Class Field Theory

Abstract

These notes are based on a course in class field theory
given by Freydoon Shahidi at Purdue University in the fall
of 2014. The notes were typed by graduate students Daniel
Shankman and Dongming She. The approach to class field
theory in this course is very global: one first defines the
ideles and adeles, then uses L-functions and cohomology,
respectively, to prove the first and second norm index in-
equalities. One can then prove the main theorem of global
class field theory, which is essentially the existence of a
well defined idelic Artin map. Local class field theory and
the lower reciprocity laws are proved as corollaries of this.

The logical progression is in many ways similar to
Lang’s Algebraic Number Theory. For example, the section
on cohomology is nearly identical. However, we make use
of more powerful machinery to prove the first inequality
(the theory of locally compact groups, the Haar measure,

some harmonic analysis). Also, Lang’s notes are more

balanced in describing things in terms of ideals or ideles,
while these notes favor the ideles. Finally, the last section
on lower reciprocity laws was neither in Lang’s book nor
the course; we added the section later with the intention
of describing how Artin reciprocity is related to the 19th

century results.
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Preliminary Material

In order to acquaint the reader with our (more or less standard) notation and vocabulary, we will

give a brief review of algebraic number theory.

0.1 Places, primes, and valuations

Let K be a number field, A = Ok, and p a prime ideal of K. The localization A, is a discrete
valuation ring whose normalized valuation we denote by ord, or v,. To describe this valuation
more explicitly, let m be a generator of the unique maximal ideal of A,. Then every x € K* can be
uniquely written as un™, where u is a unit in A, and n is an integer. We then define ord,(z) = n
(and set ord,(0) = co). This valuation extends uniquely to K*, and it induces a nonarchimedean
absolute value | - | on K by setting |z| = p~ "% () where p is a fixed real number in (1,00). As far
as topology is concerned, the choice of p does not matter, for if | - |1, | - |2 are absolute values, then
they induce the same topology if and only if there is a ¢ > 0 for which |- |; = |-|§. The completion
of K with respect to this absolute value is a nonarchimedean local field, whose ring of integers is
the completion of A,. In this way the absolute value | - |, and the valuation ord,, extend uniquely
to this completion.

By a place of K we mean an equivalence class of absolute values on K, two absolute values
being equivalent if they induce the same topology. The finite places are those which are induced
by the prime ideals in the ring of integers of K. There is one for each prime. Thus if v is a finite
place, we denote the corresponding prime by p,. The infinite places are those which are induced
by embeddings of K into the complex numbers. There is one for each embedding into R, and one
for each pair of conjugate complex embeddings (embeddings of K into C which are not contained in
R come in pairs). To describe these places explicitly, consider an embedding o : K — C. Such an
embedding gives an absolute value |- | on K by setting |z|; = |o(x)|, where | - | denotes the usual
absolute value on C. These are all the places of K. Some authors treat infinite places as coming
from "infinite primes,” and moreover distinguish between ramified and unramified infinite primes,
but we will always use the word ”prime” to refer to an honest prime ideal.

For a given place w of K, there are two absolute values corresponding to w, denoted | - |,
and || - ||w, which will be of use. First, let v be the place of Q over which w lies (that is, pick
any absolute value corresponding to w, and let v be the place corresponding to the absolute value
induced by restriction to Q). If v is finite (say v corresponds to the prime number p), then we have
the canonical absolute value | - |, on Q given by |z|, = p~°"4»(*). Otherwise v corresponds to the

canonical archimedean absolute value on Q. Either way, let |- |, denote the canonical absolute value



on Q. It is then trivial to verify that the product formula
H 2]y =1
v

holds for any = € Q* (v running through all the rational places, i.e. the places of Q). Note that
this is a finite product. For the completions Q, C K,,, the absolute value | - |, on Q, will extend
uniquely to an absolute value | - |,, on K,, by the formula
o
|2l = [Nop o ()]
where we write N,,/, to denote the local norm Nk, /q,. Restricting |- |, to K gives us an absolute
value on K corresponding to the place w. But of course this is seldom the only absolute value on
K which extends | - |,.

