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o pageviews arrive online s

» When page arrives, assign an eligible ad.
» value of assigning page / to ad a: v;,

» Capacity of ad a: G,
» Online Matching (vj; = 1): Maximize number of ads served.
» Online Weighted Matching: Maximize value of ads served.
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» Random order, or i.i.d with unknown distribution:
» [GMO08] Greedy is 1 — 1/e opt. 3/4-hard (5/6 rand).
» Weights, budgets: greedy is 1 — 1/e opt.

» i.i.d. model with known distribution:
» [GMO08] Greedy is 1 — 1/e opt.
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» Online Stochastic Packing applied to Display Ad Allocation,
Arxive 2010.
» Online stoch. packing in random order model: online routing.
» 1 — c-approximation under assumptions (idea: learn dual
variables.)
» Feldman, Henzinger, Korula, M., Stein

» Online Ad Assignment with Free Disposal, WINE 2009.
» online generalized assignment problems with free disposal.
» 1— Lcompetitive algorithm (idea: primal-dual analysis.)
» Feldman, Korula, M., Muthukrishnan, Pal
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Online Stochastic Matching: iid (known dist.)
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l oo pageviews arrive online

Given (offline):

- Bipartite graph G = (A, I, E),

- Distribution D over [.

Online:

- n indep. draws from D.

- Must assign nodes upon arrival.
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a b C a b C

A

> Let H = (A, 1, E) be the “realization” of G

» (i.e., I are the nodes that actually arrive).
» Approximation ratio = ALG(H)/OPT(H).
» "ALG is a-opt...7"

ALG(H E[ALG(H ALG(H
E [OPTEHg] Z o E{OPT%HH > o W'h'p"OPTEH; =

» This talk: D is uniform, n = |A| = |/].
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ResultsfFMMMO09]: i.i.d with known distribution

» New algorithm for “online stochastic matching:”

» Offline optimization on “expected graph”
» Online: some ideas from “power of two choices” [Azar,
Broder, Karlin, '99], [Mitzenmacher, '01]

» With high probability,

» Analysis of algorithm is tight

» 7 example matching this bound.

3
» No algorithm can get ALS > 2e=23 ~ .9898.
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Background: Balls in bins

» Suppose n balls thrown into n bins, i.i.d. uniform.
» # non-empty bins concentrates:

» B = particular subset of bins.

» s = # bins in B with > 1 ball.

» Then w.hp., s~ |B|(1-1).



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.

» Does no better than 1 —1/e.



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.

» Does no better than 1 —1/e.

» Proof:
» Suppose G = complete graph.



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.

» Does no better than 1 —1/e.

» Proof:

» Suppose G = complete graph.
» Then OPT(H) = n.



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.

» Does no better than 1 —1/e.

» Proof:
» Suppose G = complete graph.
» Then OPT(H) = n.
» But w.h.p. only 1 — 1/e fraction of / will ever arrive.
= ALG =~ (1-1/e)n.



First Attempt: “Suggested matching”

1. Find a maximum matching in G.

2. Use that matching as nodes arrive online.

» Does no better than 1 —1/e.

» Proof:

» Suppose G = complete graph.

» Then OPT(H) = n.

» But w.h.p. only 1 — 1/e fraction of / will ever arrive.
= ALG =~ (1-1/e)n.

» In fact, this algorithm does achieve 1 — 1/e (in paper).



New ALG: “Two suggested matchings”

1. Offline: Find two disjoint matchings

2. Online: try the first one, then if that doesn’'t work, try the
second one.
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New ALG: “Two suggested matchings”

Warmup: complete graph

» Two disjoint perfect matchings: blue (1-ary), red (2-ary).
» Union of matchings = cycles with alt. blue and red edges



New ALG: “Two suggested matchings”

a

i@ i

For particular node a € A:

Pr[ais chosen ] > Pr[i arrives once, or i’ arrives twice]
= 1 — Pr[i never arrives & i’ arrives < once]
= 1 (1 —2/n)" + n(1/m)(1 — 2/n)" )
~ 1-2/ée?

