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(1) Kunal Talwar. 1) Given a database containing ‘private’ information (i.e. a
census bureau) we are interested in revealing accurate statistics about a popu-
lation while preserving the privacy of individuals. Differential privacy is such
a rigorous notion of privacy which yields strong privacy guaranties even if an
adversary has arbitrary auxiliary information. Privacy is in the algorithm, not
in the output. The mechanism

M : DN → R

has ε-differential privacy (ε-DP) if for each A,B ∈ DN differing by at most one
element and any S ⊆ R,

Pr[M(A) ∈ S] ≤ (1 + ε)Pr[M(B) ∈ S].

It turns out to be more convenient to deal with

Pr[M(A) ∈ S] ≤ exp(ε)Pr[M(B) ∈ S].

[VM. Can you give a specific example?] [KT: For instance, I want to count the
number of people in California. Answer: count + Lap(1/ε).]

Consider constructing an optimal rooted Steiner tree. A Steiner tree can be
thought of as defining a path to the root for each terminal. The cost of the
Steiner tree is the cost of the union of all the paths. So non-privately, we known
how to solve it. But now suppose for each vertex, whether or not it is a terminal
is private information. We will allow ourselves to define a vertex-to-root path
for every in the graph. The cost of a solution (i.e. a path to root for every
vertex) is the cost of the union of the paths corresponding to actual terminals.
Think of it as: we tell everyone which path to pick if they need to be connected;
the terminals are the ones who actually take their path, and we pay only for
those edges that are actually used. So the goal is: given the set of terminals T ,
output a path-to-root for every vertex in the graph such that the distribution
over outputs satisfies ε-DP, and the cost of the resulting Steiner tree is small.
Also note that a universal Steiner tree algorithm is a 0-differentially private
algorithm, since we did not even look at T . So we can get O(log2 n) and in fact
get O(log n) if the adversary choosing T is oblivious. Thus for the differentially
private Steiner tree problem, we can get an O(log n) approximation for ε = 0.
The question is: can we get an O(1) approximation for a constant ε?

Various other combinatorial optimization problems have been studied in the
Differential Privacy model (SODA’10 paper available on arXiv: Differentially
Private Combinatorial Optimiztion. Anupam Gupta, Katrian Ligett, Frank
McSherry, Aaron Roth, Kunal Talwar). One example is set cover which cur-
rently has an O(log n)-approximation algorithm.
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2) Consider the following problem: we have a database x ∈ Zn where xi

counts the number of people of “type” i. We want to output Fx, where F
is a d × n 0-1 matrix. Thus Fx ∈ Zd is a vector of answers to a bunch of
count-type queries. The goal is to come up with a ε-DP mechanism M such
that maxx E[||M(x) − Fx||2] is as small as possible, where the expectation
is taken over M ’s internal randomness. Given any F , there is an optimal
MF which has the least expected error. Is it hard to compute MF ? Are
there good approximation algorithms? Hardt and Talwar (STOC ’10) give a
mechanism which is within O(log1.5 d) of the optimal, assuming a conjecture
from convex geometry called the Slicing conjecture. Question a): Is there a
good unconditional approximation algorithm? Question b): Usually, we would
get the rows of F one at a time, and would have to provide an approximate
(Fx)i before seeing the next row of F . This is essentially an online algorithms
problem. Is there a good online algorithm? Can the O(log1.5 d) algorithm be
made online?

(2) Howard Karloff. This is a problem coming from database people at AT&T.
The general goal is to design extremely efficient algorithms as runtimes of O(n2)
are considered as too slow by these people. (To them O(n2) is like exponential
time.) One such problem is as follows. We are given an interval I, say I =
[0, `] := {0, . . . , `} and n subintervals of I. The goal is to cover at least a given
fraction of I (say, 80%), using as few as possible of the n subintervals. What
can you do in n polylog(n)? Dynamic programming gives O(n2), but this is too
slow. The truncated greedy algorithm is O(n) and approximates the problem
with a ratio of 7 (or is it 9?). Is a ratio of 1 + ε doable in n polylog(n) time?

