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COMPRESSED SENSING
AND BEST k-TERM APPROXIMATION

ALBERT COHEN, WOLFGANG DAHMEN, AND RONALD DEVORE

1. Introduction

The typical paradigm for obtaining a compressed version of a discrete signal
represented by a vector x ∈ R

N is to choose an appropriate basis, compute the
coefficients of x in this basis, and then retain only the k largest of these with
k < N . If we are interested in a bit stream representation, we also need in addition
to quantize these k coefficients.

Assuming, without loss of generality, that x already represents the coefficients
of the signal in the appropriate basis, this means that we pick an approximation to
x in the set Σk of k-sparse vectors

(1.1) Σk := {x ∈ R
N : # supp(x) ≤ k},

where supp(x) is the support of x, i.e., the set of i for which xi �= 0, and #A is
the number of elements in the set A. The best performance that we can achieve by
such an approximation process in some given norm ‖ · ‖X of interest is described
by the best k-term approximation error

(1.2) σk(x)X := inf
z∈Σk

‖x − z‖X .

This approximation process should be considered as adaptive since the indices
of those coefficients which are retained vary from one signal to another. On the
other hand, this procedure is stressed on the front end by the need to first compute
all of the basis coefficients. The view expressed by Candès, Romberg, and Tao
[5, 3, 4] and Donoho [8] is that since we retain only a few of these coefficients in
the end, perhaps it is possible to actually compute only a few nonadaptive linear
measurements in the first place and still retain the necessary information about x
in order to build a compressed representation.
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These ideas have given rise to a very lively area of research called compressed
sensing which poses many intriguing questions, of both a theoretical and practical
flavor. The present paper is an excursion into this area, focusing our interest on
the question of just how well compressed sensing can perform in comparison to best
k-term approximation.

To formulate the problem, we are given a budget of n questions we can ask
about x. These questions are required to take the form of asking for the values
λ1(x), . . . , λn(x) where the λj are fixed linear functionals. The information we
gather about x can therefore by described by

(1.3) y = Φx,

where Φ is an n×N matrix called the encoder and y ∈ R
n is the information vector.

The rows of Φ are representations of the linear functionals λj , j = 1, . . . , n.
To extract the information that y holds about x, we use a decoder ∆ which is a

mapping from R
n → R

N . We emphasize that ∆ is not required to be linear. Thus,
∆(y) = ∆(Φx) is our approximation to x from the information we have retained.
We shall denote by An,N the set of all encoder-decoder pairs (Φ, ∆) with Φ an
n × N matrix.

There are two common ways to evaluate the performance of an encoding-decoding
pair (Φ, ∆) ∈ An,N . The first is to ask for the largest value of k such that the
encoding-decoding is exact for all k-sparse vectors, i.e.,

(1.4) x ∈ Σk ⇒ ∆(Φx) = x.

It is easy to see (see §2) that given n, N , there are (∆, Φ) ∈ An,N such that (1.4)
holds for all k ≤ n/2. Or put in another way, given k, we can achieve exact
recovery on Σk whenever n ≥ 2k. Unfortunately such encoder/decoder pairs are
not numerically friendly as is explained in §2.

Generally speaking, our signal will not be in Σk with k small but may be ap-
proximated well by the elements in Σk. Therefore, we would like our algorithms to
perform well in this case as well. One way of comparing compressed sensing with
best k-term approximation is to consider their respective performance on a specific
class of vectors K ⊂ R

N . For such a class we can define on the one hand

(1.5) σk(K)X := sup
x∈K

σk(x)X

and

(1.6) En(K)X := inf
(Φ,∆)∈An,N

sup
x∈K

‖x − ∆(Φx)‖X

which describe, respectively, the performance of the two methods over this class.
We are now interested in the largest value of k such that En(K)X ≤ C0σk(K)X

for a constant C0 independent of the parameters k, n, N . Results of this type were
established already in the 1970’s under the umbrella of what is called n-widths.
The deepest results of this type were given by Kashin [14] with later improvements
by Garnaev and Gluskin [9, 13]. We recall this well-known story briefly in §2.

The results on n-widths referred to above give matching upper and lower esti-
mates for En(K)X in the case that K is a typical sparsity class such as a ball in
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�N
p where

(1.7) ‖x‖�p
:= ‖x‖�N

p
:=

{ (∑N
j=1 |xj |p

)1/p

, 0 < p < ∞,

maxj=1,...,N |xj |, p = ∞.

This in turn determines the largest range of k for which we can obtain comparisons
of the form En(K)X ≤ C0σk(K)X . One such result is the following: for K = U(�N

1 ),
X = �N

2 , one has

(1.8) Ek(U(�N
1 ))�N

2
≤ C0σk(U(�N

1 ))�N
2

whenever

(1.9) k ≤ c0n/ log(N/n)

with absolute constants C0, c0.
The decoders used in proving these theoretical bounds are far from being prac-

tical or numerically implementable. One of the remarkable achievements of the
recent work of Candès, Romberg and Tao [3] and Donoho [8] is to give probabilistic
constructions of matrices Φ which provide these bounds where the decoding can be
done by solving the �1 minimization problem

(1.10) ∆(y) := Argmin
Φz=y

‖z‖�1 .

The above results on approximation of classes is governed by the worst elements
in the class. It is a more subtle problem to obtain estimates that depend on the
individual characteristics of the target vector x. The main contribution of the
present paper is to study a stronger way to compare the performance of k-term
approximation in a compressed sensing algorithm. Namely, we address the following
question:

For a given norm ‖ · ‖X and k < N , what is the minimal value of n for which
there exists a pair (Φ, ∆) ∈ An,N such that

(1.11) ‖x − ∆(Φx)‖X ≤ C0σk(x)X ,

for all x ∈ R
N , with C0 a constant independent of k and N?

If a result of the form (1.11) has been established, then one can derive a result
for a class K by simply taking the supremum over all x ∈ K. However, results on
classes are less precise and informative than (1.11).

We shall say a pair (Φ, ∆) ∈ An,N satisfying (1.11) is instance optimal of order k
with constant C0 for the space X. In particular, we want to understand under what
circumstances the minimal value of n is roughly of the same order as k, similar to
(1.9). We shall see that the answer to this question strongly depends on the norm
X under consideration.

The approximation accuracy of a compressed sensing matrix is determined by
the null space

(1.12) N = N (Φ) := {x ∈ R
N : Φx = 0}.

The importance of N is that if we observe y = Φx without any a priori information
on x, the set of z such that Φz = y is given by the affine space

(1.13) F(y) := x + N .
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We bring out the importance of the null space in §3 where we formulate a property
of the null space which is necessary and sufficient for Φ to have a decoder ∆ for
which the instance optimality (1.11) holds.

