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robust problems

Input: covering problem,
collection of “demand scenarios” K, 1< ,..., K

Output:
build “first-stage” and “second-stage,” partial solutions
such that first-stage + second-stage, satisfies K,

Objective:

cost = first-stage-cost + A (max, second-stage-cost,)



Steiner tree

Given a metric space (V, )
and a subset K of k terminals

find the least cost network
connecting K

Results:
1.39-approximation [Byrka Grandoni Rothvoss Sanita "10]
APX-hard [Bern Plassmann ‘89]



robust Steiner tree

Given a metric space (V, )
a collection of subsets K, 1 ,..., K

® o
and a parameter A ° °
° o .
find a set of edges E, O
and edgesetsE,, [, ..., E ® O
O
such that ®
E, U E, connects K,
= . 0 l..
cost = &(E,) + max, A £(E,) e -
" s M




Given a set system (U, F)

and a subset K of k terminals

find the least cost collection
of sets covering K

Results:

(In n)-factor approximable
(1-¢)(In n)-hard

set cover

[Chvatal, Johnson, Lovasz]

[Feige '98]



Given a set system (U, F)
a family of subsets K, 1< ,..., K

and a parameter A

find a collection of sets
and collections F,, 7, ...,

such that
Fo UF, covers K,

cost = c(F,) + max, A c(F,)

robust set cover




robust problems

Input: covering problem,
collection of “demand scenarios” K, 1< ,..., K

Output:
build “first-stage” and “second-stage,” partial solutions
such that first-stage + second-stage, satisfies K,

Objective:

cost = first-stage-cost + A (max, second-stage-cost,)



known results (1)

When the N sets K, are given explicitly:

O(1)-factor approximation for Steiner tree
O(log n)-factor for set cover

[Dhamdhere Goyal Ravi Singh ’05]



known results (2)

What if we want to handle an exponential number of sets?

Case studied: the K,’s are all sets of size at most k

O(log m log n)-approximation for robust set cover
[Feige Jain Mahdian Mirrokni 07]

(used Ellipsoid to reduce to max-min set cover:

“which subset of size k is most difficult to cover?”)

O(1)-approximation for robust Steiner tree
[Khandekar Kortsarz Mirrokni Salavatipour 08]

(combinatorial solution)



our results (1)

When scenarios K, are all sets of size at most k,
O(log m + log n)-approximation for robust set cover

(
O(1)-approximation for robust Steiner tree/forest
O(1)-approximation for robust min-cut

(

O(log? n)-approximation for robust multicut

all using the “same” simple algorithm...



what’s the algorithm?

Recall: want to minimize

cost = first-stage-cost + A (max, second-stage-cost,)
\ }

Y
call this T*, guess it

Generic Algorithm:

1. If something costs “much more” than T*/k to satisfy today,
add it to a set X.

2. First stage: buy an anticipatory solution on X.

3. Second stage: do what you need to do.



our results (1)

When scenarios K, are all sets of size at most k,

O(log m + log n)-approximation for robust set cover
O(1)-approximation for robust Steiner tree/forest
O(1)-approximation for robust min-cut

O(log? n)-approximation for robust multicut

all using this simple algorithm...

our results imply similar approximations for the

max-min problem
“which subset of size k is most difficult to cover?”




our results (2)

Would like results when scenarios are integer points of some
down-monotone polytope.

E.g., when scenarios K, are all independent sets of some matroid:
Theorem:

if you can solve some covering problem offline
and you can solve the problem online
—> you can solve the matroid robust version of the problem.

Usually offline x online approximation.

for other results, see paper...



rest of the talk

Generic Algorithm:

1. If something costs “much more” than T*/k to satisfy today,
add it to a set X.

2. First stage: buy an anticipatory solution on X.

3. Second stage: do what you need to do.

Show how generic algorithm applies to:
a) robust Steiner tree
b) robust set cover (sketch)



robust Steiner tree

Given a metric space (V, )
all possible k-subsets K, ..., K, of V

® o
and a parameter A ° °
° o .
find a set of edges E, O
and edgesetsE,, [, ..., E ® O
O
such that ®
E, U E, connects K,
= . 0 l..
cost = &(E,) + max, A £(E,) e -
" s M




the precise algorithm

Algorithm:
1. add an arbitrary vertex to X.

