 2∗ − 2, of the Yamabe equation

Lgkuk = |uk|2
∗−2

uk in Sn. (3.3)

In the case where 3 ≤ n ≤ 5, in view of Theorem 2.1, we only assume that

lim sup
k→∞

∫
Sn
|uk|2

∗
dvgk ≤ 2Λ1 (Sn, [g0])

n
2 . (3.4)

In the case where 6 ≤ n ≤ 10, in view of Theorem 1.1, we assume moreover that,

for each k ∈ N, Λ2 (Sn, [gk]) is attained by the generalized metric |uk|2
∗−2

gk and∫
Sn
|uk|2

∗
dvgk = Λ2 (Sn, [gk])

n
2 , (3.5)

which implies that uk is a sign-changing solution of (3.3) of least-energy among all
sign-changing solutions. We point out in passing that, since uk satisfies (3.3), the
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celebrated results of Hardt and Simon [22] gives that uk vanishes on a set of measure
zero and is therefore admissible in the definition of Λ2 (Sn, [gk]) (see [1, Section 3]).
By putting together (1.1) and (3.4), we obtain

lim
k→∞

∫
Sn
|uk|2

∗
dvgk = 2Λ1 (Sn, [g0])

n
2 . (3.6)

A first simple remark which follows from the previous discussion is that the sequence
(uk)k blows up as k →∞, i.e.

‖uk‖L∞(Sn) →∞ as k →∞. (3.7)

The following result provides a first description of the blowing-up behavior of (uk)k:

Lemma 3.1. Let (gk)k and (uk)k be as defined above. Then, up to a subsequence
and a change of sign, there exist x1, x2 ∈ Sn and sequences (x1,k)k and (x2,k)k in
Sn and (µ1,k)k and (µ2,k)k in (0, 2) such that

(i) µ2,k ≤ µ1,k for all k ∈ N.

(ii) For each i ∈ {1, 2}, xi,k → xi and µi,k → 0 as k →∞.

(iii)
µ1,k

µ2,k
+

d2
k

µ1,kµ2,k
→∞ as k →∞, where dk := dg0 (x1,k, x2,k).

(iv) For each i ∈ {1, 2} and k ∈ N, define

Bi,k :=

(
2
√
n (n− 2)µi,k

2µ2
i,k +

(
4− µ2

i,k

)(
1− cos (dg0 (·, xi,k))

))n−2
2

,

where dg0 is the distance function on (Sn, g0). Then∥∥∥∥∥uk −
(
B1,k −B2,k

)
B1,k +B2,k

∥∥∥∥∥
L∞(Sn)

→ 0 as k →∞. (3.8)

(v) For each k ∈ N,

uk (x2,k) = min
M

uk = −B2,k (x2,k) = −

(√
n (n− 2)

µ2,k

)n−2
2

. (3.9)

(vi) If, moreover,

√
µ1,kµ2,k = o (dk) as k →∞, (3.10)

then for each k ∈ N,

uk (x1,k) = max
M

uk = B1,k (x1,k) =

(√
n (n− 2)

µ1,k

)n−2
2

. (3.11)

In what follows, for simplicity, we rewrite (3.8) as

uk = B1,k −B2,k + o (B1,k +B2,k) in C0 (Sn) as k →∞. (3.12)

We point out that the assumption n ≤ 10 comes into play in this lemma. Indeed,
as is explained in the proof below, it is crucial in order to obtain (3.8).
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Proof of Lemma 3.1. Since (uk)k blows-up with finite energy as k → ∞ by (3.6)
and (3.7), a celebrated result of Struwe [51] (see also the book of Druet, Hebey
and Robert [16] and the article of Mazumdar [33] for versions in the Riemannian
setting) shows that, up to a subsequence, there exist m ∈ {1, 2}, x1, . . . , xm ∈ Sn
and sequences (x̃1,k)k , . . . , (x̃m,k)k in Sn and (µ̃1,k)k , . . . , (µ̃m,k)k in (0,∞) such
that

x̃i,k → xi ∈ Sn and µ̃i,k → 0 as k →∞ ∀i ∈ {1, . . . , n} (3.13)

and

uk = B0 +

m∑
i=1

±B̃i,k + o (1) in H1 (Sn) as k →∞, (3.14)

where H1 (Sn) = H1 (Sn, g0), B0 is a constant-sign solution of (3.1), which may be

equal to 0, and B̃i,k is given by

B̃i,k :=

(
2
√
n (n− 2)µ̃i,k

2µ̃2
i,k +

(
4− µ̃2

i,k

)(
1− cos (dg0 (·, x̃i,k))

))n−2
2

.

Moreover, in the case where m = 2, up to a subsequence, we may further assume
that

µ̃2,k ≤ µ̃1,k and
µ̃1,k

µ̃2,k
+

dg0 (x̃1,k, x̃2,k)
2

µ̃1,kµ̃2,k
→∞ as k →∞ (3.15)

(see the remark at the end of Section 3.2 in [16]). A consequence of (3.14) is that

‖uk‖H1(Sn) = ‖B0‖H1(Sn) +mΛ1 (Sn, [g0])
n
2 + o (1) as k →∞. (3.16)

It follows from (3.6) and (3.16) that either [m = 2 and B0 = 0] or [m = 1 and B0

is a non-zero constant-sign solution of (3.1)].

Assume first that m = 1 and B0 is a non-zero constant-sign solution of (3.1).
Up to a change of sign, me may assume that B0 is positive. Since the functions
(uk)k change sign, it then follows from (3.14) that

uk = B0 − B̃1,k + o(1) in H1 (Sn) as k →∞. (3.17)

By using the pointwise blow-up theory for sign-changing solutions developed by
Premoselli [42] (see also [16, 21] in the case of positive solutions), it follows from
(3.17) that

uk = B0 − B̃1,k + o
(
B̃1,k

)
+ o (1) in C0 (Sn) as k →∞. (3.18)

The proof of [42] is written for a fixed metric g but adapts straightforwardly to the
case of a strongly converging sequence of metrics (gk)k∈N as is the case here. By
using (3.18), since n ≤ 10 and the Weyl tensor of (Sn, g0) vanishes everywhere, The-
orem 1.2 of Premoselli and Vétois [46] yields a contradiction with (3.18). The proof
of [46] is again stated for a fixed metric but its arguments adapt straightforwardly
since they only rely on (3.18) (see [46, Section 5] for more details).

We have thus proven that m = 2 and B0 = 0 hold in (3.14). Up to a change of
sign, since the functions (uk)k change sign, we then obtain

uk = B̃1,k − B̃2,k + o (1) in H1 (Sn) as k →∞. (3.19)

By using again the pointwise blow-up theory of [42], it follows from (3.19) that

uk = B̃1,k − B̃2,k + o
(
B̃1,k + B̃2,k

)
in C0 (Sn) as k →∞. (3.20)
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By putting together (3.13), (3.15) and (3.20), we obtain (i) to (iv) in Lemma 3.1.

We now prove that the centers and weights of (B1,k)k and (B2,k)k can be chosen
so that (v) and (vi) are also satisfied. For each k ∈ N, we let x1,k, x2,k, µ1,k and
µ2,k be such that (3.9) and (3.11) hold true. For each i ∈ {1, 2}, by using (3.9),
(3.11) and (3.20), we obtain

µ
2−n
2

i,k ≤

(
2µ̃i,k (1 + o (1))

2µ̃2
i,k +

(
4− µ̃2

i,k

)(
1− cos (dg0 (xi,k, x̃i,k))

))n−2
2

≤ µ̃
2−n
2

i,k (1 + o (1)) as k →∞ (3.21)

and

µ
2−n
2

i,k ≥ µ̃
2−n
2

i,k (1 + o (1))

−

(
2µ̃3−i,k (1 + o (1))

2µ̃2
3−i,k +

(
4− µ̃2

3−i,k
)(

1− cos (dg0 (x̃1,k, x̃2,k))
))n−2

2

as k →∞.

(3.22)

We now assume that√
µ̃1,kµ̃2,k = o (dg0 (x̃1,k, x̃2,k)) as k →∞. (3.23)

It follows from (3.15) and (3.23) that(
2µ̃3−i,k

2µ̃2
3−i,k +

(
4− µ̃2

3−i,k
)(

1− cos (dg0 (x̃1,k, x̃2,k))
))n−2

2

= o
(
µ̃

2−n
2

i,k

)
as k →∞,

which together with (3.21) and (3.22) give

µi,k ∼ µ̃i,k and dg0 (xi,k, x̃i,k) = o (µi,k) as k →∞. (3.24)

By passing to a subsequence and exchanging (B1,k)k and (B2,k)k if necessary and
using (3.13), (3.15), (3.20) and (3.24), we now obtain that the sequences (x1,k)k,
(x2,k)k, (µ1,k)k and (µ2,k)k simultaneously satisfy (i) to (vi) in Lemma 3.1. �

Lemma 3.1 shows that the singular metric |uk|
4

n−2 gk decomposes asymptotically
as the disjoint union of two round spheres centered at x1,k and x2,k, respectively.
The location of these two points is unknown. Lemma 3.1 does not claim, in par-
ticular, that dk = dg0 (x1,k, x2,k) has a positive limit as k → ∞. In order to prove
Theorems 1.1 and 2.1, we need a more precise description of the blow-up behavior
of uk. As is often the case with the Yamabe equation, it is convenient to work with
the conformal normal coordinate system introduced by Lee and Parker [27]. We
define this coordinate system in the following:

Lemma 3.2. Let (gk)k be as in Lemma 3.1. Let ε0 ∈ (0,∞) and ϕ0 be a smooth
positive function on Sn × Sn such that

ϕ0 (x, y) :=

(
2

1 + cos (dg0 (x, y))

)n−2
2

∀x ∈ Sn, y ∈ Bg0 (x, r0) , (3.25)

where
r0 := 2 tan−1 (ε0/2) .

Then there exists a sequence (ϕk)k of smooth positive functions on Sn × Sn such
that the following holds:
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(i) ϕk → ϕ0 in Cm (Sn × Sn) as k →∞ for all m ∈ N.

