Sorting under partial information (without the ellipsoid algorithm)

Jean Cardinal ULB

Samuel Fiorini ULB

Raphaël Jungers UCL/MIT

Gwenaël Joret ULB

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Ian Munro *Waterloo*

Input:

▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant

▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?" **Objective function:** #queries

Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries

Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

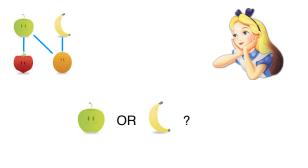
Objective function: #queries

Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries

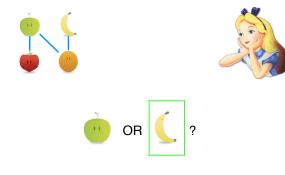


Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries



Input:

▶ set $V = \{v_1, ..., v_n\}$, with unknown linear order \leqslant

▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

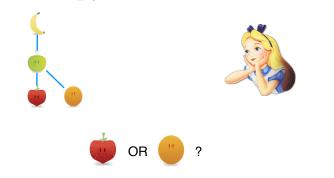
Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries

Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

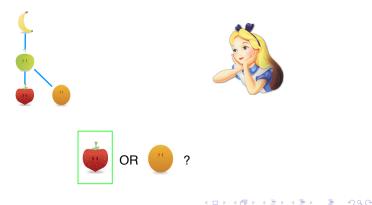
Goal: Discover \leq by making queries "is $v_i \leq v_j$?" **Objective function:** #queries



- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries



Input:

- ▶ set $V = \{v_1, \ldots, v_n\}$, with unknown linear order \leqslant
- ▶ poset $P = (V, \leqslant_P)$ compatible with (V, \leqslant)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Objective function: #queries

Lower bound on #queries

Every algorithm can be forced to a #queries that is *at least*

$$\lg(\#linear \text{ extensions of } P) = \lg e(P)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Results

• Known results

	#queries	complexity
Fredman 1976	$\lg e(P) + 2n$	super-polynomial
Kahn & Saks 1984	$O(\lg e(P))$	super-polynomial
Kahn & Kim 1995	$O(\lg e(P))$	polynomial (ellipsoid alg.)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Results

• Known results

	#queries	complexity
Fredman 1976	$\lg e(P) + 2n$	super-polynomial
Kahn & Saks 1984	$O(\lg e(P))$	super-polynomial
Kahn & Kim 1995	$O(\lg e(P))$	polynomial (ellipsoid alg.)

• Our contribution: two ellipsoid-free algorithms

	#queries		complexity
Algorithm 1	$(1+\varepsilon) \lg e(P) + O_{\varepsilon}(n)$		$O(n^{2.5})$
Algorithm 2	$O(\lg e(P))$		$O(n^{2.5})$

- + preprocessing in $O(n^{2.5})$, sort linear in #queries and n
- + better understanding of *entropy* of *P*

Computing the lower bound

Computing e(P) is #P-complete

Brightwell & Winkler 1991

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computing Approximating the lower bound

Computing e(P) is #P-complete

Brightwell & Winkler 1991

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

As Kahn & Kim 1995, use the entropy $H(\overline{P})$

Computing Approximating the lower bound

Computing e(P) is #P-complete

Brightwell & Winkler 1991

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

As Kahn & Kim 1995, use the entropy $H(\overline{P})$

Why?

Computing Approximating the lower bound

Computing e(P) is #P-complete

Brightwell & Winkler 1991

As Kahn & Kim 1995, use the entropy $H(\overline{P})$

Why?

