Online Stochastic Ad Allocation

Vahab Mirrokni

Google Research, New York

Outline

- Overview: Related Work and Results.
- Online Stochastic Matching: iid with known distribution
- Online Stochastic Packing: Random order
- Online Generalized Assignment (with free disposal)

Online Ad Allocation

- When page arrives, assign an eligible ad.
 - value of assigning page i to ad a: via
- Capacity of ad a: Ca

Online Ad Allocation

- When page arrives, assign an eligible ad.
 - value of assigning page i to ad a: v_{ia}
- Capacity of ad a: Ca
- Online Matching ($v_{ia} = 1$): Maximize number of ads served.
- Online Weighted Matching: Maximize value of ads served.

Online (Stochastic) Allocation: Known Results

• Arbitrary order:

- ▶ Greedy is 0.5-approx.
- [KVV90] Online $1 1/e \approx 0.632$ alg. This is tight.
- [MSVV05,BJN07] Adwords (Weights, budgets): 1 - 1/e-approx.

Online (Stochastic) Allocation: Known Results

- Arbitrary order:
 - ▶ Greedy is 0.5-approx.
 - [KVV90] Online $1 1/e \approx 0.632$ alg. This is tight.
 - ► [MSVV05,BJN07] Adwords (Weights, budgets): 1 - 1/e-approx.
- Random order, or i.i.d with unknown distribution:
 - [GM08] Greedy is 1 1/e opt. 3/4-hard (5/6 rand).
 - Weights, budgets: greedy is 1 1/e opt.

Online (Stochastic) Allocation: Known Results

- Arbitrary order:
 - ▶ Greedy is 0.5-approx.
 - [KVV90] Online $1 1/e \approx 0.632$ alg. This is tight.
 - ► [MSVV05,BJN07] Adwords (Weights, budgets): 1 - 1/e-approx.
- Random order, or i.i.d with unknown distribution:
 - [GM08] Greedy is 1 1/e opt. 3/4-hard (5/6 rand).
 - Weights, budgets: greedy is 1 1/e opt.
- i.i.d. model with known distribution:
 - [GM08] Greedy is 1 1/e opt.

Results: Three Recent Papers

• Online Stochastic Matching: Beating $1 - \frac{1}{e}$, FOCS 2009.

- online stochastic matching in iid model with known dist.
- 0.67-approximation (idea: power of two choices)
- Feldman, Mehta, M., Muthukrishnan

Results: Three Recent Papers

- Online Stochastic Matching: Beating $1 \frac{1}{e}$, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, Arxive 2010.
 - Online stoch. packing in random order model: online routing.
 - ► 1 ε-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein

Results: Three Recent Papers

- Online Stochastic Matching: Beating $1 \frac{1}{e}$, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, Arxive 2010.
 - Online stoch. packing in random order model: online routing.
 - ► 1 e-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein
- Online Ad Assignment with Free Disposal, WINE 2009.
 - online generalized assignment problems with free disposal.
 - $1 \frac{1}{e}$ -competitive algorithm (idea: primal-dual analysis.)
 - Feldman, Korula, M., Muthukrishnan, Pal

Outline

- Overview: Related Work and Results.
- Online Stochastic Matching: iid with known distribution
- Online Stochastic Packing: Random order
- Online Generalized Assignment (with free disposal)

Online Stochastic Matching: iid (known dist.)

Given (offline):

- Bipartite graph G = (A, I, E),
- Distribution *D* over *I*. Online:
- *n* indep. draws from *D*.
- Must assign nodes upon arrival.

• Let $H = (A, \hat{I}, \hat{E})$ be the "realization" of G

• (i.e., \hat{I} are the nodes that actually arrive).

- Let $H = (A, \hat{I}, \hat{E})$ be the "realization" of G
 - (i.e., \hat{I} are the nodes that actually arrive).
- Approximation ratio = ALG(H)/OPT(H).

• Let $H = (A, \hat{l}, \hat{E})$ be the "realization" of G

• (i.e., \hat{I} are the nodes that actually arrive).

• Approximation ratio = ALG(H)/OPT(H).