We apply this property in §4 to the case X = �1. In this case, we show the
minimal number of measurements n which ensures (1.11) is of the same order as
k up to a logarithmic factor. In that sense, compressed sensing performs almost
as well as best k-term approximation. We also show that, similar to the work
of Candès, Romberg, and Tao this is achieved with the decoder ∆ defined by �1
minimization. We should mention that our results in this section are essentially
contained in the work of Candès, Romberg, and Tao [5, 6, 4] and we build on their
ideas.

We next treat the case X = �2 in §5. In this case, the situation is much less in
favor of compressed sensing, since the minimal number of measurements n which
ensures (1.11) is now of the same order as N .

In §6, we consider an important variant of the �2 case where we ask for �2 instance
optimality in the sense of probability. Here, rather than requiring that (1.11) holds
for all x ∈ R

N , we ask only that for each given x it holds with high probability.
We shall see that in the case X = �2 the minimal number of measurements n
for such results is dramatically reduced, down to the order given by condition
(1.9). Moreover, we show that standard constructions of random matrices such as
Gaussian and Bernoulli ensembles achieve this performance.

The striking contrast between the results of §5 and §6 shows that the probabilistic
setting plays a crucial role in �2 instance optimality. Similar results in the sense of
probability have been obtained earlier in a series of paper [7, 10, 11, 12] that reflect
the theoretical computer science approach to compressed sensing, also known as
data sketching. A comparison with our results is in order.

First, the instance optimality bounds obtained in these papers are quantitatively
more precise than ours, since they have the general form

(1.14) ‖x − ∆(Φx)‖�2 ≤ (1 + ε)σk(x)�2 ,

where ε > 0 can be made arbitrarily small, at the expense of raising n, while in
most of our results the constant C0 in (1.11) cannot get arbitrarily close to 1. On
the other hand, for a fixed ε > 0, the ratio between n and k is generally not as
good as in (1.9): for instance the decoders proposed in [7] and [11], respectively,
use n ∼ k

ε log(N)5/2 and n ∼ k
ε3 log(N) samples in order to achieve (1.14).

Secondly, the types of encoding matrices which are proposed in these papers are
of fairly different nature than those which are considered in §6, and our analysis
actually does not apply to these matrices. Let us mention that one specific interest
of the Gaussian matrices which are considered in the present paper is that they
give rise to an encoding which is “robust” with respect to a change of the basis in
which the signal is sparse, since the product of such a Φ and any N × N unitary
matrix U results in a matrix Φ̃ with the same probability law.

Finally, one of the significant achievements in [7, 10, 11, 12] is the derivation
of practical decoding algorithms of polynomial complexity in k up to logarithmic
factors, therefore typically faster than solving the �1 minimization problem, while
we do not propose any such algorithm in the present paper.

Generally speaking, an important issue in compressed sensing is the practical
implementation of the decoder ∆ by a fast algorithm. While being aware of this
fact, the main goal of the present paper is to understand the theoretical limits
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of compressed sensing in comparison to nonlinear approximation. Therefore the
main question that we address is, “How many measurements do we need so that
some decoder recovers x up to some prescribed tolerance?”, rather than, “What is
the fastest algorithm which allows to recover x from these measurements up to the
same tolerance?”

The last sections of the paper are devoted to additional results which complete
the theory. In order to limit the size of the paper, we only give a sketch of the
proofs in those sections. The case X = �p for 1 < p < 2 is treated in §7, and
in §8 we discuss another type of estimate that we refer to as mixed-norm instance
optimality. Here the estimate (1.11) is replaced by an estimate of the type

(1.15) ‖x − ∆(Φx)‖X ≤ C0k
−sσk(x)Y ,

where Y differs from X and s > 0 is some relevant exponent. This type of estimate
was introduced in [4] in the particular case X = �2 and Y = �1. We give examples
in the case X = �p and Y = �q in which mixed-norm estimates allow us to recover
better approximation estimates for compressed sensing than (1.11).

2. Performance over classes

We begin by recalling some well-known results concerning best k-term approxi-
mation which we shall use in the course of this paper. Given a sequence norm ‖·‖X

on R
N and a positive integer r > 0, we define the approximation class Ar by means

of

(2.1) ‖x‖Ar(X) := max
1≤k≤N

krσk(x)X .

Notice that since we are in a finite dimensional space R
N , this (quasi-)norm will be

finite for all x ∈ R
N .

A simple, yet fundamental, chapter in k-term approximation is to connect the
approximation norm in (2.1) with traditional sequence norms. For this, we define
for any 0 < q < ∞, the weak �q norm as

(2.2) ‖x‖q
w�q

:= sup
ε>0

εq#{i ; |xi| > ε}.

Again, for any x ∈ R
N all of these norms are finite.

If we fix the �p norm in which approximation error is to be measured, then for
any x ∈ R

N , we have for q := (r + 1/p)−1,

(2.3) B0‖x‖w�q
≤ ‖x‖Ar ≤ B1r

−1/p‖x‖w�q
, x ∈ R

N ,

for two absolute constants B0, B1 > 0. Notice that the constants in these inequali-
ties do not depend on N . Therefore, x ∈ Ar is equivalent to x ∈ w�q with equivalent
norms.

Since the �q norm is larger than the weak �q norm, we can replace the weak �q

norm by the �q norm in the right inequality of (2.3). However, the constant can be
improved via a direct argument. Namely, if 1/q = r + 1/p, then for any x ∈ R

N ,

(2.4) σk(x)�p
≤ ‖x‖�q

k−r, k = 1, 2, . . . , N.

To prove this, take Λ as the set of indices corresponding to the k largest entries in
x. If ε is the size of the smallest entry in Λ, then ε ≤ ‖x‖w�q

k−1/q ≤ ‖x‖�q
k−1/q
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and therefore

(2.5) σk(x)p
�p

=
∑
i/∈Λ

|xi|p ≤ εp−q
∑
i/∈Λ

|xi|q ≤ k− p−q
q ‖x‖p−q

�q
‖x‖q

�q
,

so that (2.4) follows.
From this, we see that if we consider the class K = U(�N

q ), we have

(2.6) σk(K)�p
≤ k−r,

with r = 1/q − 1/p. On the other hand, taking x ∈ K such that xi = (2k)−1/q for
2k indices and 0 otherwise, we find that

(2.7) σk(x)�p = [k(2k)−p/q]1/p = 2−1/qk−r,

so that σk(K)X can be framed by

(2.8) 2−1/qk−r ≤ σk(K)�p
≤ k−r.

We next turn to the performance of compressed sensing over classes of vectors, by
studying the quantity En(K)X defined by (1.6). As we have mentioned, the optimal
performance of sensing algorithms is closely connected to the concept of Gelfand
widths which are in some sense dual to the perhaps better known Kolmogorov
widths. If K is a compact set in X and n is a positive integer, then the Gelfand
width of K and of order n is by definition

(2.9) dn(K)X := inf
Y

sup{‖x‖X ; x ∈ K ∩ Y }

where the infimum is taken over all subspaces Y of X of codimension less than
or equal to n. This quantity is equivalent to En(K)X , according to the following
well-known result.

