
Online Stochastic Ad Allocation

Vahab Mirrokni

Google Research, New York

Outline

I Overview: Related Work and Results.

I Online Stochastic Matching: iid with known distribution

I Online Stochastic Packing: Random order

I Online Generalized Assignment (with free disposal)

Online Ad Allocation

I When page arrives, assign an eligible ad.
I value of assigning page i to ad a: via

I Capacity of ad a: Ca

I Online Matching (via = 1): Maximize number of ads served.

I Online Weighted Matching: Maximize value of ads served.

Online Ad Allocation

I When page arrives, assign an eligible ad.
I value of assigning page i to ad a: via

I Capacity of ad a: Ca

I Online Matching (via = 1): Maximize number of ads served.

I Online Weighted Matching: Maximize value of ads served.

Online (Stochastic) Allocation: Known Results

I Arbitrary order:
I Greedy is 0.5-approx.
I [KVV90] Online 1− 1/e ≈ 0.632 alg. This is tight.
I [MSVV05,BJN07] Adwords (Weights, budgets):

1− 1/e-approx.

I Random order, or i.i.d with unknown distribution:

I [GM08] Greedy is 1− 1/e opt. 3/4-hard (5/6 rand).
I Weights, budgets: greedy is 1− 1/e opt.

I i.i.d. model with known distribution:

I [GM08] Greedy is 1− 1/e opt.

Online (Stochastic) Allocation: Known Results

I Arbitrary order:
I Greedy is 0.5-approx.
I [KVV90] Online 1− 1/e ≈ 0.632 alg. This is tight.
I [MSVV05,BJN07] Adwords (Weights, budgets):

1− 1/e-approx.

I Random order, or i.i.d with unknown distribution:
I [GM08] Greedy is 1− 1/e opt. 3/4-hard (5/6 rand).
I Weights, budgets: greedy is 1− 1/e opt.

I i.i.d. model with known distribution:

I [GM08] Greedy is 1− 1/e opt.

Online (Stochastic) Allocation: Known Results

I Arbitrary order:
I Greedy is 0.5-approx.
I [KVV90] Online 1− 1/e ≈ 0.632 alg. This is tight.
I [MSVV05,BJN07] Adwords (Weights, budgets):

1− 1/e-approx.

I Random order, or i.i.d with unknown distribution:
I [GM08] Greedy is 1− 1/e opt. 3/4-hard (5/6 rand).
I Weights, budgets: greedy is 1− 1/e opt.

I i.i.d. model with known distribution:
I [GM08] Greedy is 1− 1/e opt.

Results: Three Recent Papers

I Online Stochastic Matching: Beating 1− 1
e , FOCS 2009.

I online stochastic matching in iid model with known dist.
I 0.67-approximation (idea: power of two choices)
I Feldman, Mehta, M., Muthukrishnan

I Online Stochastic Packing applied to Display Ad Allocation,
Arxive 2010.

I Online stoch. packing in random order model: online routing.
I 1− ε-approximation under assumptions (idea: learn dual

variables.)
I Feldman, Henzinger, Korula, M., Stein

I Online Ad Assignment with Free Disposal, WINE 2009.
I online generalized assignment problems with free disposal.
I 1− 1

e -competitive algorithm (idea: primal-dual analysis.)
I Feldman, Korula, M., Muthukrishnan, Pal

Results: Three Recent Papers

I Online Stochastic Matching: Beating 1− 1
e , FOCS 2009.

I online stochastic matching in iid model with known dist.
I 0.67-approximation (idea: power of two choices)
I Feldman, Mehta, M., Muthukrishnan

I Online Stochastic Packing applied to Display Ad Allocation,
Arxive 2010.

I Online stoch. packing in random order model: online routing.
I 1− ε-approximation under assumptions (idea: learn dual

variables.)
I Feldman, Henzinger, Korula, M., Stein

I Online Ad Assignment with Free Disposal, WINE 2009.
I online generalized assignment problems with free disposal.
I 1− 1

e -competitive algorithm (idea: primal-dual analysis.)
I Feldman, Korula, M., Muthukrishnan, Pal

Results: Three Recent Papers

I Online Stochastic Matching: Beating 1− 1
e , FOCS 2009.