(ii) For each k ∈ N and x ∈ Sn,

ϕk (x, x) = 1 and ∇ϕk (x, ·) (x) = 0. (3.26)

(iii) For each k ∈ N and x ∈ Sn, let gk,x and ĝk,x be the metrics on Sn and Rn,
respectively, defined as

gk,x := ϕk (x, ·)2∗−2
gk and ĝk,x := expk,x

∗gk,x,

where expk,x is the exponential map at x with respect to gk,x and where we
identify TxM with Rn. Then

dvĝk,x (y) =
(
1 + o

(
|y|N

))
dy as k →∞ (3.27)

uniformly with respect to x ∈ Sn and y ∈ Bξ (0, ε0), where ξ is the Euclidean
metric on Rn, dvĝk,x and dy are the volume elements of (Rn, ĝk,x) and
(Rn, ξ), respectively, and N ∈ N can be chosen arbitrarily large.

Proof of Lemma 3.2. The results follow from Theorem 5.1 in [27] with again a
simple adaptation here due to the facts that gk → g0 in Cm (Sn) as k →∞ for all
m ∈ N and

exp0,x
∗g0,x = ξ in Bξ (0, ε0) , (3.28)

where
g0,x := ϕ0 (x, ·)2∗−2

g0

and exp0,x is the exponential map at x with respect to g0,x. �

As observed by Khuri, Marques and Schoen [26], it is convenient to express the
conformal normal coordinate system in exponential form, which gives the following:

Lemma 3.3. Let (ĝk,x)k,x and ε0 be as in Lemma 3.2. Then

(i) For each k ∈ N and x ∈ Sn, there exists a smooth symmetric 2-covariant
tensor hk,x in Rn such that

ĝk,x = exp (hk,x) , (3.29)

hk,x (y) y = 0 ∀y ∈ Rn (3.30)

and
tr (hk,x (y)) = o

(
|y|N

)
as k →∞ (3.31)

uniformly with respect to x ∈ Sn and y ∈ Bξ (0, ε0), where exp and tr are
the matrix exponential and trace maps, respectively.

(ii) The tensor hk,x satisfies

hk,x (y) = Hk,x (y) + o
(
|y|max(n−3,2) )

as k →∞ (3.32)

uniformly with respect to x ∈ Sn and y ∈ Bξ (0, ε0), where Hk,x (y) is of the
form

Hk,x (y) =

n−4∑
|α|=2

hk,x,αy
α

for some trace-free symmetric real matrices hk,x,α which do not depend on
y. Moreover,

Hk,x (y) y = 0 and tr (Hk,x (y)) = 0 ∀y ∈ Rn (3.33)

and (3.32) can be differentiated.
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(iii) The scalar curvature of ĝk,x satisfies

Scalĝk,x (y) =

n∑
a,b=1

∂ya∂yb (hk,x)ab (y)−
n∑

a,b,c=1

(
∂yb
(
(Hk,x)ab ∂yc (Hk,x)ac

)
− 1

2
∂yb (Hk,x)ab ∂yc (Hk,x)ac +

1

4

(
∂yc (Hk,x)ab

)2)
(y)

+ O

 dn∑
|α|=2

|hk,x,α|2 |y|2|α|
+ o

(
|y|n−1 )

as k →∞ (3.34)

and

Scalĝk,x (y) =

n∑
a,b=1

∂ya∂yb (hk,x)ab (y) + O

 dn∑
|α|=2

|hk,x,α|2 |y|2|α|−2


+ o

(
|y|max(n−3,2) )

as k →∞ (3.35)

uniformly with respect to x ∈ Sn and y ∈ Bξ (0, ε0), where (hk,x)ab and
(Hk,x)ab are the coefficients of hk,x and Hk,x, respectively, and

dn :=

[
n− 2

2

]
.

Remark that (3.30) and the first identity in (3.33) can also be written as
n∑
b=1

hk,x (y)ab yb = 0 and

n∑
b=1

Hk,x (y)ab yb = 0 ∀a ∈ {1, . . . , n} , y ∈ Rn.

We also point out that in the case where 3 ≤ n ≤ 5, (3.32) and (3.35) simply give

hk,x (y) = o
(
|y|2

)
and Scalĝk,x (y) = o

(
|y|2

)
as k →∞

uniformly with respect to x ∈ Sn and y ∈ Bξ (0, ε0).

Proof of Lemma 3.3. We refer to [26, Section 4] for the proofs of (3.29), (3.30) and
(3.31). By using (3.30) and (3.31) together with simple linear algebra considera-
tions, we then obtain (3.33). That the remainder terms in (3.34) and (3.35) are

respectively o
(
|y|n−1 )

and o
(
|y|max(n−3,2) )

follows from (3.28), [4, Proposition 26]
and the fact that gk → g0 in Cm (Sn) as k →∞ for all m ∈ N. �

For each k ∈ N, x ∈ Sn and d ∈ {2, . . . , n− 4}, we define

Hk,x,d (y) :=
∑
|α|=d

hk,x,αy
α ∀y ∈ Rn. (3.36)

It is easy to see that Hk,x,d is a homogeneous polynomial of degree d and

Hk,x =

n−4∑
d=2

Hk,x,d.

As a consequence of Lemma 3.3, we obtain
n∑
b=1

(Hk,x,d (y))bb = 0 and

n∑
b=1

(Hk,x,d (y))ab yb = 0 ∀a ∈ {1, . . . , n} , y ∈ Rn.

(3.37)
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For each d ∈ {0, . . . , n− 4}, we define

wk,x,d (y) :=
∑
|α|=d

n∑
a,b=1

(hk,x,α)ab ∂ya∂yb (yα) ∀y ∈ Rn. (3.38)

It is easy to see that wk,x,d is a homogeneous polynomial of degree d − 2 ∈
{0, . . . , n− 6}, which by (3.35) captures the main term in the Taylor expansion
of Scalĝk,x (y) at 0. We claim that, for each k ∈ N and x ∈ Sn,

wk,x,d (y) = 0 ∀y ∈ Rn, d ∈ {0, 1, 2, 3} . (3.39)

This is obvious in the case where d ∈ {0, 1}. When d ∈ {2, 3}, wk,x,d is a homo-
geneous polynomial of order 0 or 1, respectively. By using (3.35) and remarking
that

Scalĝk,x (y) = O
(
|y|2

)
uniformly with respect to y ∈ Bg0 (x, r0) and k ∈ N, which follows from properties
of the conformal normal coordinates (see [27]), we obtain (3.39). As a consequence
of (3.39), we obtain that if 3 ≤ n ≤ 7, then

wk,x,d (y) = 0 ∀y ∈ Rn, d ∈ {0, . . . , n− 4} , (3.40)

hence (3.38) is trivial in this case. In dimensions n ≥ 8, another result we need from
Khuri, Marques and Schoen [26] (see also Li and Zhang [28,29]) is the following:

Lemma 3.4. Assume that n ≥ 8. Let (hk,x,α)k,x,α be as in Lemma 3.3. For each

k ∈ N, x ∈ Sn and d ∈ {4, . . . , n− 4}, let wk,x,d be defined by (3.38). Then there
exists a unique family of real numbers (γk,x,d,l,m)0≤m≤[(d−2)/2],0≤l≤m+2 such that

the function vk,x,d : Rn → R defined by

vk,x,d (y) :=
(
1 + |y|2

)−n2 [(d−2)/2]∑
m=0

m+2∑
l=0

γk,x,d,l,m |y|2l ∆m
ξ wk,x,d ∀y ∈ Rn

solves the equation

∆ξvk,x,d = (2∗ − 1)U2∗−2
0 vk,x,d + U0wk,x,d in Rn, (3.41)

where

U0 (y) :=

(√
n (n− 2)

1 + |y|2

)n−2
2

∀y ∈ Rn.

Moreover,

vk,x,d (0) = |∇vk,x,d (0)| = 0 (3.42)

and, for each j ∈ N,

∣∣∇jvk,x,d (y)
∣∣ = O

∑
|α|=d

|hk,x,α|
(1 + |y|)n−d−2+j

 (3.43)

uniformly with respect to x ∈ Sn, y ∈ Rn and k ∈ N.

Proof of Lemma 3.4. It is easy to see that

wk,x,d (y) =

n∑
a,b=1

∂ya∂yb (Hk,x,d)ab (y) = divξ divξHk,x,d (y) ∀y ∈ Rn, (3.44)
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so that, in particular, wk,x,d is a homogeneous polynomial of degree d − 2 ∈
{2, . . . , n− 6}. We recall that two homogeneous polynomials p and q in Rn are
said to be orthogonal if ∫

Sn−1

pqdσ = 0,

where dσ is the volume element of the round metric on the (n− 1)-sphere Sn−1.
Since wk,x,d is homogeneous of degree d− 2, we obtain∫

Sn−1

wk,x,d dσ = (n+ d− 2)

∫
Bn
wk,x,d dy, (3.45)

where Bn := Bξ (0, 1). On the other hand, by using (3.37) and (3.44) together with
an integration by parts, we obtain∫

Bn
wk,x,d dy =

n∑
a,b=1

∫
Sn−1

∂yb (Hk,x,d)ab (y) ya dσ (y)

=

n∑
b=1

∫
Sn−1

(
∂yb

(
n∑
a=1

(Hk,x,d)ab (y) ya

)
− (Hk,x,d)bb (y)

)
dσ (y)

= 0. (3.46)

It follows from (3.45) and (3.46) that wk,x,d is orthogonal to 1. In a similar way,
for each i ∈ {1, . . . , n}, we obtain∫

Sn−1

wk,x,d (y) yi dσ (y) = (n+ d− 1)

∫
Bn
wk,x,d (y) yi dy (3.47)

and∫
Bn
wk,x,d (y) yi dy =

n∑
a=1

∫
Bn
∂ya

(
n∑
b=1

∂yb (Hk,x,d)ab (y) yi − (Hk,x,d)ai (y)

)
dy

=

n∑
a=1

∫
Sn−1

(
n∑
b=1

∂yb (Hk,x,d)ab (y) yi − (Hk,x,d)ai (y)

)
ya dσ (y)

= 0. (3.48)

It follows from (3.47) and (3.48) that wk,x,d is orthogonal to yi. We are now in
position to apply [26, Proposition 4.1] (see also the remark below), from which
Lemma 3.4 then follows. �

From now on, we let (gk)k, (uk)k, (x1,k)k, (x2,k)k, (µ1,k)k, (µ2,k)k and (dk)k be

as in Lemma 3.1, (ϕk)k, (ĝk,x)k,x,
(
expk,x

)
k,x

, ε0 be as in Lemma 3.2, (hk,x,α)k,x,α
and dn be as in Lemma 3.3 and (vk,x,d)k,x,d be as in Lemma 3.4. We now introduce

some additional notations of radii and rescaled functions. For each k ∈ N, we define

%1,k :=
dk
µ1,k

and %2,k :=

√
µ1,k

µ2,k
+

d2
k

µ1,kµ2,k
. (3.49)

For each k ∈ N and i ∈ {1, 2}, we define

expi,k := expk,xi,k , hi,k,α := hk,xi,k,α and vi,k,d := vk,xi,k,d (3.50)

as well as

ûi,k (y) := µ
n−2
2

i,k

(
ϕk (xi,k, ·)−1

uk
)(

expi,k (µi,ky)
)
∀y ∈ Rn (3.51)
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and

v̂i,k := cn

n−4∑
d=4

µdi,kvi,k,d. (3.52)

In the case where 3 ≤ n ≤ 7, v̂i,k = 0 (see the discussion around (3.40)).

