PTAS for Matroid Matching

Jon Lee¹ Maxim Sviridenko¹ Jan Vondrák²

¹IBM Watson Research Center Yorktown Heights, NY

²IBM Almaden Research Center San Jose, CA

Barbados, March 31, 2010

Classical combinatorial optimization problems:

- Max-weight bipartite matching [Hungarian method, 1950's]
- Max-weight independent set in a matroid [Rado, 1950's]
- Max-weight non-bipartite matching [Edmonds, 1960's]
- Max-weight independent set in the *intersection of two matroids* [Edmonds/Lawler 1970's]

Classical combinatorial optimization problems:

- Max-weight bipartite matching [Hungarian method, 1950's]
- Max-weight independent set in a matroid [Rado, 1950's]
- Max-weight non-bipartite matching [Edmonds, 1960's]
- Max-weight independent set in the *intersection of two matroids* [Edmonds/Lawler 1970's]

Matroid matching:

proposed by Lawler as a common generalization

Matroids

Definition

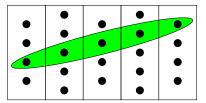
A matroid on $\mathcal{M} = (N, \mathcal{I})$ is a system of *independent sets* such that

Matroids

Definition

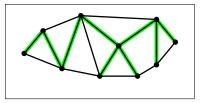
A matroid on $\mathcal{M} = (N, \mathcal{I})$ is a system of *independent sets* such that

Examples:



partition matroid

(independent sets = at most 1 from each part)

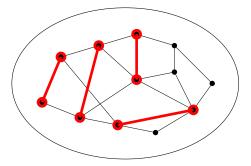


graphic matroid

(independent set = forests)

Matroid Matching

Given: Graph G = (V, E), matroid $\mathcal{M} = (V, \mathcal{I})$. *Find:* A matching *M* in *G* such that V(M) is independent in \mathcal{M} .



A D M A A A M M

Matroid Matching

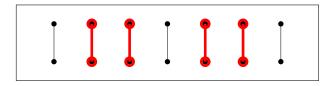
Given: Graph G = (V, E), matroid $\mathcal{M} = (V, \mathcal{I})$. *Find:* A matching *M* in *G* such that V(M) is independent in \mathcal{M} .



Note: Matroid matching is equivalent to its special case, where *G* itself is a matching.

Matroid parity

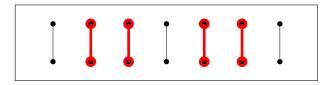
Given: Matroid $\mathcal{M} = (N, \mathcal{I})$, *N* partitioned into disjoint pairs p_1, \ldots, p_n . *Find:* A subset $I \subseteq [n]$ such that $\bigcup_{i \in I} p_i$ is independent in \mathcal{M} .



イロト イ理ト イヨト イヨト

Matroid parity

Given: Matroid $\mathcal{M} = (N, \mathcal{I})$, *N* partitioned into disjoint pairs p_1, \ldots, p_n . *Find:* A subset $I \subseteq [n]$ such that $\bigcup_{i \in I} p_i$ is independent in \mathcal{M} .



Reduction from matroid matching:

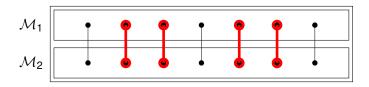
- Given G = (V, E), replace each edge e = (u, v) by two unique elements (u_e, v_e).
- For each vertex *v*, simulate the matching condition by defining {*v_e* : *v* ∈ *e*} to be parallel copies of *v* in the matroid *M*.

< ロ > < 同 > < 回 > < 回 >

Special cases of matroid parity

Matroid intersection:

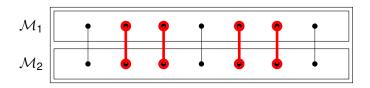
Given $\mathcal{M}_1, \mathcal{M}_2$, find the largest set independent in both matroids.



Special cases of matroid parity

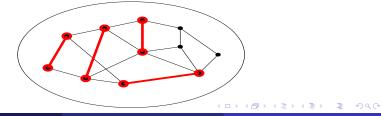
Matroid intersection:

Given $\mathcal{M}_1, \mathcal{M}_2$, find the largest set independent in both matroids.