I online stochastic matching in iid model with known dist.
I 0.67-approximation (idea: power of two choices)
I Feldman, Mehta, M., Muthukrishnan

I Online Stochastic Packing applied to Display Ad Allocation,
Arxive 2010.

I Online stoch. packing in random order model: online routing.
I 1− ε-approximation under assumptions (idea: learn dual

variables.)
I Feldman, Henzinger, Korula, M., Stein

I Online Ad Assignment with Free Disposal, WINE 2009.
I online generalized assignment problems with free disposal.
I 1− 1

e -competitive algorithm (idea: primal-dual analysis.)
I Feldman, Korula, M., Muthukrishnan, Pal

Outline

I Overview: Related Work and Results.

I Online Stochastic Matching: iid with known distribution

I Online Stochastic Packing: Random order

I Online Generalized Assignment (with free disposal)

Online Stochastic Matching: iid (known dist.)

Given (offline):
- Bipartite graph G = (A, I ,E),
- Distribution D over I .
Online:
- n indep. draws from D.
- Must assign nodes upon arrival.

Online Stochastic Matching

I Let H = (A, Î , Ê) be the “realization” of G
I (i.e., Î are the nodes that actually arrive).

I Approximation ratio = ALG(H)/OPT(H).

I “ALG is α-opt...?”

E
[

ALG(H)
OPT(H)

]
≥ α E [ALG(H)]

E [OPT(H)] ≥ α w.h.p.,ALG(H)
OPT(H) ≥ α

I This talk: D is uniform, n = |A| = |I |.

Online Stochastic Matching

I Let H = (A, Î , Ê) be the “realization” of G
I (i.e., Î are the nodes that actually arrive).

I Approximation ratio = ALG(H)/OPT(H).

I “ALG is α-opt...?”

E
[

ALG(H)
OPT(H)

]
≥ α E [ALG(H)]

E [OPT(H)] ≥ α w.h.p.,ALG(H)
OPT(H) ≥ α

I This talk: D is uniform, n = |A| = |I |.

Online Stochastic Matching

I Let H = (A, Î , Ê) be the “realization” of G
I (i.e., Î are the nodes that actually arrive).

I Approximation ratio = ALG(H)/OPT(H).

I “ALG is α-opt...?”

E
[

ALG(H)
OPT(H)

]
≥ α E [ALG(H)]

E [OPT(H)] ≥ α w.h.p.,ALG(H)
OPT(H) ≥ α

I This talk: D is uniform, n = |A| = |I |.

Online Stochastic Matching

I Let H = (A, Î , Ê) be the “realization” of G
I (i.e., Î are the nodes that actually arrive).

I Approximation ratio = ALG(H)/OPT(H).

I “ALG is α-opt...?”

E
[

ALG(H)
OPT(H)

]
≥ α E [ALG(H)]

E [OPT(H)] ≥ α w.h.p.,ALG(H)
OPT(H) ≥ α

I This talk: D is uniform, n = |A| = |I |.

Results[FMMM09]: i.i.d with known distribution

I New algorithm for “online stochastic matching:”
I Offline optimization on “expected graph”
I Online: some ideas from “power of two choices” [Azar,

Broder, Karlin, ’99], [Mitzenmacher, ’01]

I With high probability,

ALG
OPT

≥
1− 2

e2

4
3 −

2
3e

' 0.67

I Analysis of algorithm is tight

I ∃ example matching this bound.

I No algorithm can get ALG
OPT ≥

6e3−23
6e3−22

' .9898.

Results[FMMM09]: i.i.d with known distribution

I New algorithm for “online stochastic matching:”
I Offline optimization on “expected graph”
I Online: some ideas from “power of two choices” [Azar,

Broder, Karlin, ’99], [Mitzenmacher, ’01]

I With high probability,

ALG
OPT

≥
1− 2

e2

4
3 −

2
3e

' 0.67

I Analysis of algorithm is tight

I ∃ example matching this bound.

I No algorithm can get ALG
OPT ≥

6e3−23
6e3−22

' .9898.

Results[FMMM09]: i.i.d with known distribution

I New algorithm for “online stochastic matching:”
I Offline optimization on “expected graph”
I Online: some ideas from “power of two choices” [Azar,

Broder, Karlin, ’99], [Mitzenmacher, ’01]

I With high probability,

ALG
OPT

≥
1− 2

e2

4
3 −

2
3e

' 0.67

I Analysis of algorithm is tight

I ∃ example matching this bound.