On the other hand, we can scale | - |, to obtain an absolute value || - ||, for which the product
formula holds for K. We do this by setting ||z||, = |x|£,{(w:@“}, where v is the rational place over
which w lies. We know that for a given rational place v, the norm Nk q is the product of the local

norms N, /,. Thus as w runs through all the places of K, v runs through all the rational places,

Tl = TTTT lelle = [T T leltice-2

we have

v owlv v wlv
=TI 1Nuww@)lo =TT 1Nk/a(@)lo =1
v owlv v
In general, we will interchange valuations, places, and primes when the context is clear, for example
writing ord,, instead of ord, when p is the place corresponding to w, or writing || - ||, instead of
I M-

0.2 Nonarchimedean local fields

Let K be a field of characteristic zero. We say K is a local field if it is a topological field whose
topology is locally compact and not discrete. Necessarily then K will be isomorphic (as a topological
field) to R, C, or a finite extension of Q, for some prime number p. If K = R or C, then K is called
archimedean, otherwise nonarchimedean.

Let E be a number field, and K a finite extension of Q,. We can imagine all the number fields
to be contained in a fixed algebraic closure Q of Q, and also imagine all p-adic fields to be contained

in a fixed algebraic closure Q, of Q,. We can also fix a canonical isometric embedding Q — Q,.

Proposition. Every finite extension K of Q, is the completion of a number field E, and further-
more E can be chosen so that [E : Q] = [K : Q,].



Proof. (Sketch) Let K = Qp(«), with f the minimal polynomial of o over Q,. Approximate
the coefficients of f closely enough (p-adically speaking) by a polynomial ¢ € Q[X], and it will
follow that there exists a root § € C, of g such that K = Q,(8) (Krasner’s lemma). Since
[K : Qp] = deg(f) = deg(g), it follows that g is irreducible over Q,, hence over Q.

Since g is irreducible over Q,, this tells us that if b € Q is any root of g, then p has only one
prime ideal p lying over it in E := Q(b) (see the appendix on topological tensor products). Thus
the p-adic absolute value on Q extends uniquely to a p-adic absolute value on E. Now the map
b — [ gives an isometric Q-embedding of E into C,, and the completion of this field with respect
to the p-adic absolute value is exactly Q,(8) = K. O

Note that different embeddings of different number fields into C, are in general not compatible
with each other (except for a given number field and the canonical embedding Q@ — Q,,), and the
specific embedding is rather arbitrary. In this case, for example, there could be several roots 3, b to
choose from. Also a given p-adic field could be the completion of infinitely many distinct number
fields in the sense above, and an arbitrary number field admits several different topologies coming
from the p-adic absolute value, one for each prime lying over p.

However, for every finite extension of local fields K’/ K, one can argue as above that there exists
an extension of number fields E’/E, as well as an extension of places w/v, such that (in the sense
of the proposition) K’ is the completion of E’ with respect to w, K is the completion of F, with

respect to v , and the diagram

E - K
@] U
F - K
@] U
Q -

commutes. So the point of the above proposition is not to view local fields as being canonically
induced by global fields; rather, it is to permit the use of global machinery in the investigation of
local phenomena.

Let O be K’s ring of integers, with unique maximal ideal p, and let 7 be a uniformizer for K
(p =70). Let |- | =] - |, denote the p-adic absolute value, uniquely extended to K.

We state the following facts. Proofs can be found in any good book on algebraic or p-adic

number theory.

e Two open balls in K are either disjoint, or one contains the other.

e Given z € K,r > 0, if |y — x| < r, then the ball with center x and radius r is the same thing

as the ball with center y and radius r.

e Every open set in K is a disjoint union of open balls.



Open balls are also closed, and moreover compact. Hence K is locally compact.

e (O is the unique maximal compact subgroup of K with respect to addition. O* is the unique

maximal compact subgroup of K* with respect to multiplication.

p’, that is the ball of center 0 and radius |7ri|p, is a compact open subgroup with respect to
addition, and these subgroups form a fundamental system of neighborhoods of 0 (any given

neighborhood of 0 will contain p for sufficiently large 7)

1+ p?, that is the ball of center 1 and radius |7ri\p7 is a compact open subgroup with respect

to multiplication, and these subgroups form a fundamental system of neighborhoods of 1.

Most of the above properties are straightforward to prove. For example, the topological proper-
ties of 1+p° follow from those of p?, since the map x +—+ 14z is a homeomorphism of these subspaces.
To show that 1 + p? is closed under inverses, one need only observe that if 1 + z7’ is a member of
this set, then its inverse is the infinite sum 1 — z7? + 2272 — ... with —a7® + 22722 — ... € p’.
This series converges because |z7’|, goes to 0.

