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Why matroid matching?

Classical combinatorial optimization problems:
Max-weight bipartite matching [Hungarian method, 1950’s]
Max-weight independent set in a matroid [Rado, 1950’s]
Max-weight non-bipartite matching [Edmonds, 1960’s]
Max-weight independent set in the intersection of two matroids
[Edmonds/Lawler 1970’s]

Matroid matching:
proposed by Lawler as a common generalization
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Matroids

Definition
A matroid onM = (N, I) is a system of independent sets such that

1 ∅ ∈ I
2 ∀J ∈ I; I ⊂ J ⇒ I ∈ I
3 ∀I, J ∈ I; |I| < |J| ⇒ ∃j ∈ J \ I; I ∪ {j} ∈ I.

Examples:

partition matroid
(independent sets = at most 1 from each part)

graphic matroid
(independent set = forests)
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Matroid Matching

Given: Graph G = (V ,E), matroidM = (V , I).
Find: A matching M in G such that V (M) is independent inM.

Note: Matroid matching is equivalent to its special case, where
G itself is a matching.
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Matroid parity

Given: MatroidM = (N, I), N partitioned into disjoint pairs p1, . . . ,pn.
Find: A subset I ⊆ [n] such that

⋃
i∈I pi is independent inM.

Reduction from matroid matching:
Given G = (V ,E), replace each edge e = (u, v) by two unique
elements (ue, ve).
For each vertex v , simulate the matching condition by defining
{ve : v ∈ e} to be parallel copies of v in the matroidM.
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Special cases of matroid parity

Matroid intersection:
GivenM1,M2, find the largest set independent in both matroids.

M1

M2

Matching in non-bipartite graphs:
obviously a special case of matroid matching.
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The matchoid problem

Given: Graph G = (V ,E), matroidMv = (Ev , Iv ) for each v ∈ V .
Find: A set of edges F ⊆ E such that for each vertex v ∈ V , the
incident edges F ∩ Ev are independent inMv .

Note: The matchoid problem is a special case of matroid matching,
and it still generalizes matroid intersection and non-bipartite matching.
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Complexity status overview

matroid matching
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Good news

Definition: A matroidM = (N, I) is linear if there are vectors
{vi : i ∈ N) such that I ∈ I iff {vi : i ∈ I} are linearly independent.

Lászlo Lovász (1980): Matroid matching of maximum cardinality can
be found in polynomial time, ifM is a linear matroid.

Notes:
There is also a randomized algorithm for linear matroids,
pseudopolynomial in the weighted case.
For general matroids given by an oracle, even unweighted matroid
matching requires exponentially many queries to solve optimally.
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Approximation?

Easy: The feasible solutions to a matroid matching problem form a
2-independence system: If A is feasible and {e} is a feasible edge,
then there are edges a,b ∈ A such that (A \ {a,b}) ∪ {e} is feasible.

Jenkyns (1976): For any 2-independence system, the greedy
algorithm gives a 1/2-approximation (even in the weighted case).

Fujito (1993): 2/3-approximation for unweighted matroid matching.

More generally, matroid matching in k-uniform hypergraphs is a
k -independence system =⇒ 1/k -approximation.
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What we did

Theorem (Lee, Sviridenko, V.)
1 There is a PTAS for unweighted matroid matching.
2 In k-uniform hypergraphs, (2/k − ε)-approximation for any ε > 0.

Note: Special cases of k -uniform matroid matching are k -set packing
(2/k − ε known by Hurkens-Schrijver) and intersection of k matroids
(only 1/k known until recently).

Open question: the weighted case.

Theorem (Lee, Sviridenko, V.)
A natural LP formulation of matroid matching has Ω(n) integrality gap.
After r rounds of Sherali-Adams, still Ω(n/r) integrality gap.
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Our algorithm

PTAS for matroid parity:
Local search algorithm, try to add s + 1 new pairs and kick out s.

If we want to achieve a (1− ε)-approximation, we need s(ε) = 51/ε.

Hence, running time n51/ε
.