I No algorithm can get ALG
OPT ≥

6e3−23
6e3−22

' .9898.

Results[FMMM09]: i.i.d with known distribution

I New algorithm for “online stochastic matching:”
I Offline optimization on “expected graph”
I Online: some ideas from “power of two choices” [Azar,

Broder, Karlin, ’99], [Mitzenmacher, ’01]

I With high probability,

ALG
OPT

≥
1− 2

e2

4
3 −

2
3e

' 0.67

I Analysis of algorithm is tight

I ∃ example matching this bound.

I No algorithm can get ALG
OPT ≥

6e3−23
6e3−22

' .9898.

Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e).

Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e).

Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e).

Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e).

Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:

I Suppose G = complete graph.
I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:

I Suppose G = complete graph.
I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:
I Suppose G = complete graph.

I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:
I Suppose G = complete graph.
I Then OPT(H) = n.

I But w.h.p. only 1− 1/e fraction of I will ever arrive.
=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:
I Suppose G = complete graph.
I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:
I Suppose G = complete graph.
I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).

New ALG: “Two suggested matchings”

1. Offline: Find two disjoint matchings

2. Online: try the first one, then if that doesn’t work, try the
second one.

New ALG: “Two suggested matchings”

Warmup: complete graph

I Two disjoint perfect matchings: blue (1-ary), red (2-ary).

I Union of matchings = cycles with alt. blue and red edges

New ALG: “Two suggested matchings”

Warmup: complete graph

I Two disjoint perfect matchings: blue (1-ary), red (2-ary).

I Union of matchings = cycles with alt. blue and red edges

New ALG: “Two suggested matchings”

For particular node a ∈ A:

Pr[a is chosen] ≥ Pr[i arrives once, or i ′ arrives twice]

= 1− Pr[i never arrives & i ′ arrives ≤ once]

= 1−
(
(1− 2/n)n + n(1/n)(1− 2/n)n−1

)
≈ 1− 2/e2

Thus, E[# nodes in A chosen] ≈ (1− 2/e2)n ≈ .729n
(This also concentrates...)

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.

I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.
I Examine edges in flow.
I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.
I Examine edges in flow.
I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.
I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.
I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.

I Color the edges as shown

Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.

I Color the edges as shown

Algorithm (Online)

I When node i ∈ I arrives:
I Try the blue edge first, then the red edge.

I Consider a node a ∈ A:

I Pr[a is chosen] ≥ Pr[i arrives once, or i ′ arrives twice]

Algorithm (Online)

I When node i ∈ I arrives:

I Try the blue edge first, then the red edge.

I Consider a node a ∈ A:
I Pr[a is chosen] ≥ Pr[i arrives once, or i ′ arrives twice]

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).

I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).

I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).

I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

Bounding OPT

I Find min-cut in augmented flow graph (from G).
I Eδ is a matching.
I By max-flow min-cut,

|flow| = 2(|AT |+ |IS |) + |Eδ|.

I OPT ≤ cut(H). (Remember H = (A, Î , Ê).)
I Use min-cut in G as “guide” for cut in H.
I W.h.p., |IS | ≈ |̂IS |. Eδ?
I For any node a ∈ S with an edge in the cut in Ê (H), move it

to T ⇒ # nonempty nodes in Eδ ⇒ (1− 1
e)Eδ.

Bounding OPT

I Find min-cut in augmented flow graph (from G).
I Eδ is a matching.
I By max-flow min-cut,

|flow| = 2(|AT |+ |IS |) + |Eδ|.

I OPT ≤ cut(H). (Remember H = (A, Î , Ê).)
I Use min-cut in G as “guide” for cut in H.
I W.h.p., |IS | ≈ |̂IS |. Eδ?
I For any node a ∈ S with an edge in the cut in Ê (H), move it

to T ⇒ # nonempty nodes in Eδ ⇒ (1− 1
e)Eδ.

Putting things together

I Eventually (after moving a few nodes around) you get
I OPT . |IS |+ |AT |+ (1− 1/e)|Eδ|.