Thus, E[# nodes in A chosen] ~ (1 —2/e?)n ~ .729n
(This also concentrates...)
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» Examine edges in flow.



Algorithm (Offline)

B
S

» Color the edges as shown



Algorithm (Online)

2ndLhoice

» When node i € [ arrives:
» Try the blue edge first, then the red edge.



Algorithm (Online)

. a

» Consider a node a € A:
» Pr[ais chosen | > Pr[i arrives once, or i’ arrives twice]
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Performance of the Algorithm

» Classify a € A based on its neighbors in the flow.
’ﬂOW‘ = 2‘ABR‘ + 2‘ABB’ + ‘AB‘ + ‘AR|

» Using Balls-in-bins concentration results (Azuma’s inequality):

a € Ag. We get at least |Ag|(1 —1/e).
a € Agr. We get at least |Agg|(1 — 2/€?).
a € Agg. We get at least |Agg|(1 —1/¢€?).
a € Ag. We get at least |Ag|(1 — 2/e).

vV vyVvVYyy

» Bound on ALG in terms of flow (using |B| > |R|):

1 2 3
46 > (1 5 )lAael + (1 5 ) Asel + (1 2 ) (Aal + A



Bounding OPT

flow,(G)

» Find min-cut in augmented flow graph (from G).
» E; is a matching.
» By max-flow min-cut,

[flow| = 2(|A7| + [Is]) + |Es|-



Bounding OPT

flow,(H)

» OPT < cut(H). (Remember H = (A, 1, E).)

» Use min-cut in G as “guide” for cut in H.

> Whp, |Is| = [Is|. Es? A

» For any node a € S with an edge in the cut in E(H), move it
to T = # nonempty nodes in Es = (1 — %)E(;.
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Putting things together

v

Eventually (after moving a few nodes around) you get
» OPT < |Is|+ AT+ (1 —1/e)|Es|.

A lemma relating the decomposition to the cut gives
> |Es| < %\ABR| + %|ABB| +|Ag| + %|AR|,

v

» which, when combined with

> |flow| = 2(|A7| + |/s|) + |Es|

> |flow| =

> ALG > (1— )|Ass| + (1 — 2)|Ase| + (1 — 2)(|As| + [Ar]),
> gives

1-1/&®  1-2/¢® 1-3/2
> Py 2 m’”{5/34<;3e’ 4/3*2;36’ 1*1/:}
> é— .67

v

The analysis is tight.
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Lower bound

a b C a b C
x z X y ¥
G H

» Suppose wlog x arrives first, ALG assigns to a (if anywhere).
» If the next two arrivals are both y, then ALG < 2, OPT = 3.
» Therefore E[ALG/OPT] < (1/9)(2/3) + (8/9) = 26/27
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Lower bound

» But what if one demands an instance that grows with n ?

» Use collection of 6-cycles, same “bad event,” Azuma,
Chernoff...

» Theorem: Even for n > ng, no algorithm can do better than

3_ . .
223733 ~ .9898, even in expectation.
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» Generalize the primal-dual technique used by Devanour &
Hayes to General Online Stochastic Packing LPs:
» Online Stochastic Routing Problems
» Online Stochastic Combinatorial Auctions

» Thm: Under the following conditions, w.h.p there exists a
1 — e-approximation:
» OPT is much larger than the maximum value of any item for
any resource, i.e, m‘;iTv > m'°g"
» Each item takes a small fractlon of the total capacity of any

resource, i.e., —< mlogn

' maxsj, — €3

i,a

a
;Xia < 1 (V I) SiafBa + Zi

=
.> .
S saxia < G v 3) fozi > 0 (Vi)

maxZ ViaXia min Z C.f; + Z z;
i
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Results|FHKMS10]: random order (iid w. unknown dist.)