We also state, but do not prove, a general version of Hensel’s lemma (again, see any good number
theory textbook).

Hensel’s lemma. Let K be a p-adic field with absolute value | -|. Suppose f € O[X],a9 € O, and
|f(ao)] < |f'(ao)|?. Then there is a unique root a € O of f such that

f(ao)
f'(ao)?

Corollary. Let m € N. There exists a 6 > 0 such that for any u € OF satisfying |u— 1| < §, u has

la—ao| <| <1
an mth root in O*.
Proof. Apply Hensel’s lemma with f(X) = X™ — v and ag = 1. O

Let K'/K be an extension of p-adic fields with primes p’,p. We regard the residue field Ok /p
as a subfield of Ok /p’, and denote the index by f = f(p’/p). Usually, p will not remain prime in
Ok, but will be a prime power. Let e = e(p’/p) > 1 be the number for which pOg = p’c. We call

e and f the ramification index and inertial degree. We always have
ef = [K': K]

For a tower of fields, both ramification and inertia are multiplicative. We call K'/K unramified
if e = 1. Let b run through all the elements of Ok such that K’ = K(b), and let g, € Ok [X] be



the minimal polynomial of b over K. The different is the ideal
I(K'JK) = g,(b)Ox
b

of Okr. Actually, there always exists a by among the b such that Ox = Oklb], so Z(K'/K) =
91/70 (bo)Ok. The different is all of Ok if and only if K’'/K is unramified.

Let us briefly describe unramified extensions. There is a unique unramified extension of K of
each degree, and these extensions are in bijection with the extensions of the residue field Ok /p. If
K'/K is unramified, then it is Galois, and the Galois group is isomorphic to the Galois group of
the extension of residue fields. In particular this group is cyclic. If E/K is finite, then EK’'/E is

unramified. Hence a compositum of unramified extensions is unramified.

0.3 Number Fields

Let L/K be a finite extension of number fields. If p is a prime of K, then the ideal in Oy, generated
by p will be a product of primes

pOL:ngl"W@;gaei >1

where Y, ..., &, are all the primes lying over p. If v is the place of K corresponding to p, and
w; is the place of L corresponding to &2, then wy, ..., w, are all the extensions of v to L. The number
e(Z;/p) = e; is called the ramification index of &; over p, and f(Z;/p) = fi :=[On/ P : Ok /]

is called the inertial degree of &; over p. We always have
[LK] :€1f1+°"+egfg

We call a prime &; ramified over K if e(27;/p) > 1, otherwise we say it is unramified. We call
p ramified if some prime lying over it is ramified. If L/K is Galois, then e; = ¢; and f; = f; for all
i,j, so we just write the above formula as [L : K| = efg.

Let & | p be an extenion of primes, corresponding to an extension of places w | v. If
Ow, Oy, Py, p, are the completions of Op, Ok, 2, p with respect to w and v, then ramification

and inertia are unchanged after completion. We have
e(Lw/Kv) = e(e@w/Pv) = e(gz/p)

and the residue field extensions O,,/ 2., over O, /py; (O1) %/ P(OL) 2 over (Ok),/p(Ok),; and
O /2 over Ok /p are all isomorphic to each other. Thus

f(Lw/Kv):f(@w/pv):f(‘@/p)



The different ideal Z(L/K) of L/K can be defined in exactly the same way as in the local

case. One can show that global different is in a sense the product of the local differents:

PL/K)y =[] 7t 70w/

wlv

Thus a prime of L divides the different if and only if it is ramified over K. The discriminant of
L/K is the (ideal) norm of the different N, /x(Z(L/K)). A prime of K is ramified in L if and only
if it divides the discriminant.

Now assume L/K is Galois. The Galois group of L/K acts transitively on the places (or the
primes in the finite case) lying over any place of K (or prime of K). If p is a prime of K, and & is a
prime of L lying over p, the decomposition group Gal(L/K) g of 2 is the set of o € Gal(L/K)
for which ¢ & = £.

Assume L/K is abelian (that is, Gal(L/K) is abelian). The abelian case is what class field
theory is all about. Then the decomposition groups Gal(L/K)g : & | p are all the same, so we
just refer to all of them as Gal(L/K),, the decompositon group of p.