 $\blacktriangleright \quad \lg e(P) = \Theta(nH(\bar{P}))$

Kahn & Kim 1995

► H(P̄) can be "computed" in poly-time using the ellipsoid algorithm (or an interior point algorithm)

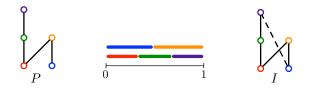
Entropy

"New" definition - original definition due to Körner 1973, applies to any graph

$$\{(y_{v^-}, y_{v^+})\}_{v \in V}$$
 is *consistent* with *P* if

▶
$$\forall v \in V$$
: (y_{v^-}, y_{v^+}) open interval $\subseteq (0, 1)$

$$\blacktriangleright v \leqslant_P w \Longrightarrow y_{v^+} \le y_{w^-}$$



$$H(P) := \min\left\{-\frac{1}{n}\sum_{v \in V} \lg x_v \mid \exists \{(y_{v^-}, y_{v^+})\}_{v \in V} \text{ consistent with } P \\ \text{s.t. } x_v = y_{v^+} - y_{v^-} \quad \forall v \in V \right\}$$

 $H(P) = \frac{1}{n} \times$ "information" in P

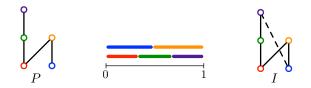
◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 の < ⊙

Entropy

"New" definition – original definition due to Körner 1973, applies to any graph $\{(y_{v^-}, y_{v^+})\}_{v \in V}$ is *consistent* with *P* if

▶
$$\forall v \in V$$
: (y_{v^-}, y_{v^+}) open interval $\subseteq (0, 1)$

$$\blacktriangleright v \leqslant_P w \Longrightarrow y_{v^+} \le y_{w^-}$$



$$H(P) := \min\left\{-\frac{1}{n}\sum_{v \in V} \lg x_v \mid \exists \{(y_{v^-}, y_{v^+})\}_{v \in V} \text{ consistent with } P \\ \text{s.t. } x_v = y_{v^+} - y_{v^-} \quad \forall v \in V \right\}$$

$$H(\overline{P}) := \lg n - H(P) = \frac{1}{n} \times$$
 "uncertainty" in P

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bounds I

"Additive" bound via the order polytope

$$O(P) := \{y \in [0,1]^V \mid v \leqslant_P w \Longrightarrow y_v \leq y_w\}$$

Easy fact 1. volume $O(P) = \frac{e(P)}{n!}$

Easy fact 2.
$$\{(y_{v^-}, y_{v^+})\}_{v \in V}$$
 consistent with P

$$\implies \prod_{v \in V} [y_{v^-}, y_{v^+}] \subseteq O(P)$$

$$\implies \prod_{v \in V} x_v \leq \text{volume } O(P)$$

Corollary.

 $nH(\bar{P}) \leq \lg e(P) + n \lg e$

K&K 1995

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bounds II

"multiplicative" bound

 $\lg e(P) \le nH(ar{P}) \le c \cdot \lg e(P)$ K&K 1995 where $c=1+7\lg e\simeq 11.1$

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Bounds II

"multiplicative" bound

 $\lg e(P) \leq n H(ar{P}) \leq c \cdot \lg e(P)$ K&K 1995 where c=1+7 lg $e\simeq 11.1$

Rmk: Lower bound tight, but not upper bound

K&K conjectured

 $nH(\overline{P}) \leq (1 + \lg e) \cdot \lg e(P)$ (1 + \lg e \sim 2.44)

Bounds II

"multiplicative" bound

 $\lg e(P) \leq n H(ar{P}) \leq c \cdot \lg e(P)$ K&K 1995 where c=1+7 lg $e\simeq 11.1$

Rmk: Lower bound tight, but not upper bound

K&K conjectured

 $nH(\overline{P}) \leq (1 + \lg e) \cdot \lg e(P)$ (1 + \lg e \sim 2.44)

We prove

$$nH(\overline{P}) \leq 2 \cdot \lg e(P)$$

(tight)

K&K's algorithm

Key lemma:

 \exists incomparable pair *a*, *b* s.t.

$$\max\left\{nH(\bar{P}(a < b)), nH(\bar{P}(a > b))\right\} \le nH(\bar{P}) - c,$$

where $c \simeq 0.2$

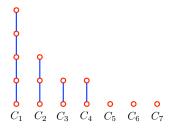
Algorithm:

