
Sorting under partial information
(without the ellipsoid algorithm)

Jean Cardinal
ULB

Samuel Fiorini
ULB

Gwenaël Joret
ULB

Raphaël Jungers
UCL/MIT

Ian Munro
Waterloo

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

OR ?

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

?OR

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

OR ?

Sorting by comparisons under partial information
Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

OR ?

Sorting by comparisons under partial information

Input:

I set V = {v1, . . . , vn}, with unknown linear order 6

I poset P = (V , 6P) compatible with (V , 6)

Goal: Discover 6 by making queries “is vi 6 vj?”

Objective function: #queries

Lower bound on #queries

Every algorithm can be forced to a #queries that is at least

lg(#linear extensions of P) = lg e(P)

lg n! lg e(P) 0

uncertainty

Results

• Known results

#queries complexity

Fredman 1976 lg e(P) + 2n super-polynomial
Kahn & Saks 1984 O(lg e(P)) super-polynomial
Kahn & Kim 1995 O(lg e(P)) polynomial (ellipsoid alg.)

• Our contribution: two ellipsoid-free algorithms

#queries complexity

Algorithm 1 (1 + ε)lg e(P) + Oε(n) ∀ε > 0 O(n2.5)
Algorithm 2 O(lg e(P)) O(n2.5)

+ preprocessing in O(n2.5), sort linear in #queries and n

+ better understanding of entropy of P

Results

• Known results

#queries complexity

Fredman 1976 lg e(P) + 2n super-polynomial
Kahn & Saks 1984 O(lg e(P)) super-polynomial
Kahn & Kim 1995 O(lg e(P)) polynomial (ellipsoid alg.)

• Our contribution: two ellipsoid-free algorithms

#queries complexity

Algorithm 1 (1 + ε)lg e(P) + Oε(n) ∀ε > 0 O(n2.5)
Algorithm 2 O(lg e(P)) O(n2.5)

+ preprocessing in O(n2.5), sort linear in #queries and n

+ better understanding of entropy of P

Computing the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy H(P̄)

Why?

I lg e(P) = Θ(nH(P̄)) Kahn & Kim 1995

I H(P̄) can be “computed” in poly-time using the ellipsoid
algorithm (or an interior point algorithm)

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy H(P̄)

Why?

I lg e(P) = Θ(nH(P̄)) Kahn & Kim 1995

I H(P̄) can be “computed” in poly-time using the ellipsoid
algorithm (or an interior point algorithm)

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy H(P̄)

Why?

I lg e(P) = Θ(nH(P̄)) Kahn & Kim 1995

I H(P̄) can be “computed” in poly-time using the ellipsoid
algorithm (or an interior point algorithm)

Computing Approximating the lower bound

Computing e(P) is #P-complete Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy H(P̄)

Why?

I lg e(P) = Θ(nH(P̄)) Kahn & Kim 1995

I H(P̄) can be “computed” in poly-time using the ellipsoid
algorithm (or an interior point algorithm)

Entropy
“New” definition – original definition due to Körner 1973, applies to any graph

{(yv− , yv+)}v∈V is consistent with P if

I ∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

I v 6P w =⇒ yv+ ≤ yw−

P 0 1 I

H(P) := min
{
− 1

n

∑
v∈V

lg xv | ∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

H(P) = 1
n×“information” in P

Entropy
“New” definition – original definition due to Körner 1973, applies to any graph

{(yv− , yv+)}v∈V is consistent with P if

I ∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

I v 6P w =⇒ yv+ ≤ yw−

P 0 1 I

H(P) := min
{
− 1

n

∑
v∈V

lg xv | ∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

H(P̄) := lg n − H(P) = 1
n×“uncertainty” in P

Bounds I
“Additive” bound via the order polytope

O(P) := {y ∈ [0, 1]V | v 6P w =⇒ yv ≤ yw}

Easy fact 1. volume O(P) =
e(P)

n!

Easy fact 2. {(yv− , yv+)}v∈V consistent with P

=⇒
∏
v∈V

[yv− , yv+] ⊆ O(P)

=⇒
∏
v∈V

xv ≤ volume O(P)

Corollary.

nH(P̄) ≤ lg e(P) + n lg e K&K 1995

Bounds II
“multiplicative” bound

lg e(P) ≤ nH(P̄) ≤ c · lg e(P) K&K 1995

where c = 1 + 7 lg e ' 11.1

Rmk: Lower bound tight, but not upper bound

I K&K conjectured

nH(P̄) ≤ (1 + lg e) · lg e(P) (1 + lg e ' 2.44)

I We prove
nH(P̄) ≤ 2 · lg e(P)

(tight)

Bounds II
“multiplicative” bound

lg e(P) ≤ nH(P̄) ≤ c · lg e(P) K&K 1995

where c = 1 + 7 lg e ' 11.1

Rmk: Lower bound tight, but not upper bound

I K&K conjectured

nH(P̄) ≤ (1 + lg e) · lg e(P) (1 + lg e ' 2.44)

I We prove
nH(P̄) ≤ 2 · lg e(P)

(tight)

Bounds II
“multiplicative” bound

lg e(P) ≤ nH(P̄) ≤ c · lg e(P) K&K 1995

where c = 1 + 7 lg e ' 11.1

Rmk: Lower bound tight, but not upper bound

I K&K conjectured

nH(P̄) ≤ (1 + lg e) · lg e(P) (1 + lg e ' 2.44)

I We prove
nH(P̄) ≤ 2 · lg e(P)

(tight)