We have a homomorphism
Gal(L/K)p — Gal((Or/2)/(Ok /p))

(the choice of & | p doesn’t matter; the residue fields are all isomorphic) given by o — &, where
o(r+ ) =o(x)+ <. This is well defined. The kernel of this homomorphism is called the inertia
group. Let Z,T be the fixed fields under L of the decomposition and inertia groups, respectively.
We call Z, T the decomposition and inertia fields, respectively. Since Gal(L/T) C Gal(L/Z) =
Gal(L/K),, we have Z C T. When we factor pOr, as a product of prime ideals:

$OL = P 2

there are three things happening which we seek to understand: the ramification e, the inertia f, and
the number of primes g lying over p. They are related and balanced by the formula [L : K] = efg.

The decomposition and inertia fields allow us to isolate each of these constants.

Proposition. (i) The index of the decomposition group Gal(L/K), in Gal(L/K) is the number of
primes lying over p. The index of the inertia group in Gal(L/K), is the ramification index of p.
(i) The decomposition group, Z, is the unique mazimal subfield of L/K in which p splits com-
pletely. Here p has ramification index and inertial constant one in Z/K.
(iwi) If P is a prime of Z lying over p, then there is only one prime R of T lying over p. Here p
is unramified and with inertial degree [T : Z] = f(P2/p), where & is any prime of L lying over p.
(iv) If B is any prime of T lying over p, then there is only one prime & of L lying over ‘B.



Here B has inertial degree one and ramification index [L : T] = e(Z/p).

Thus all the splitting of p happens in the extension Z/K, all the inertia in T/Z, and all the
ramification in L/T. Almost all primes p are unramified in L, so most of the time we will have
T=L.

We should also mention the connection of the decomposition group to the local fields. If w/v is
an extension of places of L/ K, then the decomposition group Gal(L/K), is 'really’ the Galois group
of L,,/K,. Every K-isomorphism of L in Gal(L/K), will extend uniquely to a K,-isomorphism of
L., and every such isomorphism of L,, is obtained this way.

Last we mention the Frobenius. We are still assuming that L/K is abelian. If p is a prime of
K which is unramified in L, then the decomposition group of p is isomorphic to the Galois group
of residue fields. Now the Galois group of a finite extension of finite fields is cyclic, and it has
a particularly nice generator, called the Frobenius element. The element o of the decomposition
group corresponding to that generator is also called the Frobenius element. It is the unique element
of Gal(L/K) with the following property: for any prime & of L lying over p, and any = € Op, o
has the effect

o(z) —2N?  (mod 2)

Here Np is the norm (cardinality of the residue field Ok /p).

0.4 Cyclotomic extensions of Q

We will discuss some properties of cyclotomic extensions which will be used later. Let m be an
integer, and ¢ = (,,, a primitive mth root of unity. The field K := Q(¢) is called the mth cyclotomic
extension of Q. The extension K/Q is abelian with Galois group isomorphic to (Z/mZ)*. The
isomorphism is the following: an integer a, relatively prime to m, is associated with the map
(€~ ¢,

The ring of integers of K is Z[(]. A prime p of Q ramifies in K if and only if p divides m. If
p is unramified, then the Frobenius element at p is the map ¢ — ¢?. It follow that for p t m, the

inertial degree of p is the multiplicative order of p modulo m.

Let K be any number field. A fundamental problem in algebraic number theory is the following:
given a Galois extension L of K, produce an algorithm which determines how primes of K split in
L. Class field theory more or less solves this problem for L/K abelian. That is, the main result
of class field theory implies the existence of such an algorithm for any given abelian extension.
Actually producing the algorithm is another problem entirely; conceivably one could do this by
following the proofs in Section 4, but this would in general be a computational nightmare.

For the special case K = QQ, we can already describe how prime ideals split in abelian extensions

if we assume the Kronecker-Weber theorem (which will be a corollary of the main theorems of class



field theory). The Kronecker-Weber theorem says that every abelian extesion of Q is contained in
a cyclotomic extension. If L is an abelian extension of Q, we can describe how primes split in L as

follows:

1. Find (somehow) an integer m such that L C Q((), where ( is a primitive mth root of unity.

2. Determine how the prime divisors of m split in L on your own. Don’t complain, there are

only finitely many of them.

