Sorting under partial information
(without the ellipsoid algorithm)

Jean Cardinal Samuel Fiorini Gwenaél Joret
ULB ULB ULB

Raphaél Jungers lan Munro
UCL/MIT Waterloo

Sorting by comparisons under partial information

Input:
> set V ={wv,..., vy}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

Sorting by comparisons under partial information

Input:
» set V = {vi,...,v,}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

. '

\"
/\

5

Sorting by comparisons under partial information

Input:
» set V = {vi,...,v,}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

9'\\
RV 5T

Sorting by comparisons under partial information

Input:

» set V = {v1,..., vp}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;?”

Objective function: #queries

'|'\|'
® .

" OR

N
CaN)

fr\"j
l‘(
A

y o

?

Sorting by comparisons under partial information

Input:
» set V = {v1,...,v,}, with unknown linear order <
> poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries
. *

" .
» G ‘*7.7
® =

‘“ OR ?

Sorting by comparisons under partial information

Input:
» set V = {v1,..., vp}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

¥ \’

e

9

A/a

|\
® ¢

Sorting by comparisons under partial information

Input:

» set V = {vi,...,v,}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;?"

Objective function: #queries

s
=

5

Sorting by comparisons under partial information

Input:
> set V = {v,..
» poset P = (V,<p) compatible with (V, <)

., Vn}, with unknown linear order <

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

74 :
N

Sorting by comparisons under partial information

Input:
» set V = {vi,...,v,}, with unknown linear order <
» poset P = (V,<p) compatible with (V, <)

Goal: Discover < by making queries “is v; < v;7"

Objective function: #queries

Lower bound on #queries

Every algorithm can be forced to a #queries that is at least

‘Ig(#linear extensions of P) = Ig e(P)‘

Ig n! Ig e(P) 0
- t t t

uncertainty - -

Results

e Known results

‘ #queries ‘ complexity

Fredman 1976 lg e(P) + 2n | super-polynomial
Kahn & Saks 1984 | O(lge(P)) | super-polynomial
Kahn & Kim 1995 | O(lge(P)) | polynomial (ellipsoid alg.)

Results

e Known results

‘ #queries ‘ complexity

Fredman 1976 lg e(P) + 2n | super-polynomial
Kahn & Saks 1984 | O(lge(P)) | super-polynomial
Kahn & Kim 1995 | O(lge(P)) | polynomial (ellipsoid alg.)

e Our contribution: two ellipsoid-free algorithms

‘ #queries ‘ complexity
Algorithm 1 | (1 +¢)lge(P) + O-.(n) Ve >0 | O(n*?)
Algorithm 2 | O(lg e(P)) O(n*9)

+ preprocessing in O(n%®), sort linear in #queries and n
+ better understanding of entropy of P

Computing the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy H(F)

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991
As Kahn & Kim 1995, use the entropy H(F)

Why?

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991
As Kahn & Kim 1995, use the entropy H(F)

Why?

> |lge(P) = ©(nH(F)) Kahn & Kim 1995

» H(F) can be “computed” in poly-time using the ellipsoid
algorithm (or an interior point algorithm)

Entropy

“New” definition — original definition due to Korner 1973, applies to any graph
{(yy-,¥v+)}vev is consistent with P if
» Vv e V: (y,—,y,+) open interval C (0,1)
> VSP WSS Yot S Y-

| — W

P 0 1 1

1
H(P) := min {— = Z lg xv | 3H{(¥v—, ¥v+)}vev consistent with P
n
vev st.xy =Y+ —y,- VvE V}

H(P) = 1 x “information” in P

Entropy
“New" definition — original definition due to Korner 1973, applies to any graph
{(Vv-, v+)}vev is consistent with P if
» Vv e V: (y,—,y,+) open interval C (0,1)
> V<PWZ>yv+§}/W—

| /—/—— W

P 0 1 1

1
H(P) := min {— - Z lg x, | I{(y,—, yv+)}vev consistent with P
veV st. xy =y,+ — Y- Vve V}

H(P) :=lgn— H(P)| = 1x “uncertainty” in P

Bounds |

“Additive” bound via the order polytope

O(P):={y €[0,1]" | v<pw=>y, < yu}

e(P)
n!

Easy fact 1. volume O(P) =

Easy fact 2. {(vy-» ¥v+)}vev consistent with P
— T[w- %l <O(P)
vev
= H x, < volume O(P)
veVv
Corollary.

nH(P) <lge(P)+ nlge K&K 1995

Bounds I

“multiplicative” bound

lge(P) < nH(P) < c-lge(P) K&K 1995
where c=1+7lge ~11.1

Bounds I

“multiplicative” bound

lge(P) < nH(P) < c-lge(P) K&K 1995
where c=14+T7lge~11.1

Rmk: Lower bound tight, but not upper bound
» K&K conjectured

nH(P) < (1+1ge)-lge(P) (1+Ige~ 2.44)

Bounds I

“multiplicative” bound

lge(P) < nH(P) < c-lge(P) K&K 1995
where c=14+T7lge~11.1

Rmk: Lower bound tight, but not upper bound
» K&K conjectured

nH(P) < (1+1ge)-lge(P) (1+Ige~ 2.44)

» We prove
nH(F) < 2-lge(P)

(tight)

K&K's algorithm

Key lemma:

3 incomparable pair a, b s.t.