► "ALG is
$$\alpha$$
-opt...?"
 $E\left[\frac{\text{ALG}(H)}{\text{OPT}(H)}\right] \ge \alpha$ $\frac{E[\text{ALG}(H)]}{E[\text{OPT}(H)]} \ge \alpha$ w.h.p., $\frac{\text{ALG}(H)}{\text{OPT}(H)} \ge \alpha$

• Let $H = (A, \hat{l}, \hat{E})$ be the "realization" of G

• (i.e., \hat{I} are the nodes that actually arrive).

• Approximation ratio = ALG(H)/OPT(H).

► "ALG is
$$\alpha$$
-opt...?"
 $E\left[\frac{\text{ALG}(H)}{\text{OPT}(H)}\right] \ge \alpha$ $\frac{E[\text{ALG}(H)]}{E[\text{OPT}(H)]} \ge \alpha$ w.h.p., $\frac{\text{ALG}(H)}{\text{OPT}(H)} \ge \alpha$

• This talk: D is uniform, n = |A| = |I|.

- New algorithm for "online stochastic matching:"
 - Offline optimization on "expected graph"
 - Online: some ideas from "power of two choices" [Azar, Broder, Karlin, '99], [Mitzenmacher, '01]

New algorithm for "online stochastic matching:"

- Offline optimization on "expected graph"
- Online: some ideas from "power of two choices" [Azar, Broder, Karlin, '99], [Mitzenmacher, '01]

With high probability,

$$rac{\mathrm{ALG}}{\mathrm{OPT}} \geq rac{1-rac{2}{e^2}}{rac{4}{3}-rac{2}{3e}}\simeq 0.67$$

New algorithm for "online stochastic matching:"

- Offline optimization on "expected graph"
- Online: some ideas from "power of two choices" [Azar, Broder, Karlin, '99], [Mitzenmacher, '01]
- With high probability,

$$rac{\mathrm{ALG}}{\mathrm{OPT}} \geq rac{1-rac{2}{e^2}}{rac{4}{3}-rac{2}{3e}}\simeq 0.67$$

- Analysis of algorithm is tight
 - \exists example matching this bound.

New algorithm for "online stochastic matching:"

- Offline optimization on "expected graph"
- Online: some ideas from "power of two choices" [Azar, Broder, Karlin, '99], [Mitzenmacher, '01]
- With high probability,

$$\frac{\mathrm{ALG}}{\mathrm{OPT}} \geq \frac{1-\frac{2}{e^2}}{\frac{4}{3}-\frac{2}{3e}} \simeq 0.67$$

- Analysis of algorithm is tight
 - \exists example matching this bound.
- No algorithm can get $\frac{ALG}{OPT} \ge \frac{6e^3-23}{6e^3-22} \simeq .9898$.

Suppose *n* balls thrown into *n* bins, i.i.d. uniform.

- Suppose *n* balls thrown into *n* bins, i.i.d. uniform.
- ▶ # non-empty bins concentrates:

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.

- Suppose *n* balls thrown into *n* bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.
 - s = # bins in B with ≥ 1 ball.

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.
 - s = # bins in B with ≥ 1 ball.
 - Then w.h.p., $s \approx |B|(1-\frac{1}{e})$.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.
 - ► But w.h.p. only 1 1/e fraction of *I* will ever arrive. \implies ALG $\approx (1 - 1/e)n$.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.
 - ► But w.h.p. only 1 1/e fraction of *I* will ever arrive. \implies ALG $\approx (1 - 1/e)n$.

• In fact, this algorithm does achieve 1 - 1/e (in paper).

- 1. Offline: Find two disjoint matchings
- 2. Online: try the first one, then if that doesn't work, try the second one.

Warmup: complete graph

► Two disjoint perfect matchings: blue (1-ary), red (2-ary).

Warmup: complete graph

- ► Two disjoint perfect matchings: blue (1-ary), red (2-ary).
- Union of matchings = cycles with alt. blue and red edges

For particular node $a \in A$:

$$\begin{aligned} \Pr[a \text{ is chosen }] &\geq & \Pr[i \text{ arrives once, or } i' \text{ arrives twice}] \\ &= & 1 - \Pr[i \text{ never arrives } \& i' \text{ arrives } \le \text{ once}] \\ &= & 1 - \left((1 - 2/n)^n + n(1/n)(1 - 2/n)^{n-1}\right) \\ &\approx & 1 - 2/e^2 \end{aligned}$$

Thus, E[# nodes in A chosen] $\approx (1 - 2/e^2)n \approx .729n$ (This also concentrates...)