3. Identify Gal(Q(¢)/Q) with (Z/mZ)* in the natural way, and under this identification regard
H := Gal(Q(¢)/L) as a subgroup of (Z/mZ)*.

4. For any prime number p not dividing m, let f be the smallest number for which p/ € H.

Then p splits into @ primes in L.

0.5 Haar measures on local fields

If G is a locally compact topological group (which we will always assume to be abelian and Haus-
dorff), then G admits a translation invariant Radon measure, called a Haar measure, which is unique
up to scaling. For an introduction to locally compact topological groups, see the first chapter of
Fourier Analysis on Number Fields by Ramakrishnan and Valenza. For more on the Haar measure,
see the appendix.

Let us deduce the Haar measures on several locally compact groups. First we consider the
additive locally compact groups R, C, and finite extensions of Q,. All these groups can be realized

as a completion K,, where K is a number field and v is a place of K.

First let v be finite. Then O, is a compact subgroup of K,. Therefore, there exists a Haar
measure (i, on K, for which p, (0,) = 1. If p = p,, is the unique maximal ideal of O, with generator
7 =m,, and k > 1, then [0, : p¥] = (N'p)*.

Thus O, is the disjoint union of (Mp)* = W cosets a+p¥, all of which have the same measure

by translation invariance. Therefore p, (p*) = ‘Zj\;f)‘,;) = W = ||7*||,. Similarly when k < 0, the
fractional ideal p* is the disjoint union of (Mp)~* = ||7*|| sets of the form a + O, for a € K,,. To
see this, use the fact that every element of p* can be uniquely written as apm® + app 78+ + -+,
where a; are a distinct set of coset representatives for O, /p. Thus the Haar measure of p,, is still
equal to ||7||%.

What we have just shown is that for any x € K

fio (£Oy) = ||| |o 10 (On) = ||2]]

10



We contend that p,(xE) = ||z||opw (E) for any x € K and any measurable set E. To see this, fix x
and define a new Haar measure A on K, by letting A(E) = p,(zE) for any p,-measurable set E (it
is not too difficult to see that A is indeed a Haar measure from the fact that p, is a Haar measure).
By the uniqueness theorem for Haar measures, there exists a p > 0 such that A(E) = pu,(E) for

all measurable sets F. But we can compute

MOy) = o (0y) = [|2[|opto (Oy)

and by uniqueness we get p = ||z||,. Thus

to(2E) = ME) = ppo(E) = |[][opy (E)

If K, =R, then the Haar measure ., is just a scale of the Lebesgue measure on R. Normalize
y to be the actual Lebesgue measure, so p,[0,1] = 1.

If K, = C, then p, is again a scale of the Lebesgue measure, this time on R x R. Normalize p,
to be twice the ordinary Lebesgue measure here.

Note that for v complex, [K, : R] = 2, so ||a + bi||, = a® + b%. By the way we have chosen the
Haar measures p,, and the absolute values || - ||,, we see that for any place v, any x € K and any

measurable set E C K, :
to(2E) = |[z]|opn (E)

This will be important later when we introduce the ring of adeles.

11



1 Adeles and Ideles

1.1 The direct limit topology

Let S be an ordered set, with the property that for any x,y € S, there exists a z € S such that
z > x and y. Let also X be a set, X5 : s €S a collection of subsets of X. Assume that:

e FEach X is a topological space.

e 51 < s9if and only if X, C X,,, in which case the topology on Xj, is induced by that of X,
(that is, the open sets of X, consist of all intersections V' N X, , where V' is an open set of
Xsy)-

e X = X;

sES

We will then define a topology on X, by saying that V' C X is open in X if and only if V' N X

is open in X for each s € S. We call this the direct limit topology, and write X = lim X to

refer to X as a topological space.

Lemma 1. Let Y be another topological space, and f : X — Y a function. Then f is continuous

if and only if fix, : Xs =Y is continuous for all s € S.

Proof. Let U be any open set of Y. To say that f|x, is continuous is to say that f‘}lq (U) is always
open in X;. But fl}ls(U) = f~YU)N X, and f~1(U) is open in X if and only if f~1(U) N X is

open in X for all s € S. So the assertion is obvious. O

Proposition 2. If each X, is open in X, then the topology on Xy is induced by the topology on X .
Otherwise, the topology on X5 may be finer than the topology thereon induced by X .