- 1. Repeat:
 - 1.1 Compute H(P) and optimal solution x^*
 - 1.2 Find good incomparable pair a, b using x^*
 - 1.3 Compare a and b
 - 1.4 Update P

$$\# steps = O(nH(\overline{P})) = O(\lg e(P))$$

Greedy

Greedy chain decomposition of $P \rightarrow U := C_1 \cup \cdots \cup C_k$

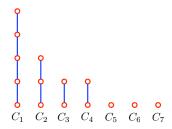


$$H(\overline{U}) = \sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Greedy

Greedy chain decomposition of $P \rightarrow U := C_1 \cup \cdots \cup C_k$



$$H(\overline{U}) = \sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}$$

From perfectness of incomparability graph of *P*:

$$H(\overline{m{U}}) \leq (1+arepsilon) H(\overline{m{P}}) + O_arepsilon(1) \qquad orall arepsilon > 0$$

CFJJM 2009

Extends to every perfect graph!

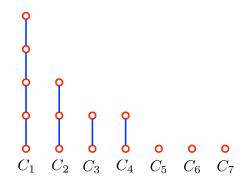
	#queries		complexity
Algorithm 1	$(1+\varepsilon) \lg e(P) + O_{\varepsilon}(n)$	$\forall \varepsilon > 0$	$O(n^{2.5})$
Algorithm 2	$O(\lg e(P))$		$O(n^{2.5})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algorithm 1: greedy + merge sort Algorithm 2: greedy + "cautious" merge sort

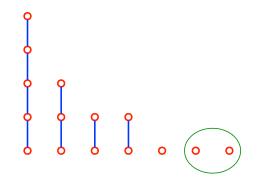
1. Compute greedy chain decomposition of $\ensuremath{\textit{P}}$

2. Iteratively merge two smallest chains



1. Compute greedy chain decomposition of $\ensuremath{\textit{P}}$

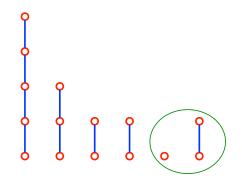
2. Iteratively merge two smallest chains



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1. Compute greedy chain decomposition of $\ensuremath{\textit{P}}$

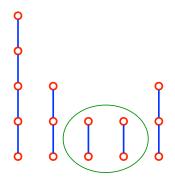
2. Iteratively merge two smallest chains



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

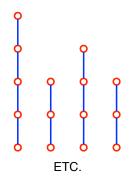
1. Compute greedy chain decomposition of $\ensuremath{\textit{P}}$

2. Iteratively merge two smallest chains

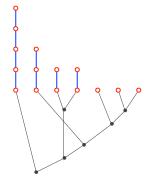


1. Compute greedy chain decomposition of $\ensuremath{\textit{P}}$

2. Iteratively merge two smallest chains

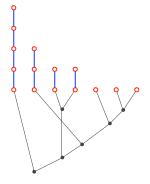


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Huffman trees: average root-to-leaf distance in tree at most

$$\left(\sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{U}) + 1$$



Huffman trees: average root-to-leaf distance in tree at most

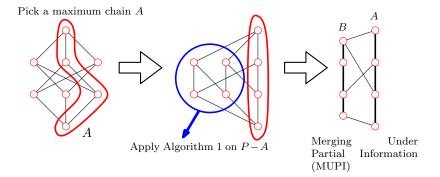
$$\left(\sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{U}) + 1$$

Huffman trees: average root-to-leaf distance in tree at most

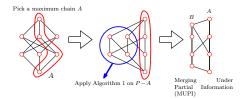
$$\left(\sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{U}) + 1$$

 $\Rightarrow \ldots \Rightarrow$ at most $(H(\overline{U}) + 1)n$ comparisons

$$egin{aligned} (\mathcal{H}(ar{U})+1)n &\leq (1+arepsilon)n\mathcal{H}(ar{P})+O_arepsilon(n) & ext{greedy} \ &\leq (1+arepsilon)(\lg e(P)+n\lg e)+O_arepsilon(n) & ext{K\&K's additive bd} \ &= (1+arepsilon)\lg e(P)+O_arepsilon(n) \end{aligned}$$