Lemma 2.1. Let K ⊂ R
N be any set for which K = −K and for which there is a

C0 > 0 such that K + K ⊂ C0K. If X ⊂ R
N is any normed space, then

(2.10) dn(K)X ≤ En(K)X ≤ C0d
n(K)X , 1 ≤ n ≤ N.

Proof. We give a proof for completeness of this paper. We first remark that the
null space Y = N of Φ is of codimension less than or equal to n. Conversely, given
any space Y ⊂ R

N of codimension n, we can associate its orthogonal complement
Y ⊥ which is of dimension n and the n×N matrix Φ whose rows are formed by any
basis for Y ⊥. Through this identification, we see that

(2.11) dn(K)X = inf
Φ

sup{‖η‖X : η ∈ N ∩ K},

where the infimum is taken over all n × N matrices Φ.
Now, if (Φ, ∆) is any encoder-decoder pair and z = ∆(0), then for any η ∈ N , we

also have −η ∈ N . It follows that either ‖η − z‖X ≥ ‖η‖X or ‖ − η − z‖X ≥ ‖η‖X .
Since K = −K, we conclude that

(2.12) dn(K)X ≤ sup
η∈N∩K

‖η − ∆(Φη)‖X .

Taking an infimum over all encoder-decoder pairs in An,N , we obtain the left in-
equality in (2.10).

To prove the right inequality, we choose an optimal Y for dn(K)X and use the
matrix Φ associated to Y (i.e., the rows of Φ are a basis for Y ⊥). We define a
decoder ∆ for Φ as follows. Given y in the range of Φ, we recall that F(y) is the
set of x such that Φx = y. If F(y) ∩ K �= ∅, we take any x̄(y) ∈ F(y) ∩ K and
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define ∆(y) := x̄(y). When F(y) ∩ K = ∅, we define ∆(y) as any element from
F(y). This gives

(2.13) En(K)X ≤ sup
x,x′∈F(y)∩K

‖x − x′‖X ≤ sup
η∈C0[K∩N ]

‖η‖X ≤ C0d
n(K)X ,

where we have used the fact that x−x′ ∈ N and x−x′ ∈ C0K by our assumptions
on K. This proves the right inequality in (2.10). �

The orders of the Gelfand widths of �q balls in �p are known except perhaps for
the case q = 1, p = ∞. For the range of p, q that is relevant here even the constants
are known. We recall the following results of Gluskin, Garnaev and Kashin which
can be found in [13, 9, 14]; see also [15]. For K = U(�N

q ), we have

(2.14) C1Ψ(n, N, q, p) ≤ dn(K)�p
≤ C2Ψ(n, N, q, p),

where C1, C2 only depend on p and q and where
(2.15)

Ψ(n, N, q, p) := [min(1, N1−1/qn−1/2)]
1/q−1/p
1/q−1/2 , 1 ≤ n ≤ N, 1 < q < p ≤ 2,

and

(2.16) Ψ(n, N, 1, 2) := min

{
1,

√
log(N/n)

n

}
.

Since K = U(�N
q ) obviously satisfies the assumptions of Lemma 2.1 with C0 = 2,

we also have

(2.17) C1Ψ(n, N, q, p) ≤ En(K)�p
≤ 2C2Ψ(n, N, q, p).

From (2.14), (2.16), (2.10) we deduce indeed the announced fact that En(U(�N
1 ))�2

≤ C0σk(U(�N
1 ))�2 can only hold when k and the necessary number of measurements

n are interrelated by (1.9). The possible range of k for which even instance opti-
mality could hold is therefore also limited by (1.9), a relation that will turn up
frequently in what follows.

3. Instance optimality and the null space of Φ

We now turn to the main question addressed in this paper, namely the study
of instance optimality as expressed by (1.11). In this section, we shall see that
(1.11) can be reformulated as a property of the null space N of Φ. As was already
remarked in the proof of Lemma 2.1, this null space has codimension not larger
than n.

We shall also need to consider sections of Φ obtained by keeping some of its
columns: for T ⊂ {1, . . . , N}, we denote by ΦT the n×#T matrix formed from the
columns of Φ with indices in T . Similarly we shall have to deal with restrictions xT

of vectors x ∈ R
N to sets T . However, it will be convenient to view such restrictions

still as elements of R
N , i.e., xT agrees with x on T and has all components equal

to zero whose indices do not belong to T .
We begin by studying under what circumstances the measurement vector y = Φx

uniquely determines each k-sparse vector x ∈ Σk. This is expressed by the following
trivial lemma.
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Lemma 3.1. If Φ is any n×N matrix and 2k ≤ n, then the following are equivalent:
(i) There is a decoder ∆ such that ∆(Φx) = x, for all x ∈ Σk.
(ii) Σ2k ∩ N = {0}.
(iii) For any set T with #T = 2k, the matrix ΦT has rank 2k.
(iv) The symmetric nonnegative matrix Φt

T ΦT is invertible, i.e., positive definite.

Proof. The equivalence of (ii), (iii), (iv) is linear algebra.
(i)⇒(ii): Suppose (i) holds and x ∈ Σ2k ∩ N . We can write x = x0 − x1 where

both x0, x1 ∈ Σk. Since Φx0 = Φx1, we have, by (i), that x0 = x1 and hence
x = x0 − x1 = 0.

(ii)⇒(i): Given any y ∈ R
n, we define ∆(y) to be any element in F(y) with

smallest support. Now, if x1, x2 ∈ Σk with Φx1 = Φx2, then x1 − x2 ∈ N ∩
Σ2k. From (ii), this means that x1 = x2. Hence, if x ∈ Σk, then ∆(Φx) = x as
desired. �

The properties discussed in Lemma 3.1 are algebraic properties of Φ. If N, k are
fixed, the question arises as to how large we need to make n so that there is a matrix
Φ having the properties of the lemma. It is easy to see that we can take n = 2k.
Indeed, for any k and N ≥ 2k, we can find a set ΛN of N vectors in R

2k such that
any 2k of them are linearly independent. For example if 0 < x1 < x2 < · · · < xN ,
then the matrix whose (i, j) entry is xi−1

j has the properties of Lemma 3.1. Its
2k×2k minors are Vandermonde matrices which are well known to be nonsingular.
Unfortunately, such matrices are poorly conditioned when N is large and the process
of recovering x ∈ Σk from y = Φx is therefore numerically unstable.

Stable recovery procedures have been proposed by Candès, Romberg, and Tao
and by Donoho under stronger conditions on Φ. We shall make heavy use in this
paper of the following property introduced by Candès and Tao. We say that Φ
satisfies the restricted isometry property (RIP) of order k if there is a 0 < δk < 1
such that

(3.1) (1 − δk)‖z‖�2 ≤ ‖ΦT z‖�2 ≤ (1 + δk)‖z‖�2 , z ∈ R
N ,

holds for all T of cardinality k.1 The RIP condition is equivalent to saying that the
symmetric matrix Φt

T ΦT is positive definite with eigenvalues in [(1−δk)2, (1+δk)2].
Note that RIP of order k always implies RIP of order l ≤ k. Note also that RIP of
order 2k guarantees that the properties of Lemma 3.1 hold.