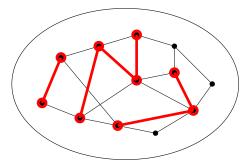
Matching in non-bipartite graphs:

obviously a special case of matroid matching.



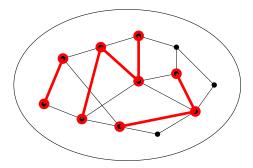
The matchoid problem

Given: Graph G = (V, E), matroid $\mathcal{M}_v = (E_v, \mathcal{I}_v)$ for each $v \in V$. *Find:* A set of edges $F \subseteq E$ such that for each vertex $v \in V$, the incident edges $F \cap E_v$ are independent in \mathcal{M}_v .



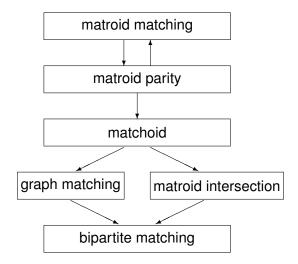
The matchoid problem

Given: Graph G = (V, E), matroid $\mathcal{M}_v = (E_v, \mathcal{I}_v)$ for each $v \in V$. *Find:* A set of edges $F \subseteq E$ such that for each vertex $v \in V$, the incident edges $F \cap E_v$ are independent in \mathcal{M}_v .



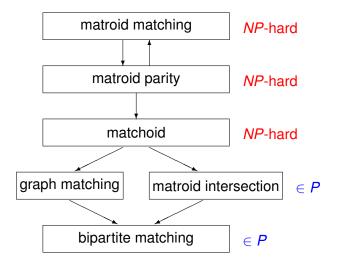
Note: The matchoid problem is a special case of matroid matching, and it still generalizes matroid intersection and non-bipartite matching.

Complexity status overview



イロト イヨト イヨト イヨト

Complexity status overview



イロト イヨト イヨト イヨト

Definition: A matroid $\mathcal{M} = (N, \mathcal{I})$ is linear if there are vectors $\{\mathbf{v}_i : i \in N\}$ such that $I \in \mathcal{I}$ iff $\{\mathbf{v}_i : i \in I\}$ are linearly independent.

Lászlo Lovász (1980): Matroid matching of maximum cardinality can be found in polynomial time, if M is a linear matroid.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition: A matroid $\mathcal{M} = (N, \mathcal{I})$ is linear if there are vectors $\{\mathbf{v}_i : i \in N\}$ such that $I \in \mathcal{I}$ iff $\{\mathbf{v}_i : i \in I\}$ are linearly independent.

Lászlo Lovász (1980): Matroid matching of maximum cardinality can be found in polynomial time, if M is a linear matroid.

Notes:

- There is also a randomized algorithm for linear matroids, pseudopolynomial in the weighted case.
- For general matroids given by an oracle, even unweighted matroid matching requires exponentially many queries to solve optimally.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Easy: The feasible solutions to a matroid matching problem form a 2-*independence system*: If *A* is feasible and $\{e\}$ is a feasible edge, then there are edges $a, b \in A$ such that $(A \setminus \{a, b\}) \cup \{e\}$ is feasible.

Jenkyns (1976): For any 2-independence system, the greedy algorithm gives a 1/2-approximation (even in the weighted case).

< ロ > < 同 > < 回 > < 回 >

Easy: The feasible solutions to a matroid matching problem form a 2-*independence system*: If *A* is feasible and $\{e\}$ is a feasible edge, then there are edges $a, b \in A$ such that $(A \setminus \{a, b\}) \cup \{e\}$ is feasible.

Jenkyns (1976): For any 2-independence system, the greedy algorithm gives a 1/2-approximation (even in the weighted case).

Fujito (1993): 2/3-approximation for unweighted matroid matching.

(日) (同) (三) (三)

Easy: The feasible solutions to a matroid matching problem form a 2-*independence system*: If *A* is feasible and $\{e\}$ is a feasible edge, then there are edges $a, b \in A$ such that $(A \setminus \{a, b\}) \cup \{e\}$ is feasible.

Jenkyns (1976): For any 2-independence system, the greedy algorithm gives a 1/2-approximation (even in the weighted case).

