
Approximation Algorithms for

Robust Optimization

and Max-Min Optimization

Anupam Gupta

Carnegie Mellon University

with Viswanath Nagarajan (IBM Watson) and R.Ravi (CMU)

robust problems

Input: covering problem,

collection of “demand scenarios” K1, K2,…, KN

Output:

build “first-stage” and “second-stage ” partial solutions build “first-stage” and “second-staget” partial solutions

such that first-stage + second-staget satisfies Kt

Objective:

cost = first-stage-cost + λ (maxt second-stage-costt)

Steiner tree

Given a metric space (V, ℓ)

and a subset K of k terminals

find the least cost network

connecting Kconnecting K

Results:

1.39-approximation [Byrka Grandoni Rothvoss Sanita ’10]

APX-hard [Bern Plassmann ‘89]

robust Steiner tree

Given a metric space (V, ℓ)

a collection of subsets K1, K2,…, KN

and a parameter λ

find a set of edges Efind a set of edges E0

and edge sets E1, E2, …, EN

such that

E0 ∪ Et connects Kt

cost = ℓ(E0) + maxt λ ℓ(Et)

set cover

Given a set system (U, F)

and a subset K of k terminals

find the least cost collection

of sets covering Kof sets covering K

Results:

(ln n)-factor approximable [Chvatal, Johnson, Lovasz]

(1-ǫ)(ln n)-hard [Feige ’98]

robust set cover

Given a set system (U, F)

a family of subsets K1, K2,…, KN

and a parameter λ

find a collection of sets Ffind a collection of sets F0

and collections F1, F2, …, FN

such that
F0 ∪Ft covers Kt

cost = c(F0) + maxt λ c(Ft)

robust problems

Input: covering problem,

collection of “demand scenarios” K1, K2,…, KN

Output:

build “first-stage” and “second-stage ” partial solutions build “first-stage” and “second-staget” partial solutions

such that first-stage + second-staget satisfies Kt

Objective:

cost = first-stage-cost + λ (maxt second-stage-costt)

known results (1)

When the N sets Kt are given explicitly:

O(1)-factor approximation for Steiner tree

O(log n)-factor for set cover

[Dhamdhere Goyal Ravi Singh ’05]

known results (2)

What if we want to handle an exponential number of sets?

Case studied: the Kt’s are all sets of size at most k

O(log m log n)-approximation for robust set coverO(log m log n)-approximation for robust set cover

[Feige Jain Mahdian Mirrokni 07]

O(1)-approximation for robust Steiner tree

[Khandekar Kortsarz Mirrokni Salavatipour 08]

(used Ellipsoid to reduce to max-min set cover:

“which subset of size k is most difficult to cover?”)

(combinatorial solution)

our results (1)

When scenarios Kt are all sets of size at most k,

O(log m + log n)-approximation for robust set cover

O(1)-approximation for robust Steiner tree/forest

O(1)-approximation for robust min-cutO(1)-approximation for robust min-cut

O(log2 n)-approximation for robust multicut

all using the “same” simple algorithm…

what’s the algorithm?

Recall: want to minimize

Generic Algorithm:

call this T*, guess it

cost = first-stage-cost + λ (maxt second-stage-costt)

Generic Algorithm:

1. If something costs “much more” than T*/k to satisfy today,

add it to a set X.

2. First stage: buy an anticipatory solution on X.

3. Second stage: do what you need to do.

our results (1)

When scenarios Kt are all sets of size at most k,

O(log m + log n)-approximation for robust set cover

O(1)-approximation for robust Steiner tree/forest

O(1)-approximation for robust min-cutO(1)-approximation for robust min-cut

O(log2 n)-approximation for robust multicut

all using this simple algorithm…

our results imply similar approximations for the

max-min problem

“which subset of size k is most difficult to cover?”

our results (2)

Would like results when scenarios are integer points of some

down-monotone polytope.

E.g., when scenarios Kt are all independent sets of some matroid:

Theorem:Theorem:

if you can solve some covering problem offline

and you can solve the problem online

⇒ you can solve the matroid robust version of the problem.

Usually offline × online approximation.

for other results, see paper…

rest of the talk

Generic Algorithm:

1. If something costs “much more” than T*/k to satisfy today,

add it to a set X.

2. First stage: buy an anticipatory solution on X.

Show how generic algorithm applies to:

a) robust Steiner tree

b) robust set cover (sketch)

3. Second stage: do what you need to do.

robust Steiner tree

Given a metric space (V, ℓ)

all possible k-subsets K1, K2,…, KN of V

and a parameter λ

find a set of edges Efind a set of edges E0

and edge sets E1, E2, …, EN

such that

E0 ∪ Et connects Kt

cost = ℓ(E0) + maxt λ ℓ(Et)

the precise algorithm

Algorithm:

1. add an arbitrary vertex to X.