To prove Theorems 1.1 and 2.1, we need refined asymptotics on the functions
(uk)k. In the following lemma, we improve the a priori estimates of Lemma 3.1 and

obtain a sharp description of uk + (−1)
i
Bi,k near xi,k, which depends on the local

geometry of gk near this point. After scaling, this amounts to obtaining refined

pointwise estimates on ûi,k + (−1)
i
U0 in Euclidean balls of radii of order %i,k. The

analysis of [26] does not directly apply here since the functions (uk)k change sign
and, as a consequence, the blow-up points (x1,k)k and (x2,k)k are not isolated and
simple (in particular, dk = dg0 (x1,k, x2,k) may tend to 0 as k → ∞). Our refined
estimates are as follows:

Lemma 3.5. Let (gk)k, (uk)k, (x1,k)k, (x2,k)k, (µ1,k)k, (µ2,k)k and (dk)k be as in

Lemma 3.1, (ϕk)k, (ĝk,x)k,x,
(
expk,x

)
k,x

, ε0 be as in Lemma 3.2, (hk,x,α)k,x,α and

dn be as in Lemma 3.3 and (vk,x,d)k,x,d be as in Lemma 3.4. Let i ∈ {1, 2} and

(%k)i,k, (ûi,k)k and (v̂i,k)k be as in (3.49), (3.51) and (3.52), respectively. In the
case where i = 1, assume that

µ1,k = o (dk) (i.e. %1,k →∞) as k →∞ (3.53)

and (3.11) holds true (observe that (3.53) implies (3.10) since µ2,k ≤ µ1,k for all
k ∈ N). In the case where i = 2, we do not make any additional assumptions. Then
there exist δ0 ∈ (0, ε0/π) and k0 ∈ N such that

2∑
j=0

(1 + |y|)j
∣∣∇j(ûi,k + (−1)

i
(U0 − v̂i,k)

)
(y)
∣∣

= O


dn−1∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|−2
+

µn−3
i,k

1 + |y|
if n ≥ 6

+ %2−n
i,k

 (3.54)

uniformly with respect to y ∈ Bξ (0, δ0%i,k) and k > k0.

In the case where n ∈ {6, 7}, the sum in the right-hand side of (3.54) is empty.

Proof of Lemma 3.5. We adapt the arguments in the proof of [26, Proposition 5.1],
taking into account a general configuration for (x1,k)k and (x2,k)k. In particular,
we assume neither that dk 6→ 0 as k →∞ nor that the blow-up points (x1,k)k and
(x2,k)k are isolated and simple. Since gk → g0 and ϕk (xi,k, xi,k) = 1, we obtain

dg0
(

expi,k (y) , xi,k
)

= (1 + o (1)) dgk
(

expi,k (y) , xi,k
)

= |y|+ O
(
|y|2

)
+ o (|y|) as k →∞ (3.55)

uniformly with respect to y in compact subsets of Rn. Moreover, since dk ≤ π and
µ2,k ≤ µ1,k → 0, we obtain

µ1,k%1,k = dk ≤ π (3.56)

and

µ2,k%2,k =

√
µ1,kµ2,k +

µ2,k

µ1,k
d2
k ≤ dk + O (µ1,k) ≤ π + o (1) as k →∞. (3.57)
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Since gk,xi,k → g0,xi in Cm (Sn) as k → ∞ for all m ∈ N, it follows from (3.56)
and (3.57) that there exist δ0 ∈ (0, ε0/π) and k0 ∈ N such that, for each k >
k0, δ0µi,k%i,k is smaller than the injectivity radius at xi,k of the metric gk,xi,k or,
equivalently, δ0%i,k is smaller than the injectivity radius at 0 of the rescaled metric

ĝi,k := ĝk,xi,k (µi,k·) . (3.58)

By letting k0 be smaller if necessary, (3.56) and (3.57) also give

µi,k |y| ≤ ε0 ∀y ∈ Bξ (0, δ0%i,k) . (3.59)

We restrict ourselves to giving the proof of (3.54) for j = 0 as the estimates on the
derivatives then follow by standard elliptic theory. Since ϕk → ϕ0 in Cm (Sn × Sn)
for all m ∈ N, xi,k → xi as k → ∞ and δ0 < ε0/π, it follows from (3.12), (3.25),
(3.56) and (3.57) that∣∣(ûi,k + (−1)

i
U0

)
(y)
∣∣

= O
(
µ
n−2
2

i,k B3−i,k
(

expi,k (µi,ky)
))

+ o (U0 (y)) as k →∞ (3.60)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). Moreover, by using (3.55), (3.56) and
(3.57), we obtain

dg0
(

expi,k (µi,ky) , x3−i,k
)

≥ dk − dg0
(

expi,k (µi,ky) , xi,k
)

≥ (1− δ0 + o (1)) dk + O
(

(δ0dk)
2

+ δ0µ3−i,k
)

as k →∞ (3.61)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). By letting δ0 be smaller if necessary,
it follows from (3.61) that

µ
n−2
2

i,k B3−i,k
(

expi,k (µi,ky)
)

= O
(
%2−n
i,k

)
(3.62)

uniformly with respect to y ∈ Bξ (0, δ0%i,k) and k > k0. By combining (3.60) and
(3.62), we obtain∣∣(ûi,k + (−1)

i
U0

)
(y)
∣∣ = O

(
%2−n
i,k

)
+ o (U0 (y)) as k →∞ (3.63)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). Moreover, (3.43) gives

|v̂i,k (y)| = O

 n−4∑
|α|=4

|hi,k,α|µ|α|i,k |y|
|α|+2

(1 + |y|)n

 = o (U0 (y)) as k →∞ (3.64)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). For each k > k0, we define

mi,k := max
Bξ(0,δ0%i,k)

∣∣(ûi,k + (−1)
i
(U0 − v̂i,k)

)∣∣
and

ψi,k := m−1
i,k

(
ûi,k + (−1)

i
(U0 − v̂i,k)

)
.

By using (3.53) for i = 1 and Lemma 3.1 (iii) for i = 2, we obtain %i,k → 0 as
k → ∞ in both cases. By using (3.63) and (3.64), we then obtain mi,k → 0 as
k → ∞. By using the conformal invariance of the conformal Laplacian, we can
rewrite (3.3) as

∆ĝi,k ûi,k + cnµ
2
i,k Scalĝi,k ûi,k = |ûi,k|2

∗−2
ûi,k in Rn. (3.65)
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Moreover, by using (3.41), we obtain

∆ξ v̂i,k = (2∗ − 1)U2∗−2
0 v̂i,k + U0ŵi,k in Rn, (3.66)

where

ŵi,k := cn

n−4∑
d=4

µdi,kwk,xi,k,d. (3.67)

By using (3.65) and (3.66) together with the equation ∆ξU0 = U2∗−1
0 , we obtain

∆ĝi,kψi,k + cnµ
2
i,k Scalĝi,k ψi,k = (2∗ − 1)U2∗−2

0 ψi,k +m−1
i,kfi,k (3.68)

in Bξ (0, δ0%i,k), where

fi,k := (−1)
i (

∆ĝi,k −∆ξ

)
(U0 − v̂i,k)− (−1)

i
cnµ

2
i,k Scalĝi,k v̂i,k

+ (−1)
i
U0

(
cnµ

2
i,k Scalĝi,k −ŵi,k

)
+ |ûi,k|2

∗−2
ûi,k + (−1)

i
U2∗−1

0

− (2∗ − 1)U2∗−2
0

(
(−1)

i
v̂i,k +mi,kψi,k

)
. (3.69)

We now estimate the terms in the right-hand side of (3.69). Since U0 is radially
symmetric around 0, it follows from (3.27) that

(
∆ĝi,k −∆ξ

)
U0 (y) = O

(
µNi,k |y|

N−1 |∇U0 (y)|
)

= O

(
(µi,k |y|)N

(1 + |y|)n

)
(3.70)

uniformly with respect to y ∈ Bξ (0, δ0%i,k) and k > k0. We recall that, in the case
where 3 ≤ n ≤ 7, v̂i,k = 0 for all k ∈ N. When n ≥ 8, by using Lemmas 3.3 and 3.4
together with straightforward estimates and the fact that n− 4 ≥ dn, we obtain(

∆ĝi,k −∆ξ

)
v̂i,k (y)− (−1)

i
cnµ

2
i,k Scalĝi,k (y) v̂i,k (y)

= O
(
|∇ĝi,k (y)| |∇v̂i,k (y)|+ |(ĝi,k − ξ) (y)|

∣∣∇2v̂i,k (y)
∣∣+ µ2

i,k

∣∣Scalĝi,k (y) v̂i,k (y)
∣∣)

= O

dn−1∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|

+ o

(
µn−3
i,k

(1 + |y|)3

)
as k →∞ (3.71)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). By using (3.32), (3.35) and (3.64), we
obtain

U0 (y)
(
cnµ

2
i,k Scalĝi,k −ŵi,k

)
(y)

=

O

dn−1∑
|α|=4

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|

+ o

(
µn−3
i,k

(1 + |y|)3

)
if n ≥ 6


+
µ2
i,k (µi,k |y|)max(n−3.2)