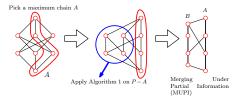


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

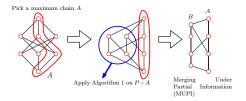
#comparisons in step 2 at most



#comparisons in step 2 at most

$$(1+arepsilon) \log e(P-A) + O_arepsilon(|P-A|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

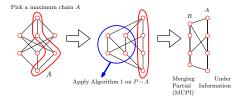


#comparisons in step 2 at most

$$(1+arepsilon) \log e(P-A) + O_{arepsilon}(|P-A|)$$

[Interlude] An easy lemma (take all intervals of length $x_v = \frac{1}{|A|}$):

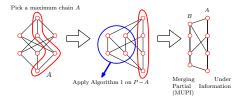
$$H(\bar{P}) \geq -\lg \frac{|A|}{n}$$



#comparisons in step 2 at most

$$\begin{aligned} (1+\varepsilon) \lg e(P-A) + O_{\varepsilon}(|P-A|) \\ \leq (1+\varepsilon) \lg e(P-A) + O_{\varepsilon} \left(\ln 2 \cdot nH(\bar{P}) \right) \\ \leq (1+\varepsilon) \lg e(P) + O_{\varepsilon} \left(\lg e(P) \right) & \text{K\&K's multiplicative bd} \\ = O_{\varepsilon} \left(\lg e(P) \right) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



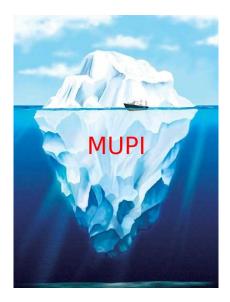
#comparisons in step 2 at most

$$\begin{split} &(1+\varepsilon) \lg e(P-A) + O_{\varepsilon}(|P-A|) \\ &\leq (1+\varepsilon) \lg e(P-A) + O_{\varepsilon} \left(\ln 2 \cdot nH(\bar{P}) \right) \\ &\leq (1+\varepsilon) \lg e(P) + O_{\varepsilon} \left(\lg e(P) \right) & \text{K\&K's multiplicative bd} \\ &= O_{\varepsilon} \left(\lg e(P) \right) \end{split}$$

What about partial information P' in step 3?

$$P' \supseteq P \Rightarrow \lg e(P') \leq \lg e(P)$$

 \Rightarrow enough to solve MUPI = Merging under Partial Information!



< □ > < □ > < □ > < □ > < □ > = Ξ

Merging under partial information

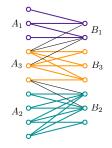
Overview for MUPI:

1. Compute entropy exactly (easier) Körner and Marton 1988

- 2. Use Hwang-Lin merging algorithm guided by x^*
- 3. Update x^*

Posets of width ≤ 2

In that special case, the incomparability graph of P is bipartite

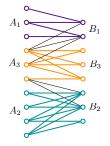


Körner and Marton 1988:

- optimal solution for entropy has "block structure"
- can be computed via a greedy algorithm

Posets of width ≤ 2

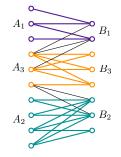
bipartite incomparability graphs $\implies x^*$ defining H(P) has an even nicer structure



A_i interval of A, B_i interval of B, same ordering
 x^{*}_v = (|A_i| + |B_i|)/n|A_i| whenever v ∈ A_i

Can compute $H(\overline{P})$ and x^* in time $O(n^2 \log^2 n)$

Solving MUPI - general ideas



Compute entropy and x^*

Apply Hwang-Ling merging algorithm on each component $A_i \cup B_i$ with $|A_i| \ge |B_i|$, in a certain order

Update x^* locally after each merging (details omitted)

Overall #comparisons is $\leq 3nH(\overline{P})$

Thank You!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●