K&K’s algorithm

Key lemma:

∃ incomparable pair a, b s.t.

max
{

nH(P̄(a < b)), nH(P̄(a > b))
}
≤ nH(P̄)− c ,

where c ' 0.2

Algorithm:

1. Repeat:

1.1 Compute H(P) and optimal solution x∗

1.2 Find good incomparable pair a, b using x∗

1.3 Compare a and b
1.4 Update P

#steps = O(nH(P̄)) = O(lg e(P))

Greedy
Greedy chain decomposition of P → U := C1 ∪ · · · ∪ Ck

C1 C2 C3 C4 C5 C6 C7

H(Ū) =
k∑

i=1

−|Ci |
n

lg
|Ci |
n

From perfectness of incomparability graph of P:

H(Ū) ≤ (1 + ε)H(P̄) + Oε(1) ∀ε > 0 CFJJM 2009

Extends to every perfect graph!

Greedy
Greedy chain decomposition of P → U := C1 ∪ · · · ∪ Ck

C1 C2 C3 C4 C5 C6 C7

H(Ū) =
k∑

i=1

−|Ci |
n

lg
|Ci |
n

From perfectness of incomparability graph of P:

H(Ū) ≤ (1 + ε)H(P̄) + Oε(1) ∀ε > 0 CFJJM 2009

Extends to every perfect graph!

Algorithms

#queries complexity

Algorithm 1 (1 + ε)lg e(P) + Oε(n) ∀ε > 0 O(n2.5)
Algorithm 2 O(lg e(P)) O(n2.5)

Algorithm 1: greedy + merge sort

Algorithm 2: greedy + “cautious” merge sort

Algorithm 1

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

C1 C2 C3 C4 C5 C6 C7

Algorithm 1

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

Algorithm 1

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

Algorithm 1

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

Algorithm 1

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

ETC.

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most(
k∑

i=1

−|Ci |
n

lg
|Ci |
n

)
+ 1 = H(Ū) + 1

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most(
k∑

i=1

−|Ci |
n

lg
|Ci |
n

)
+ 1 = H(Ū) + 1

⇒ . . . ⇒ at most (H(Ū) + 1)n comparisons

Algorithm 1

Huffman trees: average root-to-leaf distance in tree at most(
k∑

i=1

−|Ci |
n

lg
|Ci |
n

)
+ 1 = H(Ū) + 1

⇒ . . . ⇒ at most (H(Ū) + 1)n comparisons

(H(Ū) + 1)n ≤ (1 + ε)nH(P̄) + Oε(n) greedy

≤ (1 + ε)
(
lg e(P) + n lg e

)
+ Oε(n) K&K’s additive bd

= (1 + ε)lg e(P) + Oε(n)

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

#comparisons in step 2 at most

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

#comparisons in step 2 at most

(1 + ε) lg e(P − A) + Oε(|P − A|)

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

#comparisons in step 2 at most

(1 + ε) lg e(P − A) + Oε(|P − A|)

[Interlude] An easy lemma (take all intervals of length xv = 1
|A|):

H(P̄) ≥ − lg
|A|
n

⇒ |A| ≥ 2−H(P̄)n

⇒ |P −A| ≤ n
(

1− 2−H(P̄)
)
≤ ln 2 · nH(P̄) (using 1− 2−x ≤ ln 2 · x)

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

#comparisons in step 2 at most

(1 + ε) lg e(P − A) + Oε(|P − A|)
≤ (1 + ε) lg e(P − A) + Oε

(
ln 2 · nH(P̄)

)
≤ (1 + ε)lg e(P) + Oε (lg e(P)) K&K’s multiplicative bd

= Oε (lg e(P))

Algorithm 2

Pick a maximum chain A

A
Apply Algorithm 1 on P −A

B
A

Merging Under
Partial Information
(MUPI)

#comparisons in step 2 at most

(1 + ε) lg e(P − A) + Oε(|P − A|)
≤ (1 + ε) lg e(P − A) + Oε

(
ln 2 · nH(P̄)

)
≤ (1 + ε)lg e(P) + Oε (lg e(P)) K&K’s multiplicative bd

= Oε (lg e(P))

What about partial information P ′ in step 3?

P ′ ⊇ P ⇒ lg e(P ′) ≤ lg e(P)

⇒ enough to solve MUPI = Merging under Partial Information!

Merging under partial information

Overview for MUPI:

1. Compute entropy exactly (easier) Körner and Marton 1988

2. Use Hwang-Lin merging algorithm guided by x∗

3. Update x∗

Posets of width ≤ 2

In that special case, the incomparability graph of P is bipartite

A1

A2
B2

B3

B1

A3

Körner and Marton 1988:

I optimal solution for entropy has “block structure”

I can be computed via a greedy algorithm

Posets of width ≤ 2

bipartite incomparability graphs =⇒ x∗ defining H(P) has an
even nicer structure

A1

A2
B2

B3

B1

A3

I Ai interval of A, Bi interval of B, same ordering

I x∗v = (|Ai |+ |Bi |)/n|Ai | whenever v ∈ Ai

Can compute H(P̄) and x∗ in time O(n2 log2 n)

Solving MUPI - general ideas

A1

A2
B2

B3

B1

A3

Compute entropy and x∗

Apply Hwang-Ling merging algorithm on each component Ai ∪ Bi

with |Ai | ≥ |Bi |, in a certain order

Update x∗ locally after each merging (details omitted)

Overall #comparisons is ≤ 3nH(P̄)

Thank You!