(1 + |y|)n−2 as k →∞ (3.72)

and (
|ûi,k|2

∗−2
ûi,k + (−1)

i
U2∗−1

0 − (2∗ − 1)U2∗−2
0

(
(−1)

i
v̂i,k +mi,kψi,k

))
(y)

= O
(
U0 (y)

2∗−3 (
v̂i,k (y)

2
+ (mi,kψi,k (y))

2 ))
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=

O

dn−1∑
|α|=4

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|

+ o

(
µn−3
i,k

(1 + |y|)3

)
if n ≥ 6


+ o

(
mi,kU0 (y)

2∗−2 |ψi,k (y)|
)

as k →∞ (3.73)

uniformly with respect to y ∈ Bξ (0, δ0%i,k). We now let Ĝi,k be the Green’s function
of ∆ĝi,k + cnµ

2
i,k Scalĝi,k in Bξ (0, δ0%i,k) with zero Dirichlet boundary condition on

∂ Bξ (0, δ0%i,k). By definition of ĝi,k, it is easy to see that

Ĝi,k (x, y) = µn−2
i,k G̃i,k (µi,kx, µi,ky) ∀x, y ∈ Bξ (δ0%i,k) , x 6= y,

where G̃i,k is the Green’s function of ∆ĝk,xi,k
+cn Scalĝk,xi,k with Dirichlet boundary

condition in Bξ (0, δ0µi,k%i,k). Since gk → g0 in Cm (Sn) as k → ∞ for all m ∈ N,
it follows from (3.28) and (3.59) that ĝk,xi,k → ξ as k → ∞ in Cm (Bξ (0, ε0)) for

all m ∈ N. By using standard estimates for G̃i,k, which can be found for instance

in [47], it is not difficult to see that Ĝi,k satisfies

Ĝi,k (y, z) ≤ C |y − z|2−n ∀y, z ∈ Bξ (0, δ0%i,k) (3.74)

and∣∣∂νĜi,k (y, z)
∣∣ ≤ C |y − z|1−n ∀y ∈ Bξ (0, δ0%i,k) , z ∈ ∂ Bξ (0, δ0%i,k) (3.75)

for some constant C independent of k. A representation formula for (3.68) now
gives

ψi,k (y) =

∫
Bξ(0,δ0%i,k)

Ĝi,k (y, ·)
(

(2∗ − 1)U2∗−2
0 ψi,k +m−1

i,kfi,k
)

dvĝi,k

−
∫
∂ Bξ(0,δ0%i,k)

∂νĜi,k (y, ·)ψi,k dσĝi,k (3.76)

for all y ∈ Bξ (0, δ0%i,k), where ν and dσĝi,k are the outward unit normal vector
and volume element, respectively, induced by ĝi,k on ∂ Bξ (0, δ0%i,k). We observe
that (3.63) and (3.64) give

max
Bξ(0,δ0%i,k)\Bξ(0,δ0%i,k/2)

|ψi,k| = O
(
m−1
i,k%

2−n
i,k

)
(3.77)

uniformly with respect to k > k0. First considering the case where |y| ≤ δ0%i,k/2,
by putting together (3.70), (3.71), (3.72), (3.73), (3.74), (3.75), (3.76) and (3.77)
and using straightforward integral estimates, we obtain

ψi,k (y) = O

∫
Bξ(0,δ0%i,k)

|ψi,k (z)|dz

|y − z|n−2
(1 + |z|)4 +m−1

i,k


dn−1∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|−2

+
µn−3
i,k

1 + |y|
if n ≥ 6

}
+ %2−n

i,k

(
1 + (µi,k%i,k)

N
)))

= O

∫
Bξ(0,δ0%i,k)

|ψi,k (z)|dz

|y − z|n−2
(1 + |z|)4 +m−1

i,k


dn−1∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)n−2|α|−2

+
µn−3
i,k

1 + |y|
if n ≥ 6

}
+ %2−n

i,k

))
(3.78)
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uniformly with respect to y ∈ Bξ (0, δ0%i,k/2) and k > k0. It follows from (3.77)
that (3.78) actually remains true for y ∈ Bξ (0, δ0%i,k). We now claim that

mi,k = O


dn−1∑
|α|=2

|hi,k,α|2 µ2|α|
i,k + µn−3

i,k if n ≥ 6

+ %2−n
i,k

 (3.79)

uniformly with respect to k > k0. We assume by contradiction that (3.79) does not
hold true, i.e. there exists a subsequence (kj)j∈N such that kj →∞ and

dn−1∑
|α|=2

∣∣hi,kj ,α∣∣2 µ2|α|
i,kj

+ µn−3
i,kj

if n ≥ 6

+ %2−n
i,kj

= o
(
mi,kj

)
as j →∞. (3.80)

Since
∣∣ψi,kj ∣∣ ≤ 1 in Bξ

(
0, δ0%i,kj

)
and ĝi,kj → ξ in Cmloc (Rn) as j → ∞, it follows

from (3.68), (3.70), (3.71), (3.72) and (3.73) and standard elliptic estimates that,
up to a subsequence,

(
ψi,kj

)
j

converges in C1
loc (Rn) as j → ∞ to a solution ψ0 ∈

C∞ (Rn) of the equation

∆ξψ0 = (2∗ − 1)U2∗−2
0 ψ0 in Rn. (3.81)

On the other hand, by using (3.78) and (3.80), we obtain

ψi,kj (y) = O
(

(1 + |y|)−2 )
+ o (1) as j →∞ (3.82)

uniformly with respect to y ∈ Bξ
(
0, δ0%i,kj

)
. By passing to the limit as j → ∞

into (3.82), we then obtain

ψ0 (y) = O
(

(1 + |y|)−2 )
(3.83)

uniformly with respect to y ∈ Rn. By applying Lemma 2.4 in [7], it follows from
(3.81) and (3.83) that

ψ0 (y) = λ0

1− |y|2
n(n−2)(

1 + |y|2
n(n−2)

)n
2

+

n∑
i=1

λi
yi(

1 + |y|2
n(n−2)

)n
2
∀y ∈ Rn (3.84)

for some λ0, . . . , λn ∈ R. On the other hand, by using (3.9), (3.11), (3.26), and
(3.42), we obtain ψi,k (0) = |∇ψi,k (0)| = 0 for all k ∈ N, which gives ψ0 (0) =
|∇ψ0 (0)| = 0. It then follows from (3.83) and (3.84) that λ0 = · · · = λn = 0, and
so ψ0 = 0. Independently, for each k > k0, by definition of mi,k, there exists a point

yi,k ∈ Bξ (0, δ0%i,k) such that |ψi,k (yi,k)| = 1. It follows from (3.82) that
(
yi,kj

)
j

is bounded. This is in contradiction with the fact that ψi,kj → ψ0 = 0 as j → ∞
uniformly in compact subsets of Rn. This proves that (3.79) holds true. Finally,
(3.54) follows from (3.79) together with successive iterations of (3.78). This ends
the proof of Lemma 3.5. �

By using (3.43), (3.54) and (3.59) and observing that hk,xi,k → 0 in Cmloc (Rn) as
k →∞ for all m ∈ N and dn ≤ n− 4 when n ≥ 6, we obtain

2∑
j=0

(1 + |y|)j
∣∣∇j(ûi,k + (−1)

i
U0

)
(y)
∣∣

= O


n−4∑
|α|=2

|hi,k,α|µ|α|i,k
(1 + |y|)n−2−|α| +

µn−3
i,k

1 + |y|
if n ≥ 6

+ %2−n
i,k

 (3.85)
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uniformly with respect to y ∈ Bξ (0, δ0%i,k) and k > k0. Here again, in the case
where n ∈ {6, 7}, the sum in the right-hand side of (3.85) is empty. We frequently
use this estimate in what follows.

We now write a suitable Pohozaev-type identity:

Lemma 3.6. Let (%2,k)k, (û2,k)k and (ĝ2,k)k be as in (3.49), (3.51) and (3.58),
respectively, and k0 and δ0 be as in Lemma 3.5. Then, for each δ ∈ (0, δ0) and
k > k0,∫

Bξ(0,δ%2,k)

(
〈∇û2,k, ·〉ξ +

n− 2

2
û2,k

)( (
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
dy

=

∫
∂ Bξ(0,δ%2,k)

(
n− 2

2
û2,k∂ν û2,k + δ%2,k (∂ν û2,k)

2 − δ%2,k

2
|∇û2,k|2ξ

+
δ%2,k

2∗
|û2,k|2

∗
)

dσ, (3.86)

where ν and dσ are the outward unit normal vector and volume element, respec-
tively, of the metric induced by ξ on ∂ Bξ (0, δ%2,k).

Proof of Lemma 3.5. See for example (2.7) in [31]. �

We first estimate the boundary term of (3.86). We obtain the following:

Lemma 3.7. Let (%2,k)k, (û2,k)k and (ĝ2,k)k be as in (3.49), (3.51) and (3.58),
respectively. Then

lim
δ→0

lim
k→∞

(
%n−2

2,k

∫
∂ Bξ(0,δ%2,k)

(
n− 2

2
û2,k∂ν û2,k + δ%2,k (∂ν û2,k)

2

− δ%2,k

2
|∇û2,k|2ξ +

δ%2,k

2∗
|û2,k|2

∗
)

dσ

)
> 0. (3.87)

Proof of Lemma 3.7. By letting

ǔ2,k (y) := %n−2
2,k û2,k (%2,ky) and ǧ2,k (y) := ĝ2,k (%2,ky) ∀y ∈ Rn,

we obtain∫
∂ Bξ(0,δ%2,k)

(
n− 2

2
û2,k∂ν û2,k + δ%2,k (∂ν û2,k)

2 − δ%2,k

2
|∇û2,k|2ξ

+
δ%2,k

2∗
|û2,k|2

∗
)

dσ

= %2−n
2,k

∫
∂ Bξ(0,δ)

(
n− 2

2
ǔ2,k∂ν ǔ2,k + δ (∂ν ǔ2,k)

2 − δ

2
|∇ǔ2,k|2ξ

+
δ%−2

2,k

2∗
|ǔ2,k|2

∗
)

dσ . (3.88)

By recalling (3.12), (3.25), (3.55) and (3.57) and since δ0 < ε0/π, ϕk → ϕ0 in
Cm (Sn × Sn) for all m ∈ N, x2,k → x2, µ2,k ≤ µ1,k → 0 and %2,k →∞ as k →∞,
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we obtain

µ
n−2
2

2,k %n−2
2,k

(
ϕk (x2,k, ·)−1

B2,k

)(
exp2,k (µ2,k%2,ky)

)
=

(
(1 + o (1))

√
n (n− 2) (µ2,k%2,k)

2

µ2
2,k + (δµ2,k%2,k)

2

)n−2
2

=

(√
n (n− 2)

δ2

)n−2
2

+ o (1) as k →∞ (3.89)

and

µ
n−2
2

2,k %n−2
2,k

(
ϕk (x2,k, ·)−1

B1,k

)(
exp2,k (µ2,k%2,ky)

)
=

(
(2 + o (1))

√
n (n− 2)µ1,kµ2,k%

2
2,k

2µ2
1,k +

(
4− µ2

1,k

)
(1− cos (dg0 (x1,k, x2,k) + O (δµ2,k%2,k)))

)n−2
2

= `0 + O (δ) + o (1) as k →∞ (3.90)

uniformly with respect to y ∈ ∂ Bξ (0, δ) and δ ∈ (0, δ0), where

`0 :=


(√

n (n− 2) dg0 (x1, x2)
2

2 (1− cos (dg0 (x1, x2)))

)n−2
2

if dg0 (x1, x2) > 0

(n (n− 2))
n−2
4 if dg0 (x1, x2) = 0.