Proof. Consider the topology on X, induced by X. If U is an open set of X, then U N X is open
in X, for all s’, in particular for s. So, the existing topology on X, is no coarser as fine as that
induced by X.

Suppose that X, is open in X for all s’. Let V be an open set of X;. We claim that V = UNX,
for some open set U of X. Of course, it is sufficient to show that V itself is open in X, i.e. VN X,
is open in X, for all s’. To do this, let s” be a member of S which is > s and s’. Then V = W N X,

for some open set W of X . We have
VNnXy = (W ﬂXs//) n (Xs/ N XS//)

where W N X4 and Xy N X4 are both open in X,. Thus VN X, is open in X/, as required. [

Under the assumption that each X is open in X (which is not always true), we have that direct

limits commute with direct products.

12



Proposition 3. Suppose each X, is open in X. Let X1 be the set X x X endowed with the product
topology, and Xs the topological space lim X X X, where each X x X is given the product topology.

Then X1 = X3, as sets and topological spaces.

Proof. First let’s establish that X; and X5 are the same set:

X1:(UXS) X (UXS)

seES seS

X, = U X, x X,
seS
It is clear that Xy C X;. Conversely let (a,b) € X; with, say, a € X, and b € X,,. Then there is
a set X, containing X, and X,,, so (a,b) € X, x X, C Xo.

Now let O C X x X be open in X;. To show O is open in X5, we may assume that O is equal
to a product A x B, where A, B are both open in X (for O is a union of such things). To show
that O is open in Xo, we must show that O N (X x X;) is open in X x X for each s. But the
intersection of O = A x B and X, x X is just AN X x BN X, which is open in X, x X, as a
product of open sets.

Conversely suppose O is open in X3. So O N (X, x X;) is open in X x X for each s. So this
latter intersection is a union of products A x B, where A, B are open in X. But since X, is open
in X, so are A and B. So ON (X, x X;) isopen in X x X = X;.

Finally since X x X = |J X, x X, we have that
sES

0=Jon(X,xX,)
seS

So O is open in X;. O
We will assume from now on that each Xy is open in X.

Corollary 4. Suppose X is a group, with each X a subgroup. If each X is a topological group,
i.e. the mapping Xs x X5 — X5 given by

(z,y) > zy~"

s continuous, then X will also be a topological group.

Proof. This follows from Proposition 3 and Lemma 1.
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Recall that a topological space is locally compact if every point therein has a compact neighbor-
hood. R, C, @, are examples of locally compact spaces. A finite product of locally compact spaces

is locally compact (hence so is any finite extension of Q).

Lemma 5. If K is a compact subset of X, then it is also a compact subset of X. Also if each X,

1s locally compact, then so is X.

Proof. We assumed that X, was open in X, so X, inherits the subspace topology from X by
Proposition 2. Compactness does not depend on the ambient space, so K being compact in X
means that it is also compact in X. So a set O C X is open, or compact, in X if and only if it is
so in X. From this observation the second assertion is obvious.

O

We will now describe a slightly more concrete scenario of which the preceding theory is a

generalization. Let G, : v € T be a collection of topological groups. Then the product

9 =1]G.

veT

will also be a topological group. Let us assume that the G, are also locally compact. However,
even with this assumption ¢ will not be locally compact in general: a product of topological spaces
[1X; is locally compact if and only if each X; is locally compact and all but finitely many X; are
compact. Our goal will be to identify a certain subgroup of ¢ and place upon it a topology which
is locally compact.

Suppose the indexing set T is equal to a union A U B, where B is finite, and H, is a compact

open subgroup of G, for each v € A. For a finite subset S C T containing B, let

(;S:: I]:G% II-Hb

veS vgS

Then Gg in the product topology is a locally compact topological group by the criterion we just
mentioned. If we let S be the set of subsets S C T which contain B, then we define

G=|]JGs

Ses

and we give G the direct limit topology. So G consists of those (z,) € ¢4 for which z, € H, for all
but finitely many v.

Proposition 6. Each Gg is open in G. Hence G is a locally compact topological group.