I A lemma relating the decomposition to the cut gives
I |Eδ| ≤ 2

3 |ABR |+ 4
3 |ABB |+ |AB |+ 1

3 |AR |,
I which, when combined with

I |flow| = 2(|AT |+ |IS |) + |Eδ|
I |flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |,
I ALG ≥ (1− 1

e2)|ABB |+ (1− 2
e2)|ABR |+ (1− 3

2e)(|AB |+ |AR |),

I gives

I ALG
OPT ≥ min{ 1−1/e2

5/3−4/3e ,
1−2/e2

4/3−2/3e ,
1−3/2e
1−1/e }

I ALG
OPT ≥ .67

I The analysis is tight.

Putting things together

I Eventually (after moving a few nodes around) you get
I OPT . |IS |+ |AT |+ (1− 1/e)|Eδ|.

I A lemma relating the decomposition to the cut gives
I |Eδ| ≤ 2

3 |ABR |+ 4
3 |ABB |+ |AB |+ 1

3 |AR |,

I which, when combined with
I |flow| = 2(|AT |+ |IS |) + |Eδ|
I |flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |,
I ALG ≥ (1− 1

e2)|ABB |+ (1− 2
e2)|ABR |+ (1− 3

2e)(|AB |+ |AR |),

I gives

I ALG
OPT ≥ min{ 1−1/e2

5/3−4/3e ,
1−2/e2

4/3−2/3e ,
1−3/2e
1−1/e }

I ALG
OPT ≥ .67

I The analysis is tight.

Putting things together

I Eventually (after moving a few nodes around) you get
I OPT . |IS |+ |AT |+ (1− 1/e)|Eδ|.

I A lemma relating the decomposition to the cut gives
I |Eδ| ≤ 2

3 |ABR |+ 4
3 |ABB |+ |AB |+ 1

3 |AR |,
I which, when combined with

I |flow| = 2(|AT |+ |IS |) + |Eδ|
I |flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |,
I ALG ≥ (1− 1

e2)|ABB |+ (1− 2
e2)|ABR |+ (1− 3

2e)(|AB |+ |AR |),

I gives

I ALG
OPT ≥ min{ 1−1/e2

5/3−4/3e ,
1−2/e2

4/3−2/3e ,
1−3/2e
1−1/e }

I ALG
OPT ≥ .67

I The analysis is tight.

Putting things together

I Eventually (after moving a few nodes around) you get
I OPT . |IS |+ |AT |+ (1− 1/e)|Eδ|.

I A lemma relating the decomposition to the cut gives
I |Eδ| ≤ 2

3 |ABR |+ 4
3 |ABB |+ |AB |+ 1

3 |AR |,
I which, when combined with

I |flow| = 2(|AT |+ |IS |) + |Eδ|
I |flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |,
I ALG ≥ (1− 1

e2)|ABB |+ (1− 2
e2)|ABR |+ (1− 3

2e)(|AB |+ |AR |),

I gives

I ALG
OPT ≥ min{ 1−1/e2

5/3−4/3e ,
1−2/e2

4/3−2/3e ,
1−3/2e
1−1/e }

I ALG
OPT ≥ .67

I The analysis is tight.

Lower bound

I Suppose wlog x arrives first, ALG assigns to a (if anywhere).

I If the next two arrivals are both y , then ALG ≤ 2, OPT = 3.

I Therefore E[ALG/OPT] ≤ (1/9)(2/3) + (8/9) = 26/27

Lower bound

I Suppose wlog x arrives first, ALG assigns to a (if anywhere).

I If the next two arrivals are both y , then ALG ≤ 2, OPT = 3.

I Therefore E[ALG/OPT] ≤ (1/9)(2/3) + (8/9) = 26/27

Lower bound

I Suppose wlog x arrives first, ALG assigns to a (if anywhere).

I If the next two arrivals are both y , then ALG ≤ 2, OPT = 3.

I Therefore E[ALG/OPT] ≤ (1/9)(2/3) + (8/9) = 26/27

Lower bound

I But what if one demands an instance that grows with n ?

I Use collection of 6-cycles, same “bad event,” Azuma,
Chernoff...

I Theorem: Even for n ≥ n0, no algorithm can do better than
6e3−23
6e3−22

' .9898, even in expectation.