Candès and Tao have shown that any matrix Φ which satisfies the RIP property
for k and sufficiently small δk will extract enough information about x to approx-
imate it well and moreover the decoding can be done by �1 minimization. The
key question then is, given a fixed n, N , how large can we take k and still have
matrices which satisfy RIP for k? It was shown by Candès and Tao [5], as well
as Donoho [8], that certain families of random matrices will, with high probability,
satisfy RIP of order k with δk ≤ δ < 1 for some prescribed δ independent of N
provided k ≤ c0n/ log(N/k). Here c0 is a constant which when made small will
make δk small as well. It should be stressed that all available constructions of such
matrices (so far) involve random variables. For instance, as we shall recall in more

1The RIP condition could be replaced by the assumption that C0‖z‖�2 ≤ ‖ΦT z‖�2 ≤ C1‖z‖�2
holds for all #(T ) = k, with absolute constants C0, C1 in all that follows. However, this latter
condition is equivalent to having a rescaled matrix αΦ satisfy RIP for some α and the rescaled
matrix extracts exactly the same information from a vector x as Φ does.
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detail in §6, the entries of Φ can be picked as i.i.d. Gaussian or Bernoulli variables
with proper normalization.

We turn to the question of whether y contains enough information to approx-
imate x to accuracy σk(x) as expressed by (1.11). The following theorem shows
that this can be understood through the study of the null space N of Φ.

Theorem 3.2. Given an n × N matrix Φ, a norm ‖ · ‖X and a value of k, then a
sufficient condition that there exists a decoder ∆ such that (1.11) holds with constant
C0 is that

(3.2) ‖η‖X ≤ C0

2
σ2k(η)X , η ∈ N .

A necessary condition is that

(3.3) ‖η‖X ≤ C0σ2k(η)X , η ∈ N .

Proof. To prove the sufficiency of (3.2), we will define a decoder ∆ for Φ as follows.
Given any y ∈ R

N , we consider the set F(y) and choose

(3.4) ∆(y) := Argmin
z∈F(y)

σk(z)X .

We shall prove that for all x ∈ R
N

(3.5) ‖x − ∆(Φx)‖X ≤ C0σk(x)X .

Indeed, η := x − ∆(Φx) is in N and hence by (3.2), we have

‖x − ∆(Φx)‖X ≤ (C0/2)σ2k(x − ∆(Φx))X

≤ (C0/2)(σk(x)X + σk(∆(Φx)X)
≤ C0σk(x)X ,

where the second inequality uses the fact that σ2k(x+ z)X ≤ σk(x)X +σk(z)X and
the last inequality uses the fact that ∆(Φx) minimizes σk(z) over F(y).

To prove the necessity of (3.3), let ∆ be any decoder for which (1.11) holds. Let
η be any element in N = N (Φ) and let η0 be the best 2k-term approximation of η
in X. Letting η0 = η1 + η2 be any splitting of η0 into two vectors of support size
k, we can write

(3.6) η = η1 + η2 + η3,

with η3 = η − η0. Since −η1 ∈ Σk, we have by (1.11) that −η1 = ∆(Φ(−η1)), but
since η ∈ N , we also have −Φη1 = Φ(η2 + η3) so that −η1 = ∆(Φ(η2 + η3)). Using
again (1.11), we derive

‖η‖X = ‖η2 + η3 − ∆(Φ(η2 + η3))‖X ≤ C0σk(η2 + η3)
≤ C0‖η3‖X = C0σ2k(η),

which is (3.3). �

When X is an �p space, the best k-term approximation is obtained by leaving
the k largest components of x unchanged and setting all the others to 0. Therefore
the property

(3.7) ‖η‖X ≤ Cσk(η)X

can be reformulated by saying that

(3.8) ‖η‖X ≤ C‖ηT c‖X
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holds for all T ⊂ {1, . . . , N} such that #T ≤ k, where T c is the complement set of
T in {1, . . . , N}. In going further, we shall say that Φ has the null space property
in X of order k with constant C if (3.8) holds for all η ∈ N and #T ≤ k. Thus, we
have

Corollary 3.3. Suppose that X is an �N
p space, k > 0 an integer and Φ an encoding

matrix. If Φ has the null space property (3.8) in X of order 2k with constant
C0/2, then there exists a decoder ∆ so that (Φ, ∆) satisfies (1.11) with constant C0.
Conversely, the validity of (1.11) for some decoder ∆ implies that Φ has the null
space property (3.8) in X of order 2k with constant C0.

In the next two sections, we shall use this corollary in order to study instance
optimality in the case where the X norm is �1 and �2, respectively.

4. The case X = �1

In this section, we shall study the null space property (3.8) in the case where
X = �1. We shall make use of the restricted isometry property (3.1) introduced by
Candès and Tao. We begin with the following lemma whose proof is inspired by
results in [4].

Lemma 4.1. Let a = �/k, b = �′/k with �, �′ ≥ k integers. If Φ is any matrix
which satisfies the RIP of order (a + b)k with δ = δ(a+b)k < 1. Then Φ satisfies the
null space property in �1 of order ak with constant C0 = 1 +

√
a(1+δ)√
b(1−δ)

.

Proof. It is enough to prove (3.8) in the case when T is the set of indices of the
largest ak entries of η. Let T0 = T , T1 denote the set of indices of the next bk
largest entries of η, T2 the next bk largest, and so on. The last set Ts defined this
way may have less than bk elements.

We define η0 := ηT0 + ηT1 . Since η ∈ N , we have Φη0 = −Φ(ηT2 + · · · + ηTs
), so

that

‖ηT ‖�2 ≤ ‖η0‖�2 ≤ (1 − δ)−1‖Φη0‖�2 = (1 − δ)−1‖Φ(ηT2 + · · · + ηTs
)‖�2

≤ (1 − δ)−1
s∑

j=2

‖ΦηTj
‖�2 ≤ (1 + δ)(1 − δ)−1

s∑
j=2

‖ηTj
‖�2 ,

where we have used both bounds in (3.1). Now for any i ∈ Tj+1 and i′ ∈ Tj , we
have |ηi| ≤ |ηi′ | so that |ηi| ≤ (bk)−1‖ηTj

‖�1 . It follows that

(4.1) ‖ηTj+1‖�2 ≤ (bk)−1/2‖ηTj
‖�1 , j = 1, 2, . . . , s − 1,

so that

(4.2)
‖ηT ‖�2 ≤ (1 + δ)(1 − δ)−1(bk)−1/2

s−1∑
j=1

‖ηTj
‖�1

≤ (1 + δ)(1 − δ)−1(bk)−1/2‖ηT c‖�1 .