2. while exists a vertex v such that distance(v, X) > 4 T*/k

add v to X

3. first-stage = Steiner tree on X3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage ≤ 4λ T*

Theorem: cost of Steiner-tree(X) ≤ O(OPT)

analysis

Theorem: cost of Steiner-tree(X) ≤ O(Φ*)

call this T*, guess it

OPT = first-stage-cost + λ (maxt second-stage-costt)

call this Φ*

optimal tree

on X
≤ Φ* + |X|/k × T*|X| × 4T*/k × ½ ≤

analysis

Theorem: cost of Steiner-tree(X) ≤ O(Φ*)

call this T*, guess it

OPT = first-stage-cost + λ (maxt second-stage-costt)

call this Φ*

optimal tree

on X
≤ Φ* + |X|/k × T*|X| × 4T*/k × ½ ≤

⇒ |X| × T*/k ≤ Φ*

⇒ our cost of Steiner-tree(X) ≤ ρST × 2Φ*

wrapping up Steiner tree

Algorithm:

1. add an arbitrary vertex to X.

2. while exists a vertex v such that distance(v, X) > 4 T*/k

add v to X

3. first-stage = Steiner tree on X3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage ≤ 4λ T*

Theorem: cost of Steiner-tree(X) ≤ O(Φ*)

⇒ our total cost ≤ O(Φ* + λ T*)

set cover algorithm

Algorithm:

1. for each element e such that

cheapest set covering e costs > O(log m) T*/k

add v to X

2. first-stage = set cover for X2. first-stage = set cover for X

Fact: cost of covering any k-subset in second stage ≤ λ O(log m) T*

Theorem: cost of set cover(X) ≤ O(log n) (Φ* + T*)

⇒ our total cost ≤ O(log m + log n) (Φ* + λ T*)

sketch of the proof (1)

Theorem: cost of set cover(X) ≤ O(log n) (Φ* + T*)

Let Y ⊂ X be covered by OPT’s first stage

(costs O(log n) Φ* to cover these)

⇒⇒ ⇒⇒

(costs O(log n) Φ* to cover these)

Z = X \ Y

Theorem: cost of set cover(Z) ≤ O(log n) T*

Theorem: LPset cover(Z) ≤ O(T*)

⇒⇒ ⇒⇒

sketch of the proof (2)

Proof strategy:

1. For sake of contradiction, assume LP (Z) > O(T*)

Theorem: LPset cover(Z) ≤ O(T*)

1. For sake of contradiction, assume LPset cover(Z) > O(T*)

2. Cost of any set covering elements from Z > O(log m) T*/k

3. Every k-subset of Z can be covered at cost ≤ T*

Gives us a contradiction.

sketch of the proof (3)

1. LPset cover(Z) > O(T*)

2. Cost of any set covering elements from Z > O(log m) T*/k

3. Every k-subset of Z can be covered at cost ≤ T*

min ∑S cS xS max ∑e in Z ye

∑S ni e xS ≥ 1 for e in Z ∑e in S � Z ye ≤ cS

LP-value > 20 T*

Let’s scale down all the costs by factor 4T*/k

sketch of the proof (4)

1. LPset cover(Z) > O(T*)

2. Cost of any set covering elements from Z > O(log m) T*/k

3. Every k-subset of Z can be covered at cost ≤ T*

min ∑S cS xS max ∑e in Z ye

∑S ni e xS ≥ 1 for e in Z ∑e in S � Z ye ≤ cS

LP-value > 20 T*

What if the solution ye was integral?

Then set containing k of the e’s with highest ye values

gives a dual with value > k.

Contradicts the fact that it has small set cover!

sketch of the proof (4)

1. LPset cover(Z) > O(T*)

2. Cost of any set covering elements from Z > O(log m) T*/k

3. Every k-subset of Z can be covered at cost ≤ T*

min ∑S cS xS max ∑e in Z ye

∑S ni e xS ≥ 1 for e in Z ∑e in S � Z ye ≤ cS

LP-value > 20 T*

What if the solution ye was integral?

If not, randomized rounding does not lose much,

since costs are large!

to conclude

algorithms for robust problems with exponentially many scenarios

4.5-approximation for Steiner tree

O(log m + log n)-approximation for Set Cover

also for Steiner forest, min-cut, multicut

FJMM showed such

dependence on

number of sets m necessary…

simple algorithm

“dual-rounding” analysis

directly gives algorithms for max-min problems

“which subset of k elements is costliest to cover?”

paper’s on the arxiv

thanks!