[HK: A nice research direction: find super-fast approximation algorithms for
problems that can be solved in polytime.]

(3) Moses Charikar. 1) Suppose we want to sort n elements by comparisons.
This can be done in O(n log n) comparisons. Now, disallow some comparisons.
So we are given an explicit list of comparisons that are allowed, and all other
comparisons are forbidden. The oracle guarantees that if we perform all the
allowed comparisons, we will obtain a total order. Can you still sort after
performing O(n log n) comparisons? Or can you force ω(n log n) comparisons?.
If the set of allowed comparisons is suffiently dense, we can use the regularity
lemma to sort in Oc(n log n) number of comparisons. This implies that, for all
c > 0, it is possible to sort in at most cn2 comparisons (this is an unpublished
result).

[MS: where does this problem come from?] [MC: this comes from a class of
problems studied in: Moses Charikar, Ronald Fagin, Venkatesan Guruswami,
Jon M. Kleinberg, Prabhakar Raghavan (JCSS, 2002)]

2) This problem concerns the Polymath 5 project that is ongoing on Tim
Gower’s weblog. It is a problem where mathematical programming techniques
could potentially be useful. Pick a collection of subsets S1, . . . , Sm of [n] :=
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{1, 2, . . . , n}. Now write down a sequence x of +1’s and −1’s of size n, say

x = (+1,−1,−1,+1,+1,−1,+1).

Pick a set Sj in the collection and compute |
∑

i∈Sj
xi|. That is the discrepancy

of the set. The question is: can we find x ∈ {−1,+1}n such that every set has
a small discrepancy?

A particular case of this is the Erdös discrepancy problem, where the sets Sj

are homogeneous arithmetic progressions, that is, sets of the form {d, 2d, . . . , kd}
where k and d are positive integers such that kd 6 n. In case all arithmetic
progressions, that is, sets of the form {a, a + d, . . . , a + kd}, are allowed, the
discrepancy is Ω(n1/4). [MS: are the results in this area constructive?] [MC:
Joel Spencer proved that in case m = n, the discrepancy is at O(

√
n). The

case m = n is in some sense the most interesting. Randomized rounding gives
O(
√

n log n). Recently, Nikhil Bansal found a way to make Spencer’s O(
√

n)
result constructive (see his very recent paper on arXiv).]

Polymath 5 studies the following question: what is the discrepancy of ho-
mogenous arithmetic progressions?. There is an upper bound of log3 n. For the
lower bound, nothing better than constant is known.

Actually, there is a natural semidefinite relaxation for this. Find vectors v1,
v2, . . . , vn in Sn+1 = {v ∈ Rn : ||v|| = 1} such that ||vd + v2d + · · · + vdk||2
is small for all valid choices of k and d. Actually, the log3 n upper bound also
applies to the SDP relaxation.

Can you find a dual solution whose value is slowly increasing?

What is the dual of this SDP? We seek coefficients cd,k and bi such that:∑
d,k

cd,k(xd + x2d + · · ·+ xkd)2 −
∑

i

bix
2
i ≥ 0.

for all x ∈ R. The corresponding lower bound is∑
i bi∑

d,k cd,k
.

We can even find an LP relaxation. The dual of this LP is as follows. For two
homogeneous arithmetic progressions P , Q (we identify arithmetic progressions
with their characteristic vector) define the tensor product of P , Q as P ⊗Q :=
P · QT . We have to construct a convex combination of the tensor products
P ⊗Q and −P ⊗Q, where P and Q are homogeneous arithmetic progressions,
in such a way that∑

i

λi(±Pi ⊗Qi) = diag(λ1, . . . , λn).

The corresponding lower bound is
∑

j λj , that is, the trace of the diagonal
matrix in the right hand side.