14



Proof. Let S’ be another member of S. We want to show that Gg N Gg is open in Gg/. We have

GsNGg = H G, H H, H H, H H,

vESNS’  weS\S  veS\S'  vgSUS’

which differs from Gg/ only where v € S\ S, in which place we have H, instead of G,. But H, is
open, so Gg NG is a product of open sets, almost all of which are not proper, so this intersection

is open in G/ under the product topology. O

We finally make the observation that the map 7 : G, — G, which sends an x to the element
whose vth place is z, and all of whose other places are the identity, is a topological embedding. By
this I mean it is a group monomorphism whose domain is homeomorphic to its image. Furthermore
the image of 7 is closed in Gg. This is obvious, because if S = {v} U B, then Gg contains a home-

omorphic copy of G, as a closed subgroup.

The discussion above has the following application to number theory. Let K be a finite extension
of Q, with ring of integers O. A place of K is an equivalence class of absolute values on K, two
absolute values being equivalent if they induce the same topology on K. We may identify each
place with a choice of absolute value v of which the place is an equivalence class. We will call a
place finite if it is nonarchimedean. There is one place for each prime of O. Otherwise we will call
the place infinite, in which case it is induced from a real or nonreal-complex embedding of K (and
is called real or complex respectively).

If v is a finite place, denote by K, the completion of K with respect to v. If v is real or complex,
then K, will mean R or C. In any case K, is a locally compact group with respect to addition. If
v is finite, let O, be the completion of O with respect to v; it is a compact, open subgroup of K.
All this was described in more detail in the introduction.

We may analogously consider the operation of multiplication: K is a locally compact topolog-

ical group, and for v finite, O} is a compact open subgroup of K.

Let S be a finite set of places of K which include the infinite places (of which there are at most
[K : Q), the collection of which we denote by S ). Let S be the set of all such S.

For each place v, we take G, = K,, and H, = O, when v € So,. We define the set Ag of
adeles to be the direct limit G as defined above. So

Ak =] A%
Ses
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where we set

Airiicbf: II-R% II(OU

veS vgS
On the other hand, we can let G, = K}, and H, = O} when v is finite. We define the set Ix of

ideles to again be the direct limit with the G, so defined. So

Ix = |J 1%

Ses

where
1% = [ &[] o;
veS ¢S

Thus Ak is a topological group with respect to addition, and I is a topological group with
respect to multiplication.

A topological ring is a ring with a topology with respect to which addition and multiplication
are continuous. For example, K, is a topological ring, and so is O, for v < oco. Any product
of topological rings is a topological ring in the product topology. Unlike topological groups, we
usually do not care whether or not the ring is Hausdorff or not. But we will not encounter any

non-Hausdorff spaces in these notes anyway.

Lemma 7. Multiplication is a continuous function Ag X A — Ax. Hence Ak is a topological

ring.

Proof. For each S (containing the infinite places), Af( is a topological ring in the product topology,
so the multiplication function A%- x A%, — A% is continuous. And A%, being open in A, inherits
its topology from the subspace topology of Ax (Proposition 2). Thus multiplication is a continuous
function

AT x AT — A — Ag

Since this map is continuous for each S, and Ax x Ak is topologically the direct limit of the spaces
A% x A% (Proposition 3), our conclusion follows from Lemma 1.
O

Many topological properties from A7 and I3 are transferred to their respective direct limits. But
direct limits in general do not preserve topological interactions between these sets. Algebraically,
each ]If( is the group of units of A%, and therefore I is the group of units of A . However, while it
is true that Hf{ inherits its topology as a subspace of Af{ (for both spaces are taken in the product
topology), it is not true that the topology of Ik is the subspace topology from Ag. Moreover, ]I%

is open in Af( (each multiplicand is open), but I is not open in Ag.

16



There is a more natural way to see the idelic topology as a natural consequence of the adelic.
Let j : I — Ag x A be the injective function z + (z,271), and T the image of [ under j. Then
T inherits the subspace topology from Ax x Ak (taken in the product topology), which induces a
topology on Ik.

Proposition 8. This topology is the same as the direct limit topology on I .

Proof. Let Z; denote the ideles in the direct limit topology, and Z5 the ideles in the topology we
just introduced above. Remember that Ax x Ag is the topological direct limit of the products
AT x A%

Let M C . If M is open in Zy, so is M1 (Z; is a topological group, inversion is a homeo-

morphism), so M N1 is open in I3 for each S, and so is M ~'. Hence
(M x M~ )N (15 x1%) = (M NI5) x (M~'nI¥)
is open in I3 x 9. But I3 is open in A%, so
(M x M~ N (A% x A%) = (M NAg) x (M~ NAY)

is open in A7 x A-. Hence M x M~! is open in Ax x A, giving us that (M x M~1)NT = j(M)
is open in T. Thus M must be open in Zs.