It follows from (3.12), (3.89) and (3.90) that

ǔ2,k (y) = `0 −

(√
n (n− 2)

δ2

)n−2
2

+ O (δ) + o (1) as k →∞ (3.91)

uniformly with respect to y ∈ ∂ Bξ (0, δ) and δ ∈ (0, δ0). On the other hand, by
using (3.54) together with standard elliptic theory, we obtain

ǔ2,k → ǔ2,0 in C1
loc

(
Bξ (0, δ)\ {0}

)
as k →∞,

where, by (3.91),

ǔ2,0 (y) := `0 −

(√
n (n− 2)

|y|2

)n−2
2

∀y ∈ Bξ (0, δ)\ {0} . (3.92)

By using (3.91) and (3.92), we obtain

lim sup
k→∞

∣∣∣∣ ∫
∂ Bξ(0,δ)

(
n− 2

2
ǔ2,k∂ν ǔ2,k + δ (∂ν ǔ2,k)

2 − δ

2
|∇ǔ2,k|2ξ

+
δ%−2

2,k

2∗
|ǔ2,k|2

∗
)

dσ−1

2
n
n−2
4 (n− 2)

n+6
4 ωn−1`0

∣∣∣∣ = O (δ) (3.93)

where ωn−1 is the volume of the round (n− 1)-sphere. Finally, (3.87) follows from
(3.88) and (3.93). �

Now considering the interior term of (3.86), we obtain the following:
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Lemma 3.8. Let (%2,k)k, (û2,k)k and (ĝ2,k)k be as in (3.49), (3.51) and (3.58),
respectively, and k0 and δ0 be as in Lemma 3.5. Then∫

Bξ(0,δ%2,k)

(
〈∇û2,k, ·〉ξ +

n− 2

2
û2,k

)( (
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
dy

= O

 dn∑
|α|=2

|h2,k,α|2 µ2|α|
2,k |lnµ2,k|ϑ(2|α|,n−2)

+ δ%2−n
2,k

 (3.94)

uniformly with respect to δ ∈ (0, δ0) and k > k0, where

ϑ (s, t) :=

{
1 if s = t

0 if s 6= t
∀s, t ∈ R.

Remark that by definition of ϑ, the term involving |lnµ2,k| only appears when
n is even and |α| = n−2

2 .

Proof of Lemma 3.8. By using (3.27), we obtain(
〈∇û2,k (y) , y〉ξ +

n− 2

2
û2,k (y)

)((
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
(y)

=

(
〈∇U0 (y) , y〉ξ +

n− 2

2
U0 (y) + O

(
|(û2,k + U0) (y)|+ |y| |∇ (û2,k + U0) (y)|

))
×
(
ŵ2,kU0 (y) + O

(∣∣(cnµ2
2,k Scalĝ2,k −ŵ2,k

)
(y)
∣∣ |û2,k (y)|

+ |ŵ2,k (y)| |(û2,k + U0) (y)|+ µN2,k |y|
N−1 |∇U0 (y)|

+ |∇ĝ2,k (y)| |∇ (û2,k + U0) (y)|+ |(ĝ2,k − ξ) (y)|
∣∣∇2 (û2,k + U0) (y)

∣∣)) . (3.95)

uniformly with respect to y ∈ Bξ (0, δ0%2,k) and k > k0. By using (3.32) and (3.85),
we obtain

|∇ĝ2,k (y)| |∇ (û2,k + U0) (y)|+ |(ĝ2,k − ξ) (y)|
∣∣∇2 (û2,k + U0) (y)

∣∣
= O

 n−4∑
|α|=2

|h2,k,α|2 µ2|α|
2,k

(1 + |y|)n−2|α| +
µ2

2,k (µ2,k |y|)max(n−3,2)

(1 + |y|)n−2 + µ2
2,k%

2−n
2,k

 (3.96)

uniformly with respect to y ∈ Bξ (0, δ0%2,k) and k > k0. Moreover, (3.85) gives

|(û2,k + U0) (y)|+ |y| |∇ (û2,k + U0) (y)| = O (U0 (y)) (3.97)

uniformly with respect to y ∈ Bξ (0, δ0%2,k) and k > k0. By using (3.35) together
with the fact that dn ≤ n− 4 when n ≥ 6, straightforward estimates give∣∣(cnµ2

2,k Scalĝ2,k −ŵ2,k

)
(y)
∣∣ |û2,k (y)|

= O

 n−4∑
|α|=2

|h2,k,α|2 µ2|α|
2,k

(1 + |y|)n−2|α| +
µ2

2,k (µ2,k |y|)max(n−3,2)

(1 + |y|)n−2

 (3.98)

uniformly with respect to y ∈ Bξ (0, δ0%2,k) and k > k0. Similarly straightforward
estimates using (3.38) and (3.67) give

|ŵ2,k (y)| |(û2,k + U0) (y)|

= O


n−4∑
|α|=2

|h2,k,α|2 µ2|α|
2,k

(1 + |y|)n−2|α| +
µn−1

2,k

1 + |y|
if n ≥ 6

+ µ2
2,k%

2−n
2,k

 , (3.99)
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uniformly with respect to y ∈ Bξ (0, δ0%2,k) and k > k0. By plugging (3.96), (3.97),
(3.98) and (3.99) into (3.95), we obtain(
〈∇û2,k (y) , y〉ξ +

n− 2

2
û2,k (y)

)((
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
(y)

=
n
n−2
2 (n− 2)

n
2
(
1− |y|2

)
2
(
1 + |y|2

)n−1 ŵ2,k (y) + O

(
n−4∑
|α|=2

|h2,k,α|2 µ2|α|
2,k

(1 + |y|)2n−2|α|−2

+
µ2

2,k (µ2,k |y|)max(n−3,2)

(1 + |y|)2n−4 +
µ2

2,k%
2−n
2,k

(1 + |y|)n−2 +
(µ2,k |y|)N

(1 + |y|)2n−2

)
(3.100)

uniformly with respect to y ∈ Bξ (0, δ%2,k), δ ∈ (0, δ0) and k > k0. We now integrate
(3.95) in Bξ (0, δ%2,k). By using (3.38), (3.46) and (3.67), we obtain∫

Bξ(0,δ%2,k)

n
n−2
2 (n− 2)

n
2
(
1− |y|2

)
2
(
1 + |y|2

)n−1 ŵ2,k (y) dy = 0. (3.101)

On the other hand, when 2 ≤ |α| ≤ n− 4, straightforward estimates give

∫
Bξ(0,δ%2,k)

µ
2|α|
2,k dy

(1 + |y|)2n−2|α|−2
= O



µ

2|α|
2,k if |α| < dn

µn−2
2,k |lnµ2,k| if |α| = dn

δn−2%2−n
i,k if |α| > dn


 (3.102)

uniformly with respect to δ ∈ (0, δ0) and k > k0. It follows from (3.100), (3.101)
and (3.102) that∫

Bξ(0,δ%2,k)

(
〈∇û2,k, ·〉ξ +

n− 2

2
û2,k

)( (
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
dy

= O

(
dn∑
|α|=2

|h2,k,α|2 µ2|α|
2,k |lnµ2,k|ϑ(2|α|,n−2)

+ δ%2−n
2,k

(
δ1−n (δµ2,k%2,k)

max(n−1,4)

+δ (µ2,k%2,k)
2

+ δN−n+1 (µ2,k%2,k)
N
))

(3.103)

uniformly with respect to δ ∈ (0, δ0) and k > k0. Finally, (3.94) follows from (3.57)
and (3.103). �

We point out that in the proofs of Lemmas 3.6, 3.7 and 3.8 we only used (3.54)
with i = 2, namely for the most concentrated bubble. We recall that while this
estimate holds true without any additional assumptions in the case where i = 2,
we need to show that (3.53) holds true in order to use it in the case where i = 1.
This is done in the next section.

4. Proofs of Theorems 1.1 and 2.1

In this section, we apply the analysis of Section 3 to prove Theorems 1.1 and 2.1.
By using Lemmas 3.6, 3.7 and 3.8, we can first complete the proof of Theorem 2.1:
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End of proof of Theorem 2.1. When n ∈ {3, 4, 5}, Lemma 3.8 gives∫
Bξ(0,δ%2,k)

(
〈∇û2,k, ·〉ξ +

n− 2

2
û2,k

)( (
∆ĝ2,k −∆ξ

)
û2,k + cnµ

2
2,k Scalĝ2,k û2,k

)
dy

= O
(
δ%2−n

2,k

)
uniformly with respect to δ ∈ (0, δ0) and k > k0, which, together with Lemma 3.6,
yields an obvious contradiction with Lemma 3.7 as δ → 0. �

In larger dimensions n ∈ {6, . . . , 10}, the Pohozaev identity of Lemma 3.6 alone
is not enough to conclude and we need to perform a more refined analysis. As a
first result, we obtain a priori estimates on (%1,k)k and (%2,k)k as well as a sharp
asymptotic expansion of Λ1 (Sn, [gk]) as k →∞. For each k ∈ N, we define

ζk (x, µ) :=

dn∑
|α|=2

|hk,x,α|2 µ2|α| |lnµ|ϑ(2|α|,n−2) ∀x ∈ Sn, µ > 0,

where ϑ is as in Lemma 3.8. By using the asymptotic analysis performed in Lem-
mas 3.1 to 3.8, we obtain the following:

Lemma 4.1. Let (µ1,k)k and (µ2,k)k be as in Lemma 3.1, dn be as in Lemma 3.3,
(%2,k)k and (h2,k,α)k,α be as in (3.49) and (3.50), respectively, and k0 be as in

Lemma 3.5. If 6 ≤ n ≤ 10, then

%2−n
1,k + %2−n

2,k = O
(

max
Sn

(ζk (·, µ1,k))
)

(4.1)

and

Λ1 (Sn, [gk]) = Λ1 (Sn, [g0]) + O
(

max
Sn

(ζk (·, µ1,k))
)

(4.2)

uniformly with respect to k > k0.