Lemma
If A,B are feasible solutions of matroid parity and

|A| <
(

1− 1
2t

)
|B|

then there is a local improvement for A with s ≤ 5t−1.
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Base case: t = 1

We want: If |A| < 1
2 |B|, then A can be extended by some pair from B.

A B

B0

Proof:
Since |A| < 1

2 |B|, we can extend A to an independent set A ∪ B0

such that B0 ⊂ B and |B0| > 1
2 |B|.

|B0| > |B \ B0|, so there must be a whole pair in B0, which can be
added to A.
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General case: t > 1

We assume |A| < (1− 1
2t )|B|.

A B

B0

B1A1
A2

Extend A to A ∪ B0; if B0 contains a pair, we are done.

Let B1 be paired up with B0, and find A1 ⊂ A such that A1 and B1
can be swapped in the contracted matroidM/B0.
If A1 contains a pair, kick it out and add two pairs from B0 ∪ B1.
Otherwise, let A2 be paired up with A1, and recurse on
A′ = A \ (A1 ∪ A2),B′ = B \ (B0 ∪ B1) inM/(B0 ∪ B1).

Jan Vondrák (IBM Almaden) PTAS for Matroid Matching 14 / 16



General case: t > 1

We assume |A| < (1− 1
2t )|B|.

A B

B0

B1A1
A2

Extend A to A ∪ B0; if B0 contains a pair, we are done.
Let B1 be paired up with B0, and find A1 ⊂ A such that A1 and B1
can be swapped in the contracted matroidM/B0.

If A1 contains a pair, kick it out and add two pairs from B0 ∪ B1.
Otherwise, let A2 be paired up with A1, and recurse on
A′ = A \ (A1 ∪ A2),B′ = B \ (B0 ∪ B1) inM/(B0 ∪ B1).

Jan Vondrák (IBM Almaden) PTAS for Matroid Matching 14 / 16



General case: t > 1

We assume |A| < (1− 1
2t )|B|.

A B

B0

B1A1
A2

Extend A to A ∪ B0; if B0 contains a pair, we are done.
Let B1 be paired up with B0, and find A1 ⊂ A such that A1 and B1
can be swapped in the contracted matroidM/B0.
If A1 contains a pair, kick it out and add two pairs from B0 ∪ B1.

Otherwise, let A2 be paired up with A1, and recurse on
A′ = A \ (A1 ∪ A2),B′ = B \ (B0 ∪ B1) inM/(B0 ∪ B1).

Jan Vondrák (IBM Almaden) PTAS for Matroid Matching 14 / 16



General case: t > 1

We assume |A| < (1− 1
2t )|B|.

A B

B0

B1A1
A2

Extend A to A ∪ B0; if B0 contains a pair, we are done.
Let B1 be paired up with B0, and find A1 ⊂ A such that A1 and B1
can be swapped in the contracted matroidM/B0.
If A1 contains a pair, kick it out and add two pairs from B0 ∪ B1.
Otherwise, let A2 be paired up with A1, and recurse on
A′ = A \ (A1 ∪ A2),B′ = B \ (B0 ∪ B1) inM/(B0 ∪ B1).

Jan Vondrák (IBM Almaden) PTAS for Matroid Matching 14 / 16



Inductive argument

We have |A′| < (1− 1
2t−2)|B′|. B0

B1

B′B̃

A1
A2

A′

Ã

By induction there is a local improvement A′ \ Ã ∪ B̃ in
M/(B0 ∪ B1) such that |B̃| ≤ 5t−1.

This set can be extended by pairs from A1 ∪ A2, but we miss up to
4|B̃| pairs, as we must take whole pairs and keep independence.
However, whatever we miss in A1 ∪A2, we can make up in B0 ∪B1.
In total, we gain at least one pair and the swap size is ≤ 5|B̃| ≤ 5t .
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Conclusion

We showed a PTAS for unweighted matroid matching.
Is the following true?

For any ε > 0, there exists s(ε) such that local search with swap size
s(ε) gives a (1− ε)-approximation for weighted matroid matching.

Interesting even for linear matroids.
More generally, can we get (2/k − ε)-approximation for weighted
k -uniform matroid matching?
Or at least for the weighted matchoid problem?
(we have a 2/3-approximation for k = 2)
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