By the Cauchy-Schwartz inequality ‖ηT ‖�1 ≤ (ak)1/2‖ηT ‖�2 , and we therefore ob-
tain

(4.3) ‖η‖�1 = ‖ηT ‖�1 + ‖ηT c‖�1 ≤ (1 +
√

a(1 + δ)√
b(1 − δ)

)‖ηT c‖�1 ,

which verifies the null space property with the constant C0. �
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Combining Corollary 3.3 and Lemma 4.1 (with a = 2 and b = 1), we have
therefore proved the following.

Theorem 4.2. Let Φ be any matrix which satisfies the RIP of order 3k. Define
the decoder ∆ for Φ as in (3.4) for X = �1. Then (1.11) holds in X = �1 with
constant C0 = 2(1 +

√
2 1+δ

1−δ ). Generally speaking, we cannot derive a constant of
the type 1 + ε from an analysis based on Lemma 4.1, since it requires that the null
space property holds with constant C0/2 which is therefore larger than 1.

As was mentioned in the previous section, one can build matrices Φ which satisfy
the RIP of order k under the condition n ≥ ck log(N/n) where c is some fixed
constant. We therefore conclude that instance optimality of order k in the �1 norm
can be achieved at the price of O(k log(N/n)) measurements.

Remark 4.3. More generally, if Φ satisfies the RIP of order (2+b)k and ∆ is defined
by (3.4) for X = �1, then (1.11) holds in X = �1 with constant C0 = 2(1+

√
2/b 1+δ

1−δ ).
Therefore, if we make b large, the constant C0 in (1.11) is of the type 2 + ε under
a condition of the type n ≥ c k

ε2 log(N/n).

Note that on the other hand, since instance optimality of order k in any norm X
always implies that the reconstruction is exact when x ∈ Σk, it cannot be achieved
with less than 2k measurements according to Lemma 3.1.

Before addressing the �2 case, let us briefly discuss the decoder ∆ which achieves
(1.11) for such a Φ. According to the proof of Theorem 3.2, one can build ∆ as
the solution of the minimization problem (3.4). It is not clear to us whether this
minimization problem can be solved in polynomial time in N . The following result
shows that it is possible to define ∆ by �1 minimization if Φ satisfies the RIP with
some additional control on the constants in (3.1).

Theorem 4.4. Let Φ be any matrix which satisfies the RIP of order 3k with δ3k ≤
δ < (

√
2 − 1)2/3. Define the decoder ∆ for Φ as in (1.10). Then, (Φ, ∆) satisfies

(1.11) in X = �1 with C0 = 2
√

2+2−(2
√

2−2)δ√
2−1−(

√
2+1)δ

.

Proof. We apply Lemma 4.1 with a = 1, b = 2 to see that Φ satisfies the null space
property in �1 of order k with constant C = 1 + 1+δ√

2(1−δ)
< 2. This means that for

any η ∈ N and T such that #T ≤ k, we have

(4.4) ‖η‖�1 ≤ C‖ηT c‖�1 ,

and therefore

(4.5) ‖ηT ‖�1 ≤ (C − 1)‖ηT c‖�1 .

Let x∗ = ∆(Φx) be the solution of (1.10) so that η = x∗ − x ∈ N and

(4.6) ‖x∗‖�1 ≤ ‖x‖�1 .

Denoting by T the set of indices of the largest k coefficients of x, we can write

(4.7) ‖x∗
T ‖�1 + ‖x∗

T c‖�1 ≤ ‖xT ‖�1 + ‖xT c‖�1 .

It follows that

(4.8) ‖xT ‖�1 − ‖ηT ‖�1 + ‖ηT c‖�1 − ‖xT c‖�1 ≤ ‖xT ‖�1 + ‖xT c‖�1 ,

and therefore

(4.9) ‖ηT c‖�1 ≤ ‖ηT ‖�1 + 2‖xT c‖�1 = ‖ηT ‖�1 + 2σk(x)�1 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



222 ALBERT COHEN, WOLFGANG DAHMEN, AND RONALD DEVORE

Using (4.5) and the fact that C < 2, we thus obtain

(4.10) ‖ηT c‖�1 ≤ 2
2 − C

σk(x)�1 .

We finally use again (4.4) to conclude that

(4.11) ‖x − x∗‖�1 ≤ 2C

2 − C
σk(x)�1 ,

which is the announced result. �

5. The case X = �2

In this section, we shall show that instance optimality is not a very viable concept
in X = �2 in the sense that it will not even hold for k = 1 unless n ≥ cN . We know
from Corollary 3.3 that if Φ is a matrix of size n × N which satisfies

(5.1) ‖x − ∆(Φx)‖�2 ≤ C0σk(x)�2 , x ∈ R
N ,

for some decoder ∆, then its null space N will need to have the property

(5.2) ‖η‖2
�2

≤ C2
0‖ηT c‖2

�2
, #T ≤ 2k.

Theorem 5.1. For any matrix Φ of dimension n × N , property (5.2) with k = 1
implies that N ≤ C2

0n.

Proof. We start from (5.2) with k = 1 from which we trivially derive

(5.3) ‖η‖2
�2 ≤ C2

0‖ηT c‖2
�2 , #T ≤ 1,

or equivalently for all j ∈ {1, . . . , N},

(5.4)
N∑

i=1

|ηi|2 ≤ C2
0

∑
i �=j

|ηi|2.

From this, we derive that for all j ∈ {1, . . . , N},

(5.5) |ηj |2 ≤ (C2
0 − 1)

∑
i �=j

|ηi|2 = (C2
0 − 1)(‖η‖2

�2 − |ηj |2),

and therefore

(5.6) |ηj |2 ≤ A‖η‖2
�2 ,

with A = 1 − 1
C2

0
.

Let (ej)j=1,...,N be the canonical basis of R
N so that ηj = 〈η, ej〉 and let

v1, . . . , vN−n be an orthonormal basis for N . Denoting by P = PN the orthog-
nal projection onto N , we apply (5.6) to η := P (ej) ∈ N and find that for any
j ∈ {1, . . . , N}
(5.7) |〈P (ej), ej〉|2 ≤ A.

This means

(5.8)
N−n∑
i=1

|〈ej , vi〉|2 ≤ A, j = 1, . . . , N.

We sum (5.8) over j ∈ {1, . . . , N} and find

(5.9) N − n =
N−n∑
i=1

‖vi‖2
�2 ≤ AN.
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It follows that (1 − A)N ≤ n. That is, N ≤ nC2
0 as desired. �

The above result means that when measuring the error in �2, the comparison be-
tween compressed sensing and best k-term approximation on a general vector of R

n

is strongly in favor of best k-term approximation. However, this conclusion should
be moderated in two ways. On the one hand, we shall see in §8 that one can obtain
mixed-norm estimates of the form (1.15) from which one finds that compressed
sensing compares favorably with best k-term approximation over sufficiently con-
centrated classes of vectors. On the other hand, we shall prove in the next section
that (5.1) can be achieved with n of the same order as k up to a logarithmic factor,
if one accepts that this result holds with high probability.