Proof of Lemma 4.1. We begin with proving that (4.1) holds true. It follows from
Lemmas 3.6, 3.7 and 3.8 that

%2−n
2,k = O (ζk (x2,k, µ2,k)) = o

({
µ4

2,k |lnµ2,k| if n = 6

µ4
2,k if 7 ≤ n ≤ 10

})
as k →∞. (4.3)

We assume by contradiction that, up to a subsequence,

dk = O (µ1,k) (4.4)

uniformly with respect to k > k0. It follows from (3.49) and (4.4) that

µ2,k

µ1,k
= O

(
%−2

2,k

)
,

which, together with (4.3), gives

µ2,k

µ1,k
= o

µ
2
2,k |lnµ2,k|

1
2 if n = 6

µ
8

n−2

2,k if 7 ≤ n ≤ 10


 = o (µ2,k) as k →∞. (4.5)

Clearly, (4.5) contradicts the fact that µ1,k → 0 as k →∞. This proves that (4.1)
holds true, and thus (3.10) and (3.11) hold true. Moreover, by using (4.1) and (4.3)
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together with (3.49) and the facts that µ2,k ≤ µ1,k, the function µ 7→ µ
n−2
2 |lnµ| is

decreasing and n−2
2 ≤ 4 when n ≤ 10, we obtain

%2−n
1,k = d2−n

k µn−2
1,k

∼ %2−n
2,k µ

n−2
2

1,k µ
−n−2

2

2,k

= O

µn−2
2

1,k

dn∑
|α|=2

|h2,k,α|2 µ
2|α|−n−2

2

2,k |lnµ2,k|ϑ(2|α|,n−2)


= O (ζk (x2,k, µ1,k)) (4.6)

uniformly with respect to k > k0. Finally, (4.1) follows from (4.3) and (4.6).

We now prove (4.2) by using (1.1) and (3.5) and estimating the energy of uk.
We claim that∫

Sn
|uk|2

∗
dvgk = 2Λ1 (Sn, [g0])

n
2 + O

(
max
Sn

(ζk (·, µ1,k))
)

(4.7)

uniformly with respect to k > k0, which, together with (1.1) and (3.5), implies
(4.2). We prove this claim. For each i ∈ {1, 2} and δ ∈ (0, δ0), we let g̃i,k := gk,xi,k
be given by Lemma 3.2. By using (3.3) together with a rescaling argument and the
conformal covariance of the conformal Laplacian, we obtain∫

Bg̃i,k (xi,k,δµi,k%i,k)

|uk|2
∗

dvg̃i,k

=
n

2

∫
Bgk,xi,k

(xi,k,δµi,k%i,k)

(
Lgkuk −

n− 2

n
|uk|2

∗−2
uk

)
uk dvg̃i,k

=
n

2

∫
Bξ(0,δ%i,k)

(
∆ĝi,k ûi,k + cnµ

2
i,k Scalĝi,k ûi,k −

n− 2

n
|ûi,k|2

∗−2
ûi,k

)
ûi,k dvĝi,k .

(4.8)

By integrating by parts, we obtain∫
Bξ(0,δ%i,k)

ûi,k∆ĝi,k ûi,k dvĝi,k

=

∫
Bξ(0,δ%i,k)

(
U0∆ĝi,kU0 + 2

(
ûi,k + (−1)

i
U0

)
∆ĝi,k ûi,k

−
∣∣∇(ûi,k + (−1)

i
U0

)∣∣2
ĝi,k

)
dvĝi,k +

∫
∂ Bξ(0,δ%i,k)

(
(−1)

i
U0∂ν

(
ûi,k + (−1)

i
U0

)
+
(
ûi,k + (−1)

i
U0

)
∂ν ûi,k

)
dσĝi,k . (4.9)

We recall that, by (4.6), Lemma 3.5 now applies to both i = 1 and i = 2. By using
(3.27), (3.54), (3.102), and (4.9), we obtain∫

Bξ(0,δ%i,k)

ûi,k∆ĝi,k ûi,k dvĝi,k

=

∫
Bξ(0,δ%i,k)

U0∆ξU0 dy +2

∫
Bξ(0,δ%i,k)

(
ûi,k + (−1)

i
U0

)
∆ĝi,k ûi,k

)
dvĝi,k
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+ O

∫
Bξ(0,δ%i,k)


n−4∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)2n−2|α|−2
+

µ2n−6
i,k

(1 + |y|)4 if n ≥ 6


+

%4−2n
i,k

(1 + |y|)2 +
(µi,k |y|)N

(1 + |y|)2n−2

)
dy

)

+ O

∫
∂ Bξ(0,δ%i,k)

 n−4∑
|α|=2

|hi,k,α|µ|α|i,k
(1 + |y|)2n−|α|−3

+
%2−n
i,k

(1 + |y|)n−1

 dσ


=

∫
Rn
U0∆ξU0 dy +2

∫
Bξ(0,δ%i,k)

(
ûi,k + (−1)

i
U0

)
∆ĝi,k ûi,k

)
dvĝi,k

+ O
(
ζk (xi,k, µi,k) + %2−n

i,k

)
(4.10)

uniformly with respect to k > k0. We now estimate the last two terms in the
right-hand side of (4.8). By using (3.27), (3.35), (3.85) and (3.102), we obtain

cnµ
2
i,k

∫
Bξ(0,δ%i,k)

Scalĝi,k û
2
i,k dvĝi,k

= cnµ
2
i,k

∫
Bξ(0,δ%i,k)

Scalĝi,k

(
U2

0 + 2ûi,k
(
ûi,k + (−1)

i
U0

)
−
(
ûi,k + (−1)

i
U0

)2)
dvĝi,k

=

∫
Bξ(0,δ%i,k)

(
ŵi,kU

2
0 + 2cnµ

2
i,k Scalĝi,k ûi,k

(
ûi,k + (−1)

i
U0

)
+ O

( ∣∣cnµ2
i,k Scalĝi,k −ŵi,k

∣∣U2
0 + µ2

i,k

∣∣Scalĝi,k
∣∣ ∣∣ûi,k + (−1)

i
U0

∣∣2))dvĝi,k

= 2cnµ
2
i,k

∫
Bξ(0,δ%i,k)

Scalĝi,k ûi,k
(
ûi,k + (−1)

i
U0

)
dvĝi,k

+ O

∫
Bξ(0,δ%i,k)

 n−4∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)2n−2|α|−2
+

µn−1
i,k

(1 + |y|)n−1 + µ4
i,k%

4−2n
i,k |y|2

+
µN+4
i,k |y|N+2

(1 + |y|)2n−4

)
dy

)

= 2cnµ
2
i,k

∫
Bξ(0,δ%i,k)

Scalĝi,k ûi,k
(
ûi,k + (−1)

i
U0

)
dvĝi,k

+ O
(
ζk (xi,k, µi,k) + %−ni,k

)
. (4.11)

uniformly with respect to k > k0. By using again (3.85) and (3.102), we obtain∫
Bξ(0,δ%i,k)

|ûi,k|2
∗

dvĝi,k

=

∫
Bξ(0,δ%i,k)

(
U2∗

0 + 2∗ |ûi,k|2
∗−2

ûi,k
(
ûi,k + (−1)

i
U0

)
+ O

(
U2∗−2

0

∣∣ûi,k + (−1)
i
U0

∣∣2)) dvĝi,k
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=

∫
Bξ(0,δ%i,k)

U2∗

0 dy +2∗
∫

Bξ(0,δ%i,k)

|ûi,k|2
∗−2

ûi,k
(
ûi,k + (−1)

i
U0

)
dvĝi,k

+ O

∫
Bξ(0,δ%i,k)


n−4∑
|α|=2

|hi,k,α|2 µ2|α|
i,k

(1 + |y|)2n−2|α| +
µ2n−6
i,k

(1 + |y|)6 if n ≥ 6


+

%4−2n
i,k

(1 + |y|)4 +
(µi,k |y|)N

(1 + |y|)2n

)
dy

)

=

∫
Rn
U2∗

0 dy +2∗
∫

Bξ(0,δ%i,k)

|ûi,k|2
∗−2

ûi,k
(
ûi,k + (−1)

i
U0

)
dvĝi,k

+ O
(
ζk (xi,k, µi,k) + %2−n

i,k

)
(4.12)

uniformly with respect to k > k0. By putting together (4.8), (4.9), (4.10), (4.11)

and (4.12) and using the equations (3.65) and ∆ξU0 = U2∗−1
0 , we obtain∫

Bg̃i,k (xi,k,δµi,k%i,k)

|uk|2
∗

dvg̃i,k =

∫
Rn
U2∗

0 dy + O
(
ζk (xi,k, µi,k) + %2−n

i,k

)
(4.13)

uniformly with respect to k > k0. We recall that∫
Rn
U2∗

0 dy = Λ1 (Sn, [g0])
n
2 . (4.14)

Moreover, by using (3.53) together with the definition of %1,k and the fact that
µ2,k ≤ µ1,k, we obtain that there exists δ1 ∈ (0, δ0) and k1 > k0 such that, for each
δ ∈ (0, δ1) and k > k1,

Bg̃1,k (x1,k, δµ1,k%1,k) ∩ Bg̃2,k (x2,k, δµ2,k%2,k) = ∅. (4.15)

On the other hand, by using similar estimates as in the beginning of the proof of
Lemma 3.5, we obtain∫

Sn\
2⋃
i=1

Bg̃i,k (xi,k, δµi,k%i,k)

|uk|2
∗

dvg̃i,k

= O

(
2∑
i=1

∫
Sn\Bg̃i,k (xi,k, δµi,k%i,k)

(B3−i,k)
2∗

dvg̃i,k

)
= O

(
%−n1,k + %−n2,k

)
(4.16)

uniformly with respect to k > k1. By using (4.1), (4.13), (4.14), (4.15) and (4.16)
together with the fact that µ2,k ≤ µ1,k, we obtain (4.7), which completes the proof
of Lemma 4.1. �

We are now in position to conclude the proof of Theorem 1.1. The idea to reach
a contradiction consists in directly estimating Λ1 (Sn, [gk]) with the help of suitable
test-functions. These test-functions are modeled on the first-order expansion of the
functions (uk)k as in (3.54), centered at maximum points of the functions (ζk)k
in M and more concentrated than the functions (B1,k)k. We prove that these
test-functions provide better competitors for Λ1 (Sn, [gk]) and yield a contradiction
with (4.2). As we mentioned in Section 2, our contradiction argument comes from
the very definition of Λ2 (Sn, [gk]) and its minimality. We cannot use a local sign
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restriction argument as in [26] here since all local masses vanish due to the fact
that gk → g0 in Cm (Sn) for all m ∈ N.