Lower bound

I But what if one demands an instance that grows with n ?

I Use collection of 6-cycles, same “bad event,” Azuma,
Chernoff...

I Theorem: Even for n ≥ n0, no algorithm can do better than
6e3−23
6e3−22

' .9898, even in expectation.

Lower bound

I But what if one demands an instance that grows with n ?

I Use collection of 6-cycles, same “bad event,” Azuma,
Chernoff...

I Theorem: Even for n ≥ n0, no algorithm can do better than
6e3−23
6e3−22

' .9898, even in expectation.

Outline

I Overview: Related Work and Results.

I Online Stochastic Matching: iid with known distribution

I Online Stochastic Packing: Random order

I Online Generalized Assignment (with free disposal)

Results[FHKMS10]: random order (iid w. unknown dist.)
I Generalize the primal-dual technique used by Devanour &

Hayes to General Online Stochastic Packing LPs:
I Online Stochastic Routing Problems
I Online Stochastic Combinatorial Auctions

I Thm: Under the following conditions, w.h.p there exists a
1− ε-approximation:

I opt is much larger than the maximum value of any item for
any resource, i.e, opt

max via
≥ m log n

ε .
I Each item takes a small fraction of the total capacity of any

resource, i.e., Ca

max sia
≥ m log n

ε3 .

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

Results[FHKMS10]: random order (iid w. unknown dist.)
I Generalize the primal-dual technique used by Devanour &

Hayes to General Online Stochastic Packing LPs:
I Online Stochastic Routing Problems
I Online Stochastic Combinatorial Auctions

I Thm: Under the following conditions, w.h.p there exists a
1− ε-approximation:

I opt is much larger than the maximum value of any item for
any resource, i.e, opt

max via
≥ m log n

ε .
I Each item takes a small fraction of the total capacity of any

resource, i.e., Ca

max sia
≥ m log n

ε3 .

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

Results[FHKMS10]: random order (iid w. unknown dist.)

I Thm: Under the following conditions, w.h.p there exists a
1− ε-approximation:

I opt is much larger than the maximum value of any item for
any resource, i.e, opt

max via
≥ m log n

ε .
I Each item takes a small fraction of the total capacity of any

resource, i.e., Ca

max sia
≥ m log n

ε3 .

I Algorithm:
I Observe the first ε fraction sample of items.
I Learn a dual variable for each ad βa, by solving the dual

program on the sample.
I Assign each item i to ad a that maximizes via − βa.

I More general: multiple resources in one option o. Maximize
vio −

∑
a∈oi

βa

Results[FHKMS10]: random order (iid w. unknown dist.)

I Thm: Under the following conditions, w.h.p there exists a
1− ε-approximation:

I opt is much larger than the maximum value of any item for
any resource, i.e, opt

max via
≥ m log n

ε .
I Each item takes a small fraction of the total capacity of any

resource, i.e., Ca

max sia
≥ m log n

ε3 .

I Algorithm:
I Observe the first ε fraction sample of items.
I Learn a dual variable for each ad βa, by solving the dual

program on the sample.
I Assign each item i to ad a that maximizes via − βa.

I More general: multiple resources in one option o. Maximize
vio −

∑
a∈oi

βa

Results[FHKMS10]: random order (iid w. unknown dist.)

I Thm: Under the following conditions, w.h.p there exists a
1− ε-approximation:

I opt is much larger than the maximum value of any item for
any resource, i.e, opt

max via
≥ m log n

ε .
I Each item takes a small fraction of the total capacity of any

resource, i.e., Ca

max sia
≥ m log n

ε3 .

I Algorithm:
I Observe the first ε fraction sample of items.
I Learn a dual variable for each ad βa, by solving the dual

program on the sample.
I Assign each item i to ad a that maximizes via − βa.

I More general: multiple resources in one option o. Maximize
vio −

∑
a∈oi

βa

Outline

I Overview: Related Work and Results.

I Online Stochastic Matching: iid with known distribution

I Online Stochastic Packing: Random order

I Online Generalized Assignment (with free disposal)

Results[FKMMP09]: arbitrary order (with free disposal)
I Online Weighted Matching (with free disposal): [NWF78]:

0.5-approx.
I Online AdWord (Budgeted): [MSVV,BJN]: 1− 1

e -approx

I Online Generalized Assignment (with free disposal):
I Items i may have different value (via) and different size sia for

different ads a.
I Online Weighted Matching: sia = 1.
I Online AdWord Assignment[MSVV]: via = sia.