6. The case X = �2 in probability

In order to formulate the results of this section, we let Ω be a probability space
with probability measure P and let Φ = Φ(ω), ω ∈ Ω, be an n×N random matrix.
We seek results of the following type: for any x ∈ R

N , if we draw Φ at random
with respect to P , then

(6.1) ‖x − ∆(Φx)‖�2 ≤ C0σk(x)�2

holds for this particular x with high probability for some decoder ∆ (dependent
on the draw Φ). We shall even give explicit decoders which will yield this type of
inequality. It should be understood that Φ is drawn independently for each x in
contrast to building a Φ such that (6.1) holds simultaneously for all x ∈ R

N , which
was our original definition of instance optimality.

Two simple instances of random matrices which are often considered in com-
pressed sensing are

(1) Gaussian matrices: Φi,j = N (0, 1
n ) are i.i.d. Gaussian variables of variance

1/n,
(2) Bernoulli matrices: Φi,j = ±1√

n
are i.i.d. Bernoulli variables of variance 1/n.

In order to establish such results, we shall need that the random matrix Φ has
two properties which we now describe. The first of these relates to the restricted
isometry property which we know plays a fundamental role in the performance of
the matrix Φ in compressed sensing.

Definition 6.1. We say that the random matrix Φ satisfies RIP of order k with
constant δ and probability 1 − ε if there is a set Ω0 ⊂ Ω with P (Ω0) ≥ 1 − ε such
that for all ω ∈ Ω0, the matrix Φ(ω) satisfies (3.1) with constant δk ≤ δ.

This property has been shown for random matrices of the above Gaussian or
Bernoulli type. Namely, given any c > 0 and δ > 0, there is a constant c0 > 0 such
that for all n ≥ c0k log(N/n) this property will hold with ε ≤ e−cn; see [2, 5, 8, 16].

The RIP controls the behavior of Φ on Σk, or equivalently on all the k di-
mensional spaces spanned by any subset of {e1, . . . , eN} of cardinality k. On the
other hand, for a general vector x ∈ R

N , the image vector Φx might have a much
larger norm than x. However, for standard constructions of random matrices the
probability that Φx has large norm is small. We formulate this by the following
definition.

Definition 6.2. We say that the random matrix Φ has the boundedness property
with constant C and probability 1 − ε if for each x ∈ R

N , there is a set Ω0(x) ⊂ Ω
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with P (Ω0(x)) ≥ 1 − ε such that for all ω ∈ Ω0(x),

(6.2) ‖Φ(ω)x‖�2 ≤ C‖x‖�2 .

Note that the property which is required in this definition is clearly weaker than
asking that the spectral norm ‖Φ‖ := sup‖x‖�2=1 ‖Φx‖�2 be not greater than C with
probability 1 − ε.

Again, this property has been shown for various random families of matrices and
in particular for the Gaussian or Bernoulli families. Namely, given any C > 1, this
property will hold with constant C and ε ≤ 2e−βn with β = β(C) > 0; see [1] or the
discussion in [2]. Thus, the standard constructions of random matrices will satisfy
both of these properties.

We now describe our process for decoding y = Φx, when Φ = Φ(ω) is our given
realization of the random matrix. Let T ⊂ {1, . . . , N} be any subset of column
indices with #(T ) = k and let XT be the linear subspace of R

N which consists of
all vectors supported on T . For this T , we define

(6.3) x∗
T := Argmin

z∈XT

‖Φz − y‖�2 .

In other words, x∗
T is chosen as the least squares minimizer of the residual in

approximation by elements of XT . Notice that x∗
T is supported on T . If Φ satisfies

RIP of order k, then the matrix Φt
T ΦT is nonsingular and the nonzero entries of

x∗
T are given by

(6.4) (Φt
T ΦT )−1Φt

T y.

To decode y, we search over all subsets T of cardinality k and choose

(6.5) T ∗ := Argmin
#(T )=k

‖y − Φx∗
T ‖�n

2
.

Our decoding of y is now given by

(6.6) x∗ = ∆(y) := x∗
T∗ .

The main result of this section is the following.

Theorem 6.3. Assume that Φ is a random matrix which satisfies RIP of order
2k with constant δ and probability 1− ε and also satisfies the boundedness property
with constant C and probability 1 − ε. Then, for each x ∈ R

N , there exists a set
Ω(x) ⊂ Ω with P (Ω(x)) ≥ 1 − 2ε such that for all ω ∈ Ω(x) and Φ = Φ(ω), the
estimate (6.1) holds with C0 = 1 + 2C

1−δ . Here the decoder ∆ = ∆(ω) is given by
(6.6).

Proof. Let x ∈ R
N be arbitrary and let Φ = Φ(ω) be the draw of the matrix Φ

from the random ensemble. We denote by T the set of indices corresponding to the
k largest coefficients of x. Thus

(6.7) ‖x − xT ‖�2 = σk(x)�2 .

We consider the set Ω′ := Ω0 ∩ Ω(x − xT ) where Ω0 is the set in the definition
of RIP in probability and Ω(x − xT ) is the set in the definition of boundedness in
probability for the vector x − xT . Then P (Ω′) ≥ 1 − 2ε. For any ω ∈ Ω′, we have

(6.8) ‖x − x∗‖�2 ≤ ‖x − xT ‖�2 + ‖xT − x∗‖�2 ≤ σk(x)�2 + ‖xT − x∗‖�2 .
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We bound the second term by

‖xT − x∗‖�N
T

≤ (1 − δ)−1‖Φ(xT − x∗)‖�2

≤ (1 − δ)−1(‖Φ(x − xT )‖�2 + ‖Φ(x − x∗)‖�2)
= (1 − δ)−1(‖y − ΦxT ‖�2 + ‖y − Φx∗‖�2)
≤ 2(1 − δ)−1‖y − ΦxT ‖�2 = 2(1 − δ)−1‖Φ(x − xT )‖�2

≤ 2C(1 − δ)−1‖x − xT ‖�2 = 2C(1 − δ)−1σk(x)�2 ,

where the first inequality uses the RIP and the fact that xT − x∗ is a vector with
support of size less than 2k, the third inequality uses the minimality of T ∗ and the
fourth inequality uses the boundedness property in probability for x − xT . �

By virtue of the remarks on the properties of Gaussian and Bernoulli matrices,
we derive the following quantitative result.

Corollary 6.4. If Φ is a random matrix of either Gaussian or Bernoulli type, then
for any ε > 0 and C0 > 3, there exists a constant c0 such that if n ≥ c0k log(N/n),
the following holds: for every x ∈ R

N , there exists a set Ω(x) ⊂ Ω with P (Ω(x)) ≥
1 − 2ε such that (6.1) holds for all ω ∈ Ω(x) and Φ = Φ(ω).

Remark 6.5. Our analysis yields a constant of the form C0 = 3 + η, where η can
be made arbitraritly small at the expense of raising n, and it is not clear to us how
to improve this constant down to 1 + η as in [7, 10, 11, 12].