2. while exists a vertex v such that distance(v, X) >4 T*/k
add vto X

3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage <4\ T*

Theorem: cost of Steiner-tree(X) < O(OPT)



analysis

OPT = first-stage—cost}+ )\\(maxt second-stage-costt)}
\

Y 1 :
call this @* call this T*, guess it

Theorem: cost of Steiner-tree(X) < O(®%*)

optimal tree

|X| x4T*/kx 7 < on X < OF + X|/kxT*



analysis

OPT = first-stage—cost}+ )\\(maxt second-stage-costt)}
\

Y 1 :
call this @* call this T*, guess it

Theorem: cost of Steiner-tree(X) < O(®%*)

optimal tree

|X| x4T*/kx % < on X < D* + |X|/kxT*

= |X| xT*/k < o*

—> our cost of Steiner-tree(X) < po; x 29*



wrapping up Steiner tree

Algorithm:
1. add an arbitrary vertex to X.

2. while exists a vertex v such that distance(v, X) >4 T*/k
add vto X

3. first-stage = Steiner tree on X

Fact: cost of connecting any set of k guys in second stage <4\ T*

Theorem: cost of Steiner-tree(X) < O(®%*)

— our total cost < O(P* + \ T*)



set cover algorithm

Algorithm:

1. for each element e such that
cheapest set covering e costs > O(log m) T*/k

add vto X
2. first-stage = set cover for X

Fact: cost of covering any k-subset in second stage < A O(log m) T*

Theorem: cost of set cover(X) < O(log n) (®* + T*)

— our total cost < O(log m + log n) (®* + \ T*)



sketch of the proof (1)

Theorem: cost of set cover(X) < O(log n) (®* + T*)

l

Let Y C X be covered by OPT’s first stage
(costs O(log n) @* to cover these)

Z=X\Y

Theorem: cost of set cover(Z) < O(logn) T*

i

Theorem: LP_, . ..(Z) < O(T*)




sketch of the proof (2)

Theorem: LP_, .....(Z) < O(T*)

Proof strategy:
1. For sake of contradiction, assume LP_,, .(Z) > O(T*)
2. Cost of any set covering elements from Z > O(log m) T*/k

3. Every k-subset of Z can be covered at cost < T*

Gives us a contradiction.



sketch of the proof (3)

min 2.c Cc X

ZSnieXSZ]' foremz ZeinSﬁZ yeSCS

max Ze inZ ye

LP-value >20 T*

Let’s scale down all the costs by factor 4T*/k



sketch of the proof (4)

) AN
min ZS Cs Xs max Z:einZye

i A e ldvse!
YcneX 21 foreinz Y icny YoSCo € avge

LP-value > 20/ T* J\;K

What if the solution y, was integral?

Then set containing k of the e’s with highest y, values
gives a dual with value > k.

Contradicts the fact that it has small set cover!



sketch of the proof (4)

. A
min ZS Cs Xs max Z:einZye

i 2 e lage!
YcneX 21 foreinZ > icny Vo< Co avge

LP-value > 207 T* J\;K

What if the solution y, was integral?

If not, randomized rounding does not lose much,
since costs are large!




to conclude

algorithms for robust problems with exponentially many scenarios
4.5-approximation for Steiner tree

O(log m + log n)-approximation for Set Cover FIMM showed such

- dependence on
number of sets m necessary...

also for Steiner forest, min-cut, multicut
simple algorithm
“dual-rounding” analysis

directly gives algorithms for max-min problems
“which subset of k elements is costliest to cover?”

paper’s on the arxiv



thanks!