End of proof of Theorem 1.1. The form of the leading term of the test-functions
we use is inspired from the historic work of Schoen [48]. We add a lower-order
term inspired from the work of Li and Zhang [28, 29] and Khuri, Marques and
Schoen [26] (see also the early work of Hebey and Vaugon [23] using this idea of
adding a small correction term in the test-functions). For each k > k0, we let
xk ∈ Sn and µk ∈ (0,∞) be such that

ζk (xk, µ1,k) = max
Sn

(ζk (·, µ1,k)) and µk = λµ1,k, (4.17)

where λ ∈ (1,∞) is some fixed number to be chosen large later on. We let g̃k :=
gk,xk and expk := expk,xk be as in Lemma 3.2, Hk := Hk,xk and hk,α := hk,xk,α
be as in Lemma 3.3, wk,d := wk,xk,d be as in (3.38) and vk,d := vk,xk,d be as in
Lemma 3.4. Up to a subsequence, we may further assume that xk → x0 ∈ Sn as

k →∞. We then define g̃0 := g0,x0 . We let G̃0 be the Green’s function of Lg̃0 in Sn.

In particular, for each x ∈ Sn, G̃0 (x, ·) is a positive function in Sn\ {x} satisfying
the equation

Lg̃0G̃0 (x, ·) = 0 in Sn\ {x} . (4.18)

We let δ ∈ (0, ε0/2), where ε0 is as in Lemma 3.2. We let η be a smooth function
on [0,∞) such that η = 1 on [0, 1] and η = 0 on [2,∞). We define the functions

Bk :=

( √
n (n− 2)µk

µ2
k + dg̃k (xk, ·)2

)n−2
2

,

ŵk := cn

n−4∑
d=4

µdkwk,d,

v̂k := cn

n−4∑
|α|=4

µ
|α|
k vk,d,

vk := µ
−n−2

2

k v̂k ◦
(
µ−1
k exp−1

k

)
,

w̌k := cnµ
2
k

n∑
a,b,c=1

(
∂yb ((Hk)ab ∂yc (Hk)ac)

− 1

2
∂yb (Hk)ab ∂yc (Hk)ac +

1

4
(∂yc (Hk)ab)

2

)
(µk·) ,

Γk := n
n−2
4 (n− 2)

n+2
4 ωn−1µ

n−2
2

k G̃0 (xk, ·)

and

zk := η
(
δ−1 dg̃k (xk, ·)

)
(Bk − vk) +

(
1− η

(
δ−1 dg̃k (xk, ·)

))
Γk,

where ωn−1 is the volume of the round (n− 1)-sphere. We also define the metric

ĝk := exp∗k g̃k (µk·) .

We recall that, by Lemma 3.4, v̂k satisfies

∆ξ v̂k = (2∗ − 1)U2∗−2
0 v̂k + U0ŵk in Rn. (4.19)
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We claim that there exists Cn > 0 depending only on n such that

Λ1 (Sn, [g0])− Λ1 (Sn, [gk]) ≥ Cnζk (xk, µk) + o
(
µn−2
k

)
as k →∞. (4.20)

Before proving (4.20), we first show that this estimate yields a contradiction with
(4.2) when λ is chosen large enough, thus completing the proof of Theorem 1.1.
Since µ1,k = O

(
%−1

1,k

)
by (3.56), it follows from (4.1) and (4.17) that

µn−2
k = O (ζk (xk, µ1,k)) (4.21)

uniformly with respect to k > k0, where the constant in O (·) depends on λ, but
this is not a problem since this term is multiplied by o (1) in (4.20). Moreover, since
λ > 1, by definition of ζk, it is easy to see that

ζk (xk, µk) ≥ λ2ζk (xk, µ1,k) . (4.22)

It follows from (4.20), (4.21) and (4.22) that

Λ1 (Sn, [g0])− Λ1 (Sn, [gk]) ≥
(
λ2Cn + o (1)

)
ζk (xk, µ1,k) as k →∞,

which contradicts (4.2) when λ is chosen large enough.

We now prove (4.20). Since g̃k ∈ [gk] and zk ∈ C∞ (Sn), we obtain

Λ1 (Sn, [gk]) ≤

∫
Sn

(
|∇zk|2g̃k + cn Scalg̃k z

2
k

)
dvg̃k(∫

Sn
|zk|2

∗
dvg̃k

)n−2
n

. (4.23)

By definition of zk, it is easy to see that∫
Sn
|zk|2

∗
dvg̃k =

∫
Bg̃k (xk,δ)

|Bk − vk|2
∗

dvg̃k + o
(
µn−2
k

)
as k →∞. (4.24)

By using (3.27), (3.43) and (4.24) together with similar estimates as in (4.8)–(4.16),
we obtain∫

Sn
|zk|2

∗
dvg̃k =

∫
Bξ(0,δ/µk)

|U0 − v̂k|2
∗

dvĝk + o
(
µn−2
k

)
=

∫
Bξ(0,δ/µk)

(
U2∗

0 − 2∗U2∗−1
0 v̂k +

2∗ (2∗ − 1)

2
U2∗−2

0 v̂2
k

+ O
(
U2∗−3

0 |v̂k|3
))

dvĝk + o
(
µn−2
k

)
=

∫
Rn

(
U2∗

0 − 2∗U2∗−1
0 v̂k +

2∗ (2∗ − 1)

2
U2∗−2

0 v̂2
k

)
dy

+ O

∫
Bξ(0,δ/µk)

n−4∑
|α|=4

|hk,α|3 µ3|α|
k

(1 + |y|)2n−3|α| dy

+ o
(
µn−2
k

)
= Λ1 (Sn, [g0])

n
2 − 2∗

2

∫
Rn

(
2U2∗−1

0 v̂k − (2∗ − 1)U2∗−2
0 v̂2

k

)
dy

+ o
(
ζk (xk, µk) + µn−2

k

)
as k →∞. (4.25)

We now estimate the numerator in (4.23). By using (4.18) together with the defi-
nition of zk and the facts that xk → x0 in Sn and g̃k → g̃0 in Cm (Sn) as k → ∞
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for all m ∈ N, we obtain∫
Sn\Bg̃k (xk,δ)

zkLg̃kzk dvg̃k

=

∫
Bg̃k (xk,2δ)\Bg̃k (xk,δ)

zkLg̃k (zk − Γk) dvg̃k

+ n
n−2
4 (n− 2)

n+2
4 ωn−1µ

n−2
2

k

(∫
Sn\Bg̃0 (x0,2δ)

zkLg̃0G̃0 (x0, ·) dvg̃k + o (1)

)

=

∫
Bg̃k (xk,2δ)\Bg̃k (xk,δ)

zkLg̃k (zk − Γk) dvg̃k + o
(
µn−2
k

)
as k →∞. (4.26)

On the other hand, since g̃0 is flat in Bg̃0 (x0, ε0) by (3.28), we obtain (see for

instance [27]) that there exists a function R ∈ C2
(
Bg̃0 (x0, ε0)

)
such that R (x0) = 0

and

G̃0 (x0, y) =
1

(n− 2)ωn−1 dg̃0 (x0, y)
n−2 +R (y) ∀y ∈ Bg̃0 (x0, ε0) . (4.27)

Moreover, an easy consequence of (3.43) is that

2∑
j=0

δj
∣∣∇jvk (y)

∣∣ = o
(
µ
n−2
2

k

)
as k →∞ (4.28)

uniformly with respect to y ∈ Bg̃k (xk, 2δ) \Bg̃k (xk, δ). By using (4.27) and (4.28)
together with the definition of zk and the facts that R (x0) = 0, xk → x0 in Sn and
g̃k → g̃0 in Cm (Sn) as k →∞ for all m ∈ N, we obtain

2∑
j=0

δj
∣∣∇j (zk − Γk) (y)

∣∣ = O
(
δµ

n−2
2

k

)
+ o

(
µ
n−2
2

k

)
as k →∞ (4.29)

uniformly with respect to y ∈ Bg̃k (xk, 2δ) \Bg̃k (xk, δ), where the term O
(
δµn−2

k

)
is

also uniform with respect to δ ∈ (0, ε/2) (the same holds true in the next estimates).
By using (4.18) and (4.29), we then obtain∫

Bg̃k (xk,2δ)\Bg̃k (xk,δ)

zkLg̃k (zk − Γk) dvg̃k = O
(
δµn−2

k

)
+ o

(
µn−2
k

)
as k →∞.