A variant of the above results deals with the situation where the vector x itself is
drawn from a probability measure Q on R

N . In this case, the following result shows
that we can first pick the matrix Φ so that (6.1) will hold with high probability on
the choice of x. In other words, only a few pathological signals are not reconstructed
up to the accuracy of best k-term approximation.

Corollary 6.6. If Φ a random matrix of either Gaussian or Bernoulli type, then for
any ε > 0 and C0 > 3, there exists a constant c0 such that if n ≥ c0k log(N/n), the
following holds: there exists a matrix Φ and a set Ω(Φ) ⊂ Ω with Q(Ω(Φ)) ≥ 1−2ε
such that (6.1) holds for all x ∈ Ω(Φ).

Proof. Consider random matrices of Gaussian or Bernoulli type, and denote by
P their probability law. We consider the law P ⊗ Q which means that we draw
independently Φ according to P and x according to Q . We denote by Ωx and ΩΦ

the events that (6.1) does not hold given x and Φ, respectively. The event Ω0 that
(6.1) does not hold is therefore given by

(6.9) Ω0 =
⋃
x

Ωx =
⋃
Φ

ΩΦ.

According to Corollary 6.4 we know that for all x ∈ R
N ,

(6.10) P (Ωx) ≤ ε,

and therefore

(6.11) P ⊗ Q(Ω0) ≤ ε.

By Chebyshev’s inequality, we have for all t > 0,

(6.12) P ({Φ : Q(ΩΦ) ≥ t}) ≤ ε

t
,
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and in particular

(6.13) P ({Φ : Q(ΩΦ) ≥ 2ε}) ≤ 1
2
.

This shows that there exists a matrix Φ such that Q(ΩΦ) ≤ 2ε, which means that
for such a Φ the estimate (6.1) holds with probability larger than 1−2ε over x. �

We close this section with a few remarks comparing the results of this section
with other results in the literature. The decoder defined by (6.3) is not compu-
tationally realistic since it requires a combinatorial search over all subsets T of
cardinality T . A natural question is therefore to obtain a decoder with similar
approximation properties and more reasonable computational cost. Let us mention
that fast decoding methods have been obtained for certain random constructions of
matrices by Cormode and Muthukrishnan [7] and by Gilbert and coworkers [12, 17]
that yield approximation properties which are similar to Theorem 6.3. Our results
differ from theirs in the following two ways. First, we give general criteria for
instance optimality to hold in probability. In this context we have not been con-
cerned about the decoder. Our results can hold in particular for standard random
classes of matrices such as the Gaussian and Bernoulli constructions. Secondly,
when applying our results to these standard random classes, we obtain the range
of n given by n ≥ ck log(N/n) which is slightly wider than the range in these other
works. That latter range is also treated in [17] but the corresponding results are
confined to k-sparse signals. It is shown there that orthogonal matching pursuit
(OMP) identifies the support of such a sparse signal with high probability and that
the orthogonal projection will then recover it precisely.

7. The case X = �p with 1 < p < 2

In this section we shall discuss instance optimality in the case X = �p when
1 < p < 2. We therefore discuss the validity of

(7.1) ‖x − ∆(Φx)‖�p
≤ C0σk(x)�p

, x ∈ R
N ,

depending on the value of n. Our first result is a generalization of Lemma 4.1.

Lemma 7.1. Let Φ be any matrix which satisfies the RIP of order 2k + k̃ with
δ2k+k̃ ≤ δ < 1 and

(7.2) k̃ := k
(N

k

)2−2/p

.

Then, for any 1 ≤ p < 2, Φ satisfies the null space property in �p of order 2k with
constant C0 = 2

1
p− 1

2 1+δ
1−δ .

Proof. The proof is very similar to Lemma 4.1, so we sketch it. The idea is to take
once again T0 = T to be the set of 2k largest coefficients of η and to take the other
sets Tj of size k̃.

In the same way, we obtain

(7.3) ‖ηT0‖�2 ≤ (1 + δ)(1 − δ)−1
s∑

j=2

‖ηTj
‖�2 .
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Now if j ≥ 1, for any i ∈ Tj+1 and i′ ∈ Tj , we have |ηi| ≤ |ηi′ | so that |ηi|p ≤
k̃−1‖ηTj

‖p
�p

. It follows that

(7.4) ‖ηTj+1‖�2 ≤ (k̃)1/2−1/p‖ηTj
‖�p

,

so that

(7.5)

‖ηT ‖�p
≤ (2k)1/p−1/2‖ηT ‖�2

≤ (1 + δ)(1 − δ)−1(2k)1/p−1/2k̃1/2−1/p
∑s

j=1 ‖ηTj
‖�p

≤ (1 + δ)(1 − δ)−1(2k)1/p−1/2k̃1/2−1/ps1−1/p‖ηT c‖�p

≤ (1 + δ)(1 − δ)−1(2k)1/p−1/2k̃1/2−1/p(N/k̃)1−1/p‖ηT c‖�p

= 21/p−1/2(1 + δ)(1 − δ)−1‖ηT c‖�p
,

where we have used Hölder’s inequality twice and the relation between N , k and
k̃. �

The corresponding generalization of Theorem 4.2 is now the following.

Theorem 7.2. Let Φ be any matrix which satisfies the RIP of order 2k + k̃ with
δ2k+k̃ ≤ δ < 1 and k̃ as in (7.2). Define the decoder ∆ for Φ as in (3.4) for X = �p.
Then (7.1) holds with constant C0 = 21/p+1/2(1 + δ)/(1 − δ).

Recall from our earlier remarks that an n × N matrix Φ can have RIP of
order k̃ provided that k̃ ≤ c0n/ log(N/n). We therefore conclude from Theo-
rem 7.2 and (7.2) that instance optimality of order k in the �p norm can be
achieved at the price of O(k(N/k)2−2/p log(N/n)) measurements so that the or-
der of O(k(N/k)2−2/p log(N/k)) measurements suffices, which is now significantly
higher than k except in the case where p = 1. In the following, we prove that this
price cannot be avoided.

Theorem 7.3. For any s < 2−2/p and any matrix Φ of dimension n×N , property
(7.1) implies that

(7.6) n ≥ ck
(N

k

)s

,

with c =
(

C1
C0

) 2/q−1
1/q−1/p

where C0 is the constant in (7.1) and C1 the lower constant
in (2.17) and q is defined by the relation s = 2 − 2/q.

Proof. We shall use the results of §2 concerning the Gelfand width and the rate
of best k-term approximation. If (1.11) holds, we find that for any compact class
K ⊂ R

N

(7.7) En(K)�p
≤ C0σk(K)�p

.

