Approximation Algorithms for Robust Optimization and Max-Min Optimization

Anupam Gupta Carnegie Mellon University

with Viswanath Nagarajan (IBM Watson) and R.Ravi (CMU)

robust problems

```
Input: covering problem,
collection of "demand scenarios" K<sub>1</sub>, K<sub>2</sub>,..., K<sub>N</sub>
```

Output:

build "first-stage" and "second-stage_t" partial solutions such that first-stage + second-stage_t satisfies K_t

Objective:

cost = first-stage-cost + λ (max_t second-stage-cost_t)

Steiner tree

Given a metric space (V, ℓ) and a subset K of k terminals

find the least cost network connecting K

Results:

1.39-approximation [Byrka Grandoni Rothvoss Sanita '10] APX-hard [Bern Plassmann '89]

robust Steiner tree

Given a metric space (V, ℓ) a collection of subsets K_1 , K_2 ,..., K_N and a parameter λ

find a set of edges E_0 and edge sets E_1 , E_2 , ..., E_N such that

 $E_0 \cup E_t$ connects K_t

 $cost = \ell(E_0) + max_t \lambda \ell(E_t)$

set cover

Given a set system (U, F) and a subset K of k terminals

find the least cost collection of sets covering K

Results:

 $(\ln n)$ -factor approximable $(1-\epsilon)(\ln n)$ -hard

robust set cover

Given a set system (U, \mathcal{F}) a family of subsets $K_1, K_2, ..., K_N$ and a parameter λ

find a collection of sets \mathcal{F}_0 and collections $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_N$ such that $\mathcal{F}_0 \cup \mathcal{F}_t$ covers K_t

 $cost = c(\mathcal{F}_0) + max_t \lambda c(\mathcal{F}_t)$

robust problems

```
Input: covering problem,
collection of "demand scenarios" K<sub>1</sub>, K<sub>2</sub>,..., K<sub>N</sub>
```

Output:

build "first-stage" and "second-stage_t" partial solutions such that first-stage + second-stage_t satisfies K_t

Objective:

cost = first-stage-cost + λ (max_t second-stage-cost_t)

known results (1)

When the N sets K_t are given explicitly:

O(1)-factor approximation for Steiner tree

O(log n)-factor for set cover

[Dhamdhere Goyal Ravi Singh '05]

known results (2)

What if we want to handle an exponential number of sets?

Case studied: the K_t 's are <u>all</u> sets of size at most k

O(log m log n)-approximation for robust set cover [Feige Jain Mahdian Mirrokni 07]

> (used Ellipsoid to reduce to max-min set cover: "which subset of size k is most difficult to cover?")

O(1)-approximation for robust Steiner tree

[Khandekar Kortsarz Mirrokni Salavatipour 08]

(combinatorial solution)

our results (1)

When scenarios K_t are <u>all</u> sets of size at most k,

O(log m + log n)-approximation for robust set cover O(1)-approximation for robust Steiner tree/forest O(1)-approximation for robust min-cut O(log² n)-approximation for robust multicut

all using the "same" simple algorithm...

what's the algorithm?

Recall: want to minimize

```
cost = first-stage-cost + \lambda (max<sub>t</sub> second-stage-cost<sub>t</sub>)
call this T*, guess it
```

Generic Algorithm:

- If something costs "much more" than T*/k to satisfy today, add it to a set X.
- 2. First stage: buy an anticipatory solution on X.
- 3. Second stage: do what you need to do.

our results (1)

When scenarios K_t are <u>all</u> sets of size at most k,

O(log m + log n)-approximation for robust set cover O(1)-approximation for robust Steiner tree/forest O(1)-approximation for robust min-cut O(log² n)-approximation for robust multicut

all using this simple algorithm...

our results imply similar approximations for the max-min problem "which subset of size k is most difficult to cover?"

our results (2)

Would like results when scenarios are integer points of some down-monotone polytope.

E.g., when scenarios K_t are <u>all</u> independent sets of some matroid: **Theorem:**

if you can solve some covering problem offline

and you can solve the problem online

 \Rightarrow you can solve the matroid robust version of the problem.

Usually offline × online approximation.

for other results, see paper...

rest of the talk

Generic Algorithm:

- If something costs "much more" than T*/k to satisfy today, add it to a set X.
- 2. First stage: buy an anticipatory solution on X.
- 3. Second stage: do what you need to do.