Algorithm (Offline)

► How to find a matching with flow.

▶ How to find a matching with flow.

▶ How to find a matching with flow.

Solve an "augmented flow" problem instead.

Solve an "augmented flow" problem instead.

- When node $i \in I$ arrives:
 - Try the blue edge first, then the red edge.

- Consider a node $a \in A$:
 - $\Pr[a \text{ is chosen }] \ge \Pr[i \text{ arrives once, or } i' \text{ arrives twice}]$

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

• $a \in A_B$. We get at least $|A_B|(1-1/e)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

- $a \in A_B$. We get at least $|A_B|(1-1/e)$.
- $a \in A_{BR}$. We get at least $|A_{BR}|(1-2/e^2)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

- $a \in A_B$. We get at least $|A_B|(1-1/e)$.
- $a \in A_{BR}$. We get at least $|A_{BR}|(1-2/e^2)$.
- $a \in A_{BB}$. We get at least $|A_{BB}|(1-1/e^2)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

a ∈ *A_B*. We get at least |*A_B*|(1 − 1/*e*). *a* ∈ *A_{BR}*. We get at least |*A_{BR}*|(1 − 2/*e*²). *a* ∈ *A_{BB}*. We get at least |*A_{BB}*|(1 − 1/*e*²). *a* ∈ *A_R*. We get at least |*A_B*|(1 − 2/*e*).

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

▶ Bound on ALG in terms of flow (using $|B| \ge |R|$):

$$ALG \geq igg(1 - rac{1}{e^2}igg)|A_{BB}| + igg(1 - rac{2}{e^2}igg)|A_{BR}| + igg(1 - rac{3}{2e}igg)(|A_B| + |A_R|)$$

Bounding OPT

- ▶ Find min-cut in augmented flow graph (from *G*).
- E_{δ} is a matching.
- By max-flow min-cut,

$$|flow| = 2(|A_T| + |I_S|) + |E_{\delta}|.$$

Bounding OPT

- OPT \leq cut(*H*). (Remember $H = (A, \hat{I}, \hat{E})$.)
- ▶ Use min-cut in G as "guide" for cut in H.
- W.h.p., $|I_S| \approx |\hat{I}_S|$. E_{δ} ?
- ► For any node $a \in S$ with an edge in the cut in $\hat{E}(H)$, move it to $T \Rightarrow \#$ nonempty nodes in $E_{\delta} \Rightarrow (1 \frac{1}{e})E_{\delta}$.

Eventually (after moving a few nodes around) you get

• $OPT \lesssim |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

Eventually (after moving a few nodes around) you get

• $OPT \leq |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

A lemma relating the decomposition to the cut gives

• $|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$

Eventually (after moving a few nodes around) you get

• $OPT \leq |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

A lemma relating the decomposition to the cut gives

•
$$|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$$

which, when combined with

•
$$|\text{flow}| = 2(|A_T| + |I_S|) + |E_{\delta}|$$

- $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|,$
- ► ALG $\geq (1 \frac{1}{e^2})|A_{BB}| + (1 \frac{2}{e^2})|A_{BR}| + (1 \frac{3}{2e})(|A_B| + |A_R|),$

gives

►
$$\frac{ALG}{OPT} \ge \min\{\frac{1-1/e^2}{5/3-4/3e}, \frac{1-2/e^2}{4/3-2/3e}, \frac{1-3/2e}{1-1/e}\}$$

► $\frac{ALG}{OPT} \ge .67$

Eventually (after moving a few nodes around) you get

• $OPT \leq |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

A lemma relating the decomposition to the cut gives

•
$$|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$$

which, when combined with

•
$$|\text{flow}| = 2(|A_T| + |I_S|) + |E_{\delta}|$$

- $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|,$
- ► ALG $\geq (1 \frac{1}{e^2})|A_{BB}| + (1 \frac{2}{e^2})|A_{BR}| + (1 \frac{3}{2e})(|A_B| + |A_R|),$

gives

The analysis is tight.

Suppose wlog x arrives first, ALG assigns to a (if anywhere).

Suppose wlog x arrives first, ALG assigns to a (if anywhere).