We now consider the particular classes K := U(�N
q ) with 1 ≤ q < p, so that in view

of (2.6) and (2.17), the inequality (7.7) becomes

(7.8) C1(N1−1/qn−1/2)
1/q−1/p
1/q−1/2 ≤ C0k

1/p−1/q ,

which gives (7.6) with s = 2 − 2/q and c =
(

C1
C0

) 2/q−1
1/q−1/p

. �

Remark 7.4. In the above proof the constant c blows up as q approaches p and
therefore we cannot directly conclude that a condition of the type n ≥ ck(N/k)2−2/p

is necessary for (7.1) to hold, although this seems plausible.
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8. Mixed-norm instance optimality

In this section, we extend the study of instance optimality to more general esti-
mates of the type

(8.1) ‖x − ∆(Φx)‖X ≤ C0k
−sσk(x)Y , x ∈ R

N ,

which we refer to as mixed-norm instance optimality. We have in mind the situation
where X = �p and Y = �q with 1 ≤ q ≤ p ≤ 2 and s = 1/q − 1/p. We are thus
interested in estimates of the type

(8.2) ‖x − ∆(Φx)‖�p
≤ C0k

1/p−1/qσk(x)�q
, x ∈ R

N .

The interest in such estimates stems from the following fact. Considering the classes
K = U(�N

r ) for r < q, we know from (2.8) that

(8.3) k1/p−1/qσk(K)�q
∼ k1/p−1/qk1/q−1/r = k1/p−1/r ∼ σk(K)�p

.

Therefore the estimate (8.2) yields the same rate of approximation as (7.1) over
such classes, and on the other hand we shall see that it is valid for smaller values
of n.

Our first result is a trivial generalization of Theorem 3.2 and Corollary 3.3 to
the case of mixed-norm instance optimality, so we state it without proof. We say
that Φ has the mixed null space property in (X, Y ) of order k with constant C and
exponent s if

(8.4) ‖η‖X ≤ Ck−s‖ηT c‖Y ,

η ∈ N and #(T ) ≤ k.

Theorem 8.1. Assume given a norm ‖ · ‖X , an integer k > 0 and an encoding
matrix Φ. If Φ has the mixed null space property in (X, Y ) of order 2k with constant
C0/2 and exponent s, then there exists a decoder ∆ so that (Φ, ∆) satisfies (8.1)
with constant C0. Conversely, the validity of (8.1) for some decoder ∆ implies that
Φ has the null space property in (X, Y ) of order 2k with constant C0 and exponent
s.

We next give a straightforward generalization of Lemma 7.1.

Lemma 8.2. Let Φ be any matrix which satisfies the RIP of order 2k + k̃ with
δ2k+k̃ ≤ δ < 1 and

(8.5) k̃ := k
(N

k

)2−2/q

.

Then Φ satisfies the mixed null space property in (�p, �q) of order 2k with constant
C0 = 2

1
p + 1

2 1+δ
1−δ + 2

1
p− 1

q and exponent s = 1/q − 1/p.

Proof. As in the proof of Lemma 7.1, we take T0 = T to be the set of 2k largest
coefficients of η and we take the other sets Tj of size k̃. By similar arguments, we
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arrive at the chain of inequalities

‖ηT ‖�p
≤ (2k)1/p−1/2‖ηT ‖�2

≤ (1 + δ)(1 − δ)−1(2k)1/p−1/2k̃1/2−1/q
s∑

j=1

‖ηTj
‖�q

≤ (1 + δ)(1 − δ)−1(2k)1/q−1/2k̃1/2−1/qs1−1/q‖ηT c‖�q

≤ (1 + δ)(1 − δ)−1(2k)1/q−1/2k̃1/2−1/q(N/k̃)1−1/q‖ηT c‖�q

= 21/p−1/2(1 + δ)(1 − δ)−1k−s‖ηT c‖�q
,(8.6)

where we have used Hölder’s inequality both with �q and �p as well as the relation
between N , k and k̃.

It remains to bound the tail ‖ηT c‖�p
. To this end, we infer from (2.4) that

‖ηT c‖�p
≤ ‖η‖�q

(2k)
1
p− 1

q ≤
(
‖ηT ‖�q

+ ‖ηT c‖�q

)
(2k)

1
p− 1

q .

Invoking (7.5) for p = q yields now

‖ηT ‖�q
≤ 21/q−1/2(1 + δ)(1 − δ)−1‖ηT c‖�q

so that

(8.7) ‖ηT c‖�p
≤

(
2

1
p− 1

2 (1 + δ)(1 − δ)−1 + 2
1
p− 1

q

)
‖ηT c‖�q

k
1
p− 1

q .

Combining (8.7) and (8.6) finishes the proof. �

We see that considering mixed-norm instance optimality in (�p, �q) in contrast
to instance optimality in �q is beneficial since the value of k̃ is smaller in (8.5) than
in (7.2). The corresponding generalization of Theorem 7.2 is now the following.

Theorem 8.3. Let Φ be any matrix which satisfies the RIP of order 2k+ k̃. Define
the decoder ∆ for Φ as in (3.4) for X = �p. Then (8.2) holds with constant C0 =
2

1
p + 3

2 1+δ
1−δ + 21+ 1

p− 1
q .

By the same reasoning that followed Theorem 7.2 concerning the construction
of matrices which satisfy RIP, we conclude that mixed instance optimality of order
k in the �p and �q norms can be achieved at the price of O(k(N/k)2−2/q log(N/k))
measurements. In particular, we see that when q = 1, this type of mixed-norm
estimate can be obtained with n larger than k only by a logarithmic factor. Such
a result was already observed in [4] in the case p = 2 and q = 1. In view of (8.3)
this implies in particular that compressed sensing behaves as well as best k-term
approximation on classes such as K = U(�N

r ) for r < 1.
One can prove that the above number of measurements is also necessary. This is

expressed by a straightforward generalization of Theorem 7.3 that we state without
proof.

Theorem 8.4. For any matrix Φ of dimension n × N , property (8.2) implies that

(8.8) n ≥ ck
(N

k

)2−2/q

,

with c =
(

C1
C0

) 2/q−1
1/q−1/p

where C0 is the constant in (7.1) and C1 the lower constant
in (2.17).
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Remark 8.5. In general, there is no direct relationship between (7.1) and (8.2). We
give an example to bring out this fact. Let us consider a fixed value of 1 < p ≤ 2
and values of N and k < N/2. We define x so that its first k coordinates are 1
and its remaining N − k coordinates are in (0, 1). Then σk(x)�r

= ‖z‖�r
where z

is obtained from x by setting the first k coordinates of x equal to zero. We can
choose z so that 1/2 ≤ ‖z‖�r

≤ 2, for r = p, q. In this case, the right side in (8.2)
is smaller than the right side of (7.1) by the factor k1/p−1/q so an estimate in the
mixed-norm instance optimality sense is much better for this x. On the other hand,
if we take all nonzero coordinates of z to be a with a ∈ (0, 1), then the right side of
(7.1) will be smaller than the right side of (8.2) by the factor (N/k)1/p−1/q, which
shows that for this x the instance optimality estimate is much better.
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