Fujito (1993): 2/3-approximation for unweighted matroid matching.

More generally, matroid matching in k-uniform hypergraphs is a k-independence system $\implies 1/k$ -approximation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Lee, Sviridenko, V.)

There is a PTAS for unweighted matroid matching.

2 In k-uniform hypergraphs, $(2/k - \epsilon)$ -approximation for any $\epsilon > 0$.

Note: Special cases of *k*-uniform matroid matching are *k*-set packing $(2/k - \epsilon \text{ known by Hurkens-Schrijver})$ and intersection of *k* matroids (only 1/k known until recently).

Theorem (Lee, Sviridenko, V.)

There is a PTAS for unweighted matroid matching.

2 In k-uniform hypergraphs, $(2/k - \epsilon)$ -approximation for any $\epsilon > 0$.

Note: Special cases of *k*-uniform matroid matching are *k*-set packing $(2/k - \epsilon \text{ known by Hurkens-Schrijver})$ and intersection of *k* matroids (only 1/k known until recently).

Open question: the weighted case.

Theorem (Lee, Sviridenko, V.)

A natural LP formulation of matroid matching has $\Omega(n)$ integrality gap. After r rounds of Sherali-Adams, still $\Omega(n/r)$ integrality gap.

< ロ > < 同 > < 回 > < 回 >

PTAS for matroid parity:

• Local search algorithm, try to add s + 1 new pairs and kick out s.

PTAS for matroid parity:

- Local search algorithm, try to add s + 1 new pairs and kick out s.
- If we want to achieve a (1ϵ) -approximation, we need $s(\epsilon) = 5^{1/\epsilon}$.
- Hence, running time $n^{5^{1/\epsilon}}$.

PTAS for matroid parity:

- Local search algorithm, try to add s + 1 new pairs and kick out s.
- If we want to achieve a (1ϵ) -approximation, we need $s(\epsilon) = 5^{1/\epsilon}$.
- Hence, running time $n^{5^{1/\epsilon}}$.

Lemma

If A, B are feasible solutions of matroid parity and

$$|\boldsymbol{A}| < \left(1 - \frac{1}{2t}\right)|\boldsymbol{B}|$$

then there is a local improvement for A with $s \leq 5^{t-1}$.

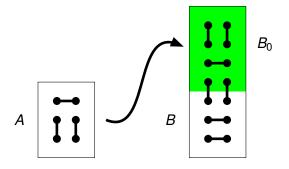
Base case: t = 1

We want: If $|A| < \frac{1}{2}|B|$, then A can be extended by some pair from B.

イロト イ理ト イヨト イヨト

Base case: t = 1

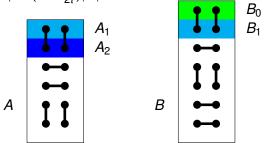
We want: If $|A| < \frac{1}{2}|B|$, then A can be extended by some pair from B.



Proof:

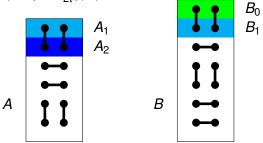
- Since $|A| < \frac{1}{2}|B|$, we can extend *A* to an independent set $A \cup B_0$ such that $B_0 \subset B$ and $|B_0| > \frac{1}{2}|B|$.
- |B₀| > |B \ B₀|, so there must be a whole pair in B₀, which can be added to A.

We assume $|A| < (1 - \frac{1}{2t})|B|$.



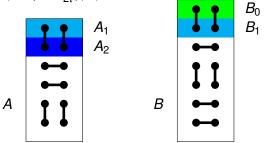
• Extend A to $A \cup B_0$; if B_0 contains a pair, we are done.

We assume $|A| < (1 - \frac{1}{2t})|B|$.



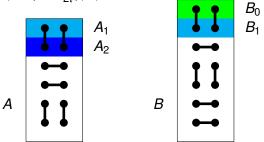
- Extend A to $A \cup B_0$; if B_0 contains a pair, we are done.
- Let B₁ be paired up with B₀, and find A₁ ⊂ A such that A₁ and B₁ can be swapped in the contracted matroid M/B₀.