• If the next two arrivals are both y, then ALG \leq 2, OPT = 3.

- Suppose wlog x arrives first, ALG assigns to a (if anywhere).
- If the next two arrivals are both y, then ALG \leq 2, OPT = 3.
- ► Therefore E[ALG/OPT] ≤ (1/9)(2/3) + (8/9) = 26/27

▶ But what if one demands an instance that grows with *n* ?

- ▶ But what if one demands an instance that grows with *n* ?
- Use collection of 6-cycles, same "bad event," Azuma, Chernoff...

- But what if one demands an instance that grows with n?
- Use collection of 6-cycles, same "bad event," Azuma, Chernoff...
- ▶ Theorem: Even for $n \ge n_0$, no algorithm can do better than $\frac{6e^3-23}{6e^3-22} \simeq .9898$, even in expectation.

Outline

- Overview: Related Work and Results.
- Online Stochastic Matching: iid with known distribution
- Online Stochastic Packing: Random order
- Online Generalized Assignment (with free disposal)

- Generalize the primal-dual technique used by Devanour & Hayes to General Online Stochastic Packing LPs:
 - Online Stochastic Routing Problems
 - Online Stochastic Combinatorial Auctions

- Generalize the primal-dual technique used by Devanour & Hayes to General Online Stochastic Packing LPs:
 - Online Stochastic Routing Problems
 - Online Stochastic Combinatorial Auctions
- ► Thm: Under the following conditions, w.h.p there exists a 1 - ε-approximation:
 - OPT is much larger than the maximum value of any item for any resource, i.e, $\frac{OPT}{\max v_n} \ge \frac{m \log n}{\epsilon}$.
 - ► Each item takes a small fraction of the total capacity of any resource, i.e., C_a/max s_{ia} ≥ m log n/ε³.

- Thm: Under the following conditions, w.h.p there exists a 1 - ε-approximation:
 - OPT is much larger than the maximum value of any item for any resource, i.e, $\frac{OPT}{\max v_n} \ge \frac{m \log n}{\epsilon}$.
 - ▶ Each item takes a small fraction of the total capacity of any resource, i.e., $\frac{C_a}{\max S_{ia}} \ge \frac{m \log n}{\epsilon^3}$.

- Thm: Under the following conditions, w.h.p there exists a 1 - ε-approximation:
 - OPT is much larger than the maximum value of any item for any resource, i.e, $\frac{OPT}{\max v_n} \ge \frac{m \log n}{\epsilon}$.
 - ▶ Each item takes a small fraction of the total capacity of any resource, i.e., $\frac{C_a}{\max S_{ia}} \ge \frac{m \log n}{\epsilon^3}$.
- Algorithm:
 - Observe the first ϵ fraction sample of items.
 - Learn a dual variable for each ad β_a, by solving the dual program on the sample.
 - Assign each item *i* to ad a that maximizes $v_{ia} \beta_a$.

- Thm: Under the following conditions, w.h.p there exists a 1 - ε-approximation:
 - OPT is much larger than the maximum value of any item for any resource, i.e, $\frac{OPT}{\max v_n} \ge \frac{m \log n}{\epsilon}$.
 - ► Each item takes a small fraction of the total capacity of any resource, i.e., $\frac{C_a}{\max S_{ia}} \ge \frac{m \log n}{\epsilon^3}$.
- Algorithm:
 - Observe the first ϵ fraction sample of items.
 - Learn a dual variable for each ad β_a, by solving the dual program on the sample.
 - Assign each item *i* to ad a that maximizes $v_{ia} \beta_a$.
- ► More general: multiple resources in one option *o*. Maximize v_{io} - ∑_{a∈oi} β_a

Outline

- Overview: Related Work and Results.
- Online Stochastic Matching: iid with known distribution
- Online Stochastic Packing: Random order
- Online Generalized Assignment (with free disposal)

Results[FKMMP09]: arbitrary order (with free disposal)

- Online Weighted Matching (with free disposal): [NWF78]: 0.5-approx.
- Online AdWord (Budgeted): [MSVV,BJN]: $1 \frac{1}{e}$ -approx

Results[FKMMP09]: arbitrary order (with free disposal)

- Online Weighted Matching (with free disposal): [NWF78]: 0.5-approx.
- Online AdWord (Budgeted): [MSVV,BJN]: $1 \frac{1}{e}$ -approx
- Online Generalized Assignment (with free disposal):
 - ► Items i may have different value (v_{ia}) and different size s_{ia} for different ads a.
 - Online Weighted Matching: $s_{ia} = 1$.
 - Online AdWord Assignment[MSVV]: $v_{ia} = s_{ia}$.