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

Results[FKMMP09]: arbitrary order (with free disposal)
I Online Weighted Matching (with free disposal): [NWF78]:

0.5-approx.
I Online AdWord (Budgeted): [MSVV,BJN]: 1− 1

e -approx

I Online Generalized Assignment (with free disposal):
I Items i may have different value (via) and different size sia for

different ads a.
I Online Weighted Matching: sia = 1.
I Online AdWord Assignment[MSVV]: via = sia.

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

Results[FKMMP09]: arbitrary order (with free disposal)

I Thm: There exists a 1− 1
e − ε-approximation algorithm if:

I For online weighted matching, Ca ≥ O(1
ε).

I For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., Ca

max sij
≥ 1

ε .

I Algorithm:
I Initialize β = 0.
I Online: Assign item i to ad a that maximizes via − βa, and

update βa.
I If the top Ca items assigned to a have values:

v(1) ≥ v(2) . . . ≥ v(Ca):

Greedy: βa = v(Ca), or Average: βa =
∑Ca

j=1 v(j)

Ca
, or

βa =
1

Ca(e − 1)

Ca∑
j=1

v(j)(1 +
1

Ca
)j−1.

Results[FKMMP09]: arbitrary order (with free disposal)

I Thm: There exists a 1− 1
e − ε-approximation algorithm if:

I For online weighted matching, Ca ≥ O(1
ε).

I For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., Ca

max sij
≥ 1

ε .

I Algorithm:
I Initialize β = 0.
I Online: Assign item i to ad a that maximizes via − βa, and

update βa.
I If the top Ca items assigned to a have values:

v(1) ≥ v(2) . . . ≥ v(Ca):

Greedy: βa = v(Ca), or Average: βa =
∑Ca

j=1 v(j)

Ca
, or

βa =
1

Ca(e − 1)

Ca∑
j=1

v(j)(1 +
1

Ca
)j−1.

Proof Idea: arbitrary order (with free disposal)

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Proof:
1. Start from feasible primal and dual (xia = 0, βa = 0, and

zi = 0, i.e., Primal=Dual=0).
2. After each assignment, update x , β, z variables and keep

primal and dual solutions.
3. Show ∆(Dual) ≤ (1− 1

e)∆(Primal).

I Thm: There exists a 1− 1
e − ε-approximation algorithm if:

I For online weighted matching, Ca ≥ O(1
ε).

I For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., Ca

max sij
≥ 1

ε .

Proof Idea: arbitrary order (with free disposal)

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Proof:
1. Start from feasible primal and dual (xia = 0, βa = 0, and

zi = 0, i.e., Primal=Dual=0).
2. After each assignment, update x , β, z variables and keep

primal and dual solutions.
3. Show ∆(Dual) ≤ (1− 1

e)∆(Primal).

I Thm: There exists a 1− 1
e − ε-approximation algorithm if:

I For online weighted matching, Ca ≥ O(1
ε).

I For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., Ca

max sij
≥ 1

ε .

Conclusions

I 0.67-approximation for online stochastic matching (iid, known
distribution): power of two choices.

I 1− ε-approximation for online stochastic packing (random
order, under assumptions): learning dual variables.

I 1− 1
e -approximation for online GAP with free disposal (with

small elements, adversarial): primal-dual approach.

I Open Problems:
I Gap: 0.98 > 0.67.
I Apply power of two choices to other problems?
I Power of ”many choices”?
I An algorithm that achieves good performance both in

stochastic setting and worst case?

Conclusions

I 0.67-approximation for online stochastic matching (iid, known
distribution): power of two choices.

I 1− ε-approximation for online stochastic packing (random
order, under assumptions): learning dual variables.

I 1− 1
e -approximation for online GAP with free disposal (with

small elements, adversarial): primal-dual approach.

I Open Problems:
I Gap: 0.98 > 0.67.
I Apply power of two choices to other problems?
I Power of ”many choices”?
I An algorithm that achieves good performance both in

stochastic setting and worst case?

Thank you.