» Thm: Under the following conditions, w.h.p there exists a
1 — e-approximation:
» OPT is much larger than the maximum value of any item for

any resource, i.e, 25— > ’"'°g"
» Each item takes a small fractlon of the total capacity of any

C, mlogn
resource, i.e., maxs, = &

» Algorithm:

» Observe the first ¢ fraction sample of items.

» Learn a dual variable for each ad f3,, by solving the dual
program on the sample.

» Assign each item j to ad a that maximizes v;;, — (..

» More general: multiple resources in one option 0. Maximize

Vio — Zaem /))a
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» Online Weighted Matching (with free disposal): [NWF78]:
0.5-approx.
» Online AdWord (Budgeted): [MSVV,BJN]: 1 — %—approx

» Online Generalized Assignment (with free disposal):
» Items i may have different value (v;;) and different size s;, for
different ads a.
» Online Weighted Matching: s;, = 1.
» Online AdWord Assignment[MSVV]: v;, = sj.

max )  ViaX;
2% Y Gh Y
a i
ina = 1 (1) Siaa +2zi >
a
s Zj Z
Zsiaxia < G (V 3) far2i

Xja = 0 (v i7a)

Via (VI', a)
0 (Vi,a)
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» Thm: There exists a 1 — % — e-approximation algorithm if:

» For online weighted matching, C, > O(%)
» For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., —S > 1
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Results]FKMMPQ9]: arbitrary order (with free disposal)

» Thm: There exists a 1 — % — e-approximation algorithm if:

» For online weighted matching, C, > O(%)
» For online GAP, each item takes a small fraction of the total
capacity of any bin, i.e., —S > 1

' maxs; — €’

» Algorithm:
> Initialize 8 = 0.
» Online: Assign item i to ad a that maximizes v;; — 3,, and
update (3,.
> If the top C, items assigned to a have values:
v(l) > v(2)... > v(C):

. N . X 2vl)
Greedy: (3, = v(GC,), or Average: 3, = =&—, or

a

1 C.

a . 1 .
Ca(efl)zvo)(l—i_a)‘, .

j=t

ﬁa:



Proof Idea: arbitrary order (with free disposal)

max E ViaXia
i,a

D xia <1 (Vi)
a minZCaﬂa +Zz,-
Zsiaxia < G (v 3) a i
i SiaBatzi > via (Vi a)
Xia =2 0 (Vi,a) Bayzi > 0 (Vi,a)
» Proof:

1. Start from feasible primal and dual (x;; =0, 8, =0, and
z; =0, i.e., Primal=Dual=0).

2. After each assignment, update x, 3, z variables and keep
primal and dual solutions.

3. Show A(Dual) < (1 — L)A(Primal).



Proof Idea: arbitrary order (with free disposal)

maxE ViaXia
i,a
E Xia < 1 (V i)
a
E SiaXia
i

Xia

min Z G0, + Z Z;

siafa+tzi > v, (Vi,a)
(vi.a) Bazi > 0 (Vi,a)

IN

G (Y a)

(Y
o

» Proof:
1. Start from feasible primal and dual (x;; =0, 8, =0, and
z; =0, i.e., Primal=Dual=0).
2. After each assignment, update x, 3, z variables and keep

primal and dual solutions.
3. Show A(Dual) < (1 — L)A(Primal).

» Thm: There exists a 1 — % — e-approximation algorithm if:

— N - P BN
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order, under assumptions): learning dual variables.
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small elements, adversarial): primal-dual approach.



Conclusions

» 0.67-approximation for online stochastic matching (iid, known
distribution): power of two choices.

» 1 — e-approximation for online stochastic packing (random
order, under assumptions): learning dual variables.

> 1 — é-approximation for online GAP with free disposal (with
small elements, adversarial): primal-dual approach.

» Open Problems:
» Gap: 0.98 > 0.67.
> Apply power of two choices to other problems?
» Power of "many choices"?
» An algorithm that achieves good performance both in
stochastic setting and worst case?



Thank you.