Results[FKMMP09]: arbitrary order (with free disposal)

• Thm: There exists a $1 - \frac{1}{e} - \epsilon$ -approximation algorithm if:

- For online weighted matching, $C_a \ge O(\frac{1}{\epsilon})$.

Results[FKMMP09]: arbitrary order (with free disposal)

- Thm: There exists a $1 \frac{1}{e} \epsilon$ -approximation algorithm if:
 - For online weighted matching, $C_a \ge O(\frac{1}{\epsilon})$.
- Algorithm:
 - Initialize $\beta = 0$.
 - ► Online: Assign item *i* to ad *a* that maximizes v_{ia} − β_a, and update β_a.
 - If the top C_a items assigned to a have values: $v(1) \ge v(2) \dots \ge v(C_a)$:

Greedy: $\beta_a = v(C_a)$, or Average: $\beta_a = \frac{\sum_{j=1}^{C_a} v(j)}{C_a}$, or

$$\beta_a = rac{1}{C_a(e-1)} \sum_{j=1}^{C_a} v(j) (1+rac{1}{C_a})^{j-1}.$$

Proof Idea: arbitrary order (with free disposal)

$$\begin{array}{rcl} \max \sum_{i,a} v_{ia} x_{ia} \\ \sum_{a} x_{ia} &\leq 1 & (\forall i) \\ \sum_{a} s_{ia} x_{ia} &\leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i} \\ & & s_{ia} \beta_{a} + z_{i} \geq v_{ia} & (\forall i, a) \\ & & x_{ia} \geq 0 & (\forall i, a) & \beta_{a}, z_{i} \geq 0 & (\forall i, a) \end{array}$$

Proof:

- 1. Start from feasible primal and dual ($x_{ia} = 0$, $\beta_a = 0$, and $z_i = 0$, i.e., Primal=Dual=0).
- 2. After each assignment, update x, β, z variables and keep primal and dual solutions.
- 3. Show $\Delta(\text{Dual}) \leq (1 \frac{1}{e})\Delta(\text{Primal})$.

Proof Idea: arbitrary order (with free disposal)

$$\begin{array}{rcl} \max \sum_{i,a} v_{ia} x_{ia} \\ \sum_{a} x_{ia} &\leq 1 & (\forall i) \\ \sum_{a} s_{ia} x_{ia} &\leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i} \\ & & & s_{ia} \beta_{a} + z_{i} \geq v_{ia} & (\forall i, a) \\ & & & & x_{ia} \geq 0 & (\forall i, a) & \beta_{a}, z_{i} \geq 0 & (\forall i, a) \end{array}$$

Proof:

- 1. Start from feasible primal and dual ($x_{ia} = 0$, $\beta_a = 0$, and $z_i = 0$, i.e., Primal=Dual=0).
- 2. After each assignment, update x, β, z variables and keep primal and dual solutions.
- 3. Show $\Delta(\text{Dual}) \leq (1 \frac{1}{e})\Delta(\text{Primal})$.
- Thm: There exists a $1 \frac{1}{e} \epsilon$ -approximation algorithm if:

Conclusions

- 0.67-approximation for online stochastic matching (iid, known distribution): power of two choices.
- 1 ε-approximation for online stochastic packing (random order, under assumptions): learning dual variables.
- ▶ $1 \frac{1}{e}$ -approximation for online GAP with free disposal (with small elements, adversarial): primal-dual approach.

Conclusions

- 0.67-approximation for online stochastic matching (iid, known distribution): power of two choices.
- 1 ε-approximation for online stochastic packing (random order, under assumptions): learning dual variables.
- ▶ $1 \frac{1}{e}$ -approximation for online GAP with free disposal (with small elements, adversarial): primal-dual approach.

Open Problems:

- ▶ Gap: 0.98 > 0.67.
- Apply power of two choices to other problems?
- Power of "many choices"?
- An algorithm that achieves good performance both in stochastic setting and worst case?

Thank you.