(4.30)
It follows from (4.30) together with an integration by parts and the definition of zk
that ∫

Sn

(
|∇zk|2g̃k + cn Scalg̃k z

2
k

)
dvg̃k

=

∫
Bg̃k (xk,δ)

(BkLg̃kBk − 2vkLg̃kBk + vkLg̃kvk) dvg̃k + O
(
δµn−2

k

)
+ o

(
µn−2
k

)
as k →∞. (4.31)
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By using (3.27), (3.34), (3.35), (3.43) and (4.19) together with similar estimates as
in (4.9)–(4.11), we obtain∫

Bg̃k (xk,δ)

(BkLg̃kBk − 2vkLg̃kBk + vkLg̃kvk) dvg̃k

=

∫
Bξ(0,δ/µk)

(
U0

(
∆ĝk + cnµ

2
k Scalĝk

)
U0 − 2v̂k

(
∆ĝk + cnµ

2
k Scalĝk

)
U0

+ v̂k
(
∆ĝk + cnµ

2
k Scalĝk

)
v̂k

)
dvĝk

=

∫
Bξ(0,δ/µk)

(
U0 (∆ξ + ŵk − w̌k)U0 − 2v̂k (∆ξ + ŵk)U0 + v̂k∆ξ v̂k

+ O
( ∣∣cnµ2

k Scalĝk −ŵk + w̌k
∣∣U2

0 +
∣∣cnµ2

k Scalĝk −ŵk
∣∣U0 |v̂k|+ µ2

k |Scalĝk | v̂2
k

+ (U0 + |v̂k|) |(∆ĝk −∆ξ)U0|+ |v̂k|
(
|∇ĝk| |∇v̂k|+ |ĝk − ξ|

∣∣∇2v̂k
∣∣) ))dvĝk

= Λ1 (Sn, [g0])
n
2 −

∫
Rn

(
2U2∗−1

0 v̂k − (2∗ − 1)U2∗−2
0 v̂2

k

)
dy

−
∫

Bξ(0,δ/µk)

U0 (U0w̌k + ŵkv̂k) dy + O

dn−1∑
|α|=2

|hk,α|2 µ2|α|+2
k |lnµk|ϑ(2|α|,n−4)

+

[(n−2)/3]∑
|α|=2

|hk,α|3 µ3|α|
k |lnµk|ϑ(3|α|,n−2)

+ o
(
µn−2
k

)
= Λ1 (Sn, [g0])

n
2 −

∫
Rn

(
2U2∗−1

0 v̂k − (2∗ − 1)U2∗−2
0 v̂2

k

)
dy

−
∫

Bξ(0,δ/µk)

U0 (U0w̌k + ŵkv̂k) dy + o
(
ζk (xk, µk) + µn−2

k

)
as k →∞. (4.32)

It follows from (4.23), (4.25), (4.31) and (4.32) that

Λ1 (Sn, [g0])− Λ1 (Sn, [gk]) =

∫
Bξ(0,δ/µk)

U0 (U0w̌k + ŵkv̂k) dy + O
(
δµn−2

k

)
+ o

(
ζk (xk, µk) + µn−2

k

)
as k →∞. (4.33)

We now estimate the integral in the right-hand side of (4.33), starting with the first
term in this integral. We recall that

Hk =

n−4∑
p=2

Hk,p,

where Hk,p = Hk,xk,p and Hk,x,p is as in (3.36). By using polar coordinates and
the definition of w̌k, we obtain∫

Bξ(0,δ/µk)

U2
0 w̌k dy

= cn

n−4∑
p,q=2

µp+qk

n∑
a,b,c=1

∫
Sn

(
1

4
∂yc (Hk,p (y))ab ∂yc (Hk,q (y))ab
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− 1

2
∂yb (Hk,p (y))ab ∂yc (Hk,q (y))ac

)
dσ (y)

×
∫ δ

µk

0

(√
n (n− 2)

1 + r2

)n−2

rp+q+n−3 dr + o
(
µn−2
k

)
as k →∞. (4.34)

To obtain (4.34), we also use that, for each p, q ∈ {2, . . . , n− 4},

∫
Bξ(0,δ/µk)

n∑
a,b,c=1

U2
0∂yb

(
(Hk,p (y))ab ∂yc (Hk,q (y))ac

)
dy = 0,

which follows from an integration by parts together with (3.37) and the fact that U0

is radially symmetric around 0. We observe that, since Hk → 0 in Cm (Bξ (0, ε0))
as k →∞ for all m ∈ N, for each p, q ∈ {2, . . . , n− 4} such that q > dn,

|Hk,p| |Hk,q|µp+qk = O
(
|Hk,p|2 µ2p+2q+2−n

k + |Hk,q|2 µn−2
k

)
= o

(
|Hk,p|2 µ2p

k + µn−2
k

)
as k →∞, (4.35)

where

|Hk,p| :=
∑
|α|=p

|hk,α| .

Integrations by parts give that, for each d ∈ {4, . . . , n− 3},

∫ ε0
µk

0

(√
n (n− 2)

1 + r2

)n−2

rn+d−3 dr

=
n− 2

d

∫ ∞
0

(√
n (n− 2)

1 + r2

)n−2
r2 − 1

1 + r2
rn+d−3 dr + O

(
µn−d−2
k

)
(4.36)

and straightforward estimates give that, for each d ≥ n− 2,

∫ δ
µk

0

(√
n (n− 2)

1 + r2

)n−2

rn+d−3 dr

=

{
(n (n− 2))

n−2
2 |lnµk|+ O (1) if d = n− 2

O
(
µn−d−2
k

)
if d > n− 2.

(4.37)

Combining (4.34), (4.35), (4.36) and (4.37) we obtain∫
Bξ(0,δ/µk)

U2
0 w̌k dy = 2cn (n (n− 2))

n−2
2

∫ µk

0

µ−1Fk,1 (µ) dµ

+ o
(
ζk (xk, µk) + µn−2

k

)
as k →∞, (4.38)
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where

Fk,1 (µ) :=
n− 2

2

dn∑
p,q=2

µp+q

(
n∑

a,b,c=1

∫
Sn

(
1

4
∂yc (Hk,p (y))ab ∂yc (Hk,q (y))ab

− 1

2
∂yb (Hk,p (y))ab ∂yc (Hk,q (y))ac

)
dσ (y)

×

{
cp+q if p+ q < n− 2

|lnµ| if p = q = dn

})
and

cp+q :=

∫ ∞
0

(
1

1 + r2

)n−2
r2 − 1

1 + r2
rn+p+q−3 dr .

As regards the second term in the integral in the right-hand side of (4.33), by using
again polar coordinates, we obtain∫

Bξ(0,δ/µk)

U0ŵkv̂k dy

= c2n

n−4∑
p,q=2

µp+qk

∫
Bξ(0,δ/µk)

U0wk,pvk,q dy + o
(
µn−2
k

)
as k →∞. (4.39)

By using (3.43) and since Hk → 0 in Cm (Bξ (0, ε0)) as k → ∞ for all m ∈ N, we
obtain that, for each p, q ∈ {2, . . . , n− 4} such that d := p+ q ∈ {4, . . . , n− 3},∫

Bξ(0,δ/µk)

U0wk,pvk,q dy =

∫
Rn
U0wk,pvk,q dy + o

(
µn−d−2
k

)
as k →∞. (4.40)

We now consider the case where p, q ∈ {2, . . . , n− 4} are such that d := p+q ≥ n−2.
We recall that by Lemma 3.4,

vk,q (y) =
Pk,q (y)(

1 + |y|2
)n

2
∀y ∈ Rn,

where Pk,q is the polynomial of degree q + 2 given by

Pk,q (y) :=

[(d−2)/2]∑
m=0

m+2∑
l=0

γk,xk,d,l,m |y|
2l

∆m
ξ wk,xk,d (y) ∀y ∈ Rn.

We let P
(q+2)
k,q be the sum of terms of highest degree in Pk,q, i.e.

P
(q+2)
k,q (y) =

[(q−2)/2]∑
m=0

γk,xk,q,m+2,m |y|2m+4
∆m
ξ wk,q (y) ∀y ∈ Rn.

Since Hk → 0 in Cm (Bξ (0, ε0)) as k →∞ for all m ∈ N, straightforward estimates
using polar coordinates then give∫

Bξ(0,δ/µk)

U0wk,pvk,q dy

=

 (n (n− 2))
n−2
2 |lnµk|

∫
Sn−1

wk,p (y)P
(q+2)
k,q (y) dσ (y) + o (1) if d = n− 2

o
(
µn−d−2
k

)
if d > n− 2.

(4.41)
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By putting together (4.35), (4.39), (4.40) and (4.41), we obtain∫
Bξ(0,δ/µk)

U0ŵkv̂k dy = 2cn (n (n− 2))
n−2
2

∫ µk

0

µ−1Fk,2 (µ) dµ

+ o
(
ζk (xk, µk) + µn−2

k

)
as k →∞, (4.42)

where

Fk,2 (µ) := cn

dn∑
p,q=2

µp+q

×


p

∫
Rn

(
1 + |y|2

)2−n
wk,p (y) vk,q (y) dy if p+ q < n− 2

dn |lnµk|
∫
Sn−1

wk,dn (y)P
(dn+2)
k,dn

(y) dσ (y) if p = q = dn.

The functions F1,k and F2,k have been investigated in [26]. In particular, since n ≤
10, Proposition A.4 of [26] applies1 and gives that there exists C ′n > 0 depending
only on n such that

F1,k (µ) + F2,k (µ) ≥ C ′nζk (xk, µ) ∀µ > 0. (4.43)

It follows from (4.38), (4.42) and (4.43) that∫
Bξ(0,ε0/µk)

U0 (U0w̌k + ŵkv̂k) dy ≥ Cnζk (xk, µk) + o
(
µn−2
k

)
as k →∞ (4.44)

for some Cn > 0 depending only on n. By plugging (4.44) into (4.33), and passing to
a subsequence in δ, we obtain (4.20), which completes the proof of Theorem 1.1. �

References

[1] B. Ammann and E. Humbert, The second Yamabe invariant, J. Funct. Anal. 235 (2006),

no. 2, 377–412.

[2] B. Ammann and P. Jammes, The supremum of first eigenvalues of conformally covariant
operators in a conformal class, Variational problems in differential geometry, London Math.

Soc. Lecture Note Ser., vol. 394, Cambridge Univ. Press, Cambridge, 2012, pp. 1–23.
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[53] J. Vétois, Multiple solutions for nonlinear elliptic equations on compact Riemannian mani-

folds, Internat. J. Math. 18 (2007), no. 9, 1071–1111.
[54] T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc.

Var. Partial Differential Equations 27 (2006), no. 4, 421–437.
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