max{nH(), nH()} < nH(P)—c,

where ¢ ~ 0.2

Algorithm:
1. Repeat:

1.1 Compute H(P) and optimal solution x*
1.2 Find good incomparable pair a, b using x*
1.3 Compare a and b

1.4 Update P

#steps = O(nH(F)) = O(lge(P))

Greedy

Greedy chain decompositionof P — U :=CGU---

I

C G C3 Cy C5 Cs C

k

H(y =3 -5 g 19l

. n n
i=1

U Cx

Greedy

Greedy chain decompositionof P — U :=CGU---

I

Ci Cy C3 Cp Cs5 Cs C%

k
H(y =3 -5 g 19l

; n n
i=1

From perfectness of incomparability graph of P:

H(U)<(1+e)H(P)+0(1) Ve>0

Extends to every perfect graph!

U Cx

CFJJM 2009

Algorithms

F#queries complexity
Algorithm 1 | (1 +¢)lge(P) + O-(n) Ve >0 | O(n?®)
Algorithm 2 | O(lge(P)) O(n??)

Algorithm 1: greedy + merge sort

Algorithm 2: greedy + “cautious” merge sort

Algorithm 1

1. Compute greedy chain decomposition of P

2. lteratively merge two smallest chains

O
A4

I G

i Oy Cg Cy 05 06 07

Algorithm 1

1. Compute greedy chain decomposition of P

2. lteratively merge two smallest chains

LIy

Algorithm 1

1. Compute greedy chain decomposition of P

2. lteratively merge two smallest chains

[[]]

Algorithm 1

1. Compute greedy chain decomposition of P

2. lteratively merge two smallest chains

[I(]]

Algorithm 1

1. Compute greedy chain decomposition of P

2. lteratively merge two smallest chains

ETC.

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most

k
(Z‘f’ m) 1= H() +

i=1

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most

k
(Z—‘n’ ’C’)H H(U)+1

i=1

= ... = at most (H(U/) 4+ 1)n comparisons

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most
k
G G
<Z—|n’ | |) +1=H(U)+1
i=1

= ... = at most (H(U) + 1)n comparisons

(H()+1)n (1+€)HH()+ Oe(n) greedy
(L1+e)(lge(P)+ nlge) + O-(n) Ke&K's additive bd

= (1+¢)lge(P) + O:(n)

<
<

Algorithm 2

Pick a maximum chain A

S !

Apply Algorithm 1 on P— A Merging Unfler
Partial Information

(MUPI)

Algorithm 2

Pick a maximum chain A A

> >

A
} \ Merging Under
Apply Algorithm 1 on P—A Partial Information
(MUPI)

#comparisons in step 2 at most

Algorithm 2

Pick a maximum chain A

S

Mergin Under
Apply Algorithm 1 on P—A Partial Information

(MUPI)

#comparisons in step 2 at most

(1+¢)lge(P—A) + O(|P - A

Algorithm 2

; % Merging I,nd

Apply Algorithm 1 on P~ A
Pply Algorithm Partial Infor
(MUPI)

#comparisons in step 2 at most
(1+e)lge(P—A)+ O(|P — A|)

[Interlude | An easy lemma (take all intervals of length x, = ﬁ)

= |A] >27H(")p
= |P—A’ <n (1 —2H)) < |n2nH() (using 1 —27% < In2-x)

Algorithm 2

a maximum chain A A
% ; § |
A Merging Under

Apply Algorithm 1 on P—A Partial Information

(MUPI)

#comparisons in step 2 at most

(1+¢)lge(P— A)—i—O(]P Al)
<(1+¢)lge(P—A)+ O-(In2-nH(P))
<(1+¢)lge(P)+ O: (Ige(P)) K&K’s multiplicative bd

= 0 (Ige(P))

Algorithm 2

Merging Unde
Partial Infor;
(MUPT)

Apply Algorithm 1 on P— A

#comparisons in step 2 at most

(1+¢e)lge(P—A)+ O(|P — A])
(1+¢€)lge(P—A)+ O (In2- nH(F))
(I1+¢)lge(P)+ O: (Ige(P)) K&K’s multiplicative bd
=0: (Ige(P))

What about partial information P’ in step 3?

P> P =lge(P) <lIge(P)

<
<

= enough to solve MUPI = Merging under Partial_Information!

Merging under partial information

Overview for MUPI:
1. Compute entropy exactly (easier) Kérner and Marton 1988
2. Use Hwang-Lin merging algorithm guided by x*
3. Update x*

Posets of width < 2

In that special case, the incomparability graph of P is bipartite

Ay B,
As B3
Ay By

Korner and Marton 1988:
» optimal solution for entropy has “block structure”

» can be computed via a greedy algorithm

Posets of width < 2

bipartite incomparability graphs = x* defining H(P) has an
even nicer structure

A

By
AS B3
Ay By

» A; interval of A, B; interval of B, same ordering
> xi = (|Ai| + |Bi|)/n|Ai| whenever v € A;

Can compute H(7) and x* in time O(n?log? n)

Solving MUPI - general ideas

Ay B
AS b’3
Ay B

Compute entropy and x*

Apply Hwang-Ling merging algorithm on each component A; U B;
with |A;| > |Bj|, in a certain order

Update x* locally after each merging (details omitted)

Overall #comparisons is < 3nH(F)

Thank You!