We assume $|A| < (1 - \frac{1}{2t})|B|$.

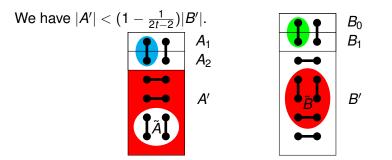


- Extend A to $A \cup B_0$; if B_0 contains a pair, we are done.
- Let B₁ be paired up with B₀, and find A₁ ⊂ A such that A₁ and B₁ can be swapped in the contracted matroid M/B₀.
- If A_1 contains a pair, kick it out and add two pairs from $B_0 \cup B_1$.

We assume $|A| < (1 - \frac{1}{2t})|B|$.

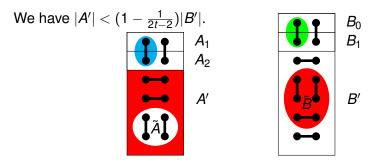


- Extend A to $A \cup B_0$; if B_0 contains a pair, we are done.
- Let B₁ be paired up with B₀, and find A₁ ⊂ A such that A₁ and B₁ can be swapped in the contracted matroid M/B₀.
- If A_1 contains a pair, kick it out and add two pairs from $B_0 \cup B_1$.
- Otherwise, let A_2 be paired up with A_1 , and recurse on $A' = A \setminus (A_1 \cup A_2), B' = B \setminus (B_0 \cup B_1)$ in $\mathcal{M}/(B_0 \cup B_1)$.

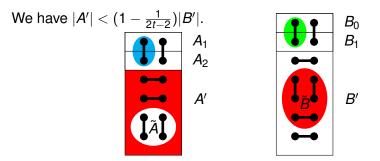


 By induction there is a local improvement A' \ Ã ∪ B̃ in *M*/(B₀ ∪ B₁) such that |B̃| ≤ 5^{t-1}.

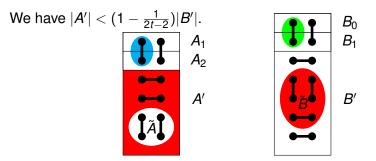
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



- By induction there is a local improvement A' \ Ã ∪ B̃ in *M*/(B₀ ∪ B₁) such that |B̃| ≤ 5^{t-1}.
- This set can be extended by pairs from $A_1 \cup A_2$, but we miss up to $4|\tilde{B}|$ pairs, as we must take whole pairs and keep independence.



- By induction there is a local improvement A' \ Ã ∪ B̃ in *M*/(B₀ ∪ B₁) such that |B̃| ≤ 5^{t-1}.
- This set can be extended by pairs from $A_1 \cup A_2$, but we miss up to $4|\tilde{B}|$ pairs, as we must take whole pairs and keep independence.
- However, whatever we miss in $A_1 \cup A_2$, we can make up in $B_0 \cup B_1$.



- By induction there is a local improvement A' \ Ã ∪ B̃ in *M*/(B₀ ∪ B₁) such that |B̃| ≤ 5^{t-1}.
- This set can be extended by pairs from $A_1 \cup A_2$, but we miss up to $4|\tilde{B}|$ pairs, as we must take whole pairs and keep independence.
- However, whatever we miss in $A_1 \cup A_2$, we can make up in $B_0 \cup B_1$.
- In total, we gain at least one pair and the swap size is $\leq 5|\tilde{B}| \leq 5^t$.

We showed a PTAS for *unweighted* matroid matching. Is the following true?

For any $\epsilon > 0$, there exists $s(\epsilon)$ such that local search with swap size $s(\epsilon)$ gives a $(1 - \epsilon)$ -approximation for weighted matroid matching.

A D M A A A M M

- A B M A B M

We showed a PTAS for *unweighted* matroid matching. Is the following true?

For any $\epsilon > 0$, there exists $s(\epsilon)$ such that local search with swap size $s(\epsilon)$ gives a $(1 - \epsilon)$ -approximation for weighted matroid matching.

- Interesting even for linear matroids.
- More generally, can we get (2/k ε)-approximation for weighted k-uniform matroid matching?
- Or at least for the weighted matchoid problem?
 (we have a 2/3-approximation for k = 2)

(日) (同) (三) (三)