Show how generic algorithm applies to:

- a) robust Steiner tree
- b) robust set cover (sketch)

robust Steiner tree

Given a metric space (V, ℓ) all possible k-subsets K₁, K₂,..., K_N of V and a parameter λ

find a set of edges E₀
and edge sets E₁, E₂, ..., E_N
such that

 $E_0 \cup E_t$ connects K_t

 $cost = \ell(E_0) + max_t \lambda \ell(E_t)$

the precise algorithm

Algorithm:

- 1. add an arbitrary vertex to X.
- 2. while exists a vertex v such that distance(v, X) > 4 T*/k add v to X
- 3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage $\leq 4\lambda T^*$

Theorem: cost of Steiner-tree(X) \leq O(OPT)

analysis

$$OPT = \text{first-stage-cost} + \lambda (\max_{t} \text{second-stage-cost}_{t})$$

call this Φ^* call this T*, guess it

Theorem: cost of Steiner-tree(X) $\leq O(\Phi^*)$

optimal tree
$$|X| \times 4T^*/k \times \frac{1}{2} \leq 0n X \leq \Phi^* + |X|/k \times T^*$$

analysis

OPT = first-stage-cost +
$$\lambda$$
 (max_t second-stage-cost_t)
call this Φ^* call this T*, guess it

Theorem: cost of Steiner-tree(X) $\leq O(\Phi^*)$

$$\begin{aligned} |\mathbf{X}| \times 4\mathsf{T}^*/\mathsf{k} \times \frac{1}{2} &\leq 0 \text{ for } \mathbf{X} \\ \Rightarrow |\mathbf{X}| \times \mathsf{T}^*/\mathsf{k} &\leq \Phi^* \end{aligned}$$
$$\Rightarrow |\mathbf{X}| \times \mathsf{T}^*/\mathsf{k} &\leq \Phi^* \\ \Rightarrow \text{ our cost of Steiner-tree}(\mathbf{X}) \leq \rho_{\mathsf{ST}} \times 2\Phi^* \end{aligned}$$

wrapping up Steiner tree

Algorithm:

- 1. add an arbitrary vertex to X.
- 2. while exists a vertex v such that distance(v, X) > 4 T*/k add v to X
- 3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage $\leq 4\lambda T^*$

Theorem: cost of Steiner-tree(X) $\leq O(\Phi^*)$

 \Rightarrow our total cost \leq O($\Phi^* + \lambda T^*$)

set cover algorithm

Algorithm:

- 1. for each element e such that cheapest set covering e costs > O(log m) T*/k add v to X
- 2. first-stage = set cover for X

Fact: cost of covering any k-subset in second stage $\leq \lambda O(\log m) T^*$

Theorem: cost of set cover(X) \leq O(log n) ($\Phi^* + T^*$)

 \Rightarrow our total cost \leq O(log m + log n) ($\Phi^* + \lambda T^*$)

sketch of the proof (1)

Theorem: cost of set cover(X) \leq O(log n) (Φ^* + T*)

Let $Y \subset X$ be covered by OPT's first stage (costs O(log n) Φ^* to cover these)

 $Z = X \setminus Y$

Theorem: cost of set $cover(Z) \le O(\log n) T^*$

€

€

Theorem: $LP_{set cover}(Z) \le O(T^*)$

sketch of the proof (2)

Theorem: $LP_{set cover}(Z) \le O(T^*)$

Proof strategy:

- 1. For sake of contradiction, assume $LP_{set cover}(Z) > O(T^*)$
- 2. Cost of any set covering elements from $Z > O(\log m) T^*/k$
- 3. Every k-subset of Z can be covered at cost $\leq T^*$

Gives us a contradiction.

sketch of the proof (3)

- 1. $LP_{set cover}(Z) > O(T^*)$
- 2. Cost of any set covering elements from Z > O(log m) T*/k
- 3. Every k-subset of Z can be covered at cost $\leq T^*$

Let's scale down all the costs by factor 4T*/k

sketch of the proof (4)

- 1. $LP_{set cover}(Z) > O(T^*)$ O(k)
- 2. Cost of any set covering elements from $Z > O(\log m) T*/K$
- 3. Every k-subset of Z can be covered at cost ≤ T*K/4

What if the solution y_e was integral?

Then set containing k of the e's with highest y_e values gives a dual with value > k.

Contradicts the fact that it has small set cover!

sketch of the proof (4)

- 1. $LP_{set cover}(Z) > O(T^*)$ O(k)
- 2. Cost of any set covering elements from $Z > O(\log m) T*/K$
- 3. Every k-subset of Z can be covered at cost ≤ 1*K/4

What if the solution y_e was integral?

If not, randomized rounding does not lose much, since costs are large!

to conclude

algorithms for robust problems with exponentially many scenarios

- **4.5-approximation for Steiner tree**
- O(log m + log n)-approximation for Set Cover

also for Steiner forest, min-cut, multicut simple algorithm "dual-rounding" analysis

directly gives algorithms for max-min problems "which subset of k elements is costliest to cover?"

paper's on the arxiv

FJMM showed such dependence on number of sets m necessary...

thanks!