For the converse, observe that the map x — (z,x7!) is a continuous function I3, — T3 x I3,
since it is continuous into each component. We have inclusions in the subspace topology ]If( X ]If( C

A% x A% C Ak x A, so we really have described a continuous function
]Ii — AK X AK

This is continuous for each S, so the same function Z; — Ag X Ak is continuous. The image
of this map = — (z,27!) is T, and by the very definition of T the inverse map T — Z, is a

homeomorphism. Thus the identity map on Ix is a continuous composition
Z1 — 1T — ZQ

which shows that the open sets of Zs are contained in the open sets of Z;.
O

The above characterization of the idele topology is inspired by the more general situation of
a (commutative) topological ring R with group of units R*. Even though the multiplication is a

continuous function R* x R* — R, inversion z — z~! need not be continuous. The topology on
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R* resulting from the inclusion R* — R x R,z + (2,2~ 1) is such that multiplication and inversion

are continuous in R*.

1.2 Algebraic and Topological Embeddings

Each Af{ is an open, hence closed, subgroup of A . Thus a subset E of Af( is open, or closed, there
if and only if it is the same in Ax. Remember also that properties like compactness, discreteness,
and connectedness do not depend on the ambient space: if E is a compact, discrete, or connected
etc. subset of A%, it is also a compact, discrete etc. subset of Agx. The same principle holds for

ideles, since Hi is an open, hence closed, subgroup of Ix.

Lemma 9. The diagonal embedding
K — [ K.
v

maps K into Ak, and is a ring monomorphism. The image of K is discrete in the adele topology.
Similarly we have a diagonal embedding K* — I which is a group monomorphism. The image of

K™ is discrete in the idele topology.

Proof. For 0 # x € K, we know that x is a unit at almost all places. So it is clear that the diagonal
embeddings send K (resp. K* = K \ {0}) into the adeles (resp. ideles).

Let T be the image of K under the diagonal embedding. To say that 7' is discrete means that
for any « € T, the singleton set {z} is open in T, i.e. there exists a neighborhood V of z which

does not contain any other element of T. We do this first when x = 0. Let

V= HBU(O,%) II o.

v|oo V<00

where B, (0, %) is the ball of center 0 and radius % in K,. Clearly V is open in A}g(w, hence in
Ag, and is a neighborhood of 0. And V' cannot contain any other element 0 # y of K, since then
[Tyl is strictly less than 0, and it is supposed to be 1.
: So V' is a neighborhood of 0 which does not contain any other elements in the image of K. Since
A is a topological group with respect to addition, proving the case £ = 0 implies the result for
all : if x is any element of K, then x + V is a neighborhood of z which is disjoint from all other
y e K.

Thus the image of K under the diagonal embedding is discrete in Ax. The argument for ideles

is almost identical, just use x = 1 instead of 0.
O

Warning: the diagonal embedding of K into Ak is not really a diagonal embedding, if at the
infinite places we identify K, as a subfield of C. For example, if K = Q(v/2), the embedding of K
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into C are given by the inclusion map and the map v/2 — —v/2. We would inject 1 + v/2 into the

adeles as

(1+vV2,1-vV2,1+V2,14+V2,..)

From now on we will usually identify K (resp. K*) with its image in Ax (resp. Ix). In particular
K and K* will be taken as topological groups in the discrete topology, unless otherwise stated.
Since K* is a discrete subgroup of I, it is closed, so the quotient Cx := I /K* is a topological
group. We call C'x the idele class group.
For z € [[ Ky, let a, denote the vth component of z. If 2 € I, then z € ]If( for some S, and

hence ||2,]|]» (or just ||z||,) is equal to 1 for almost all v, i.e. all v ¢ S. Thus
]| = [T .

is a finite product, which we call the idele norm of z. Since each map || — ||, : K, — R is
continuous, so is the idele norm on Hf{ as a finite product of continuous functions. Thus the idele

norm on I is continuous (Lemma 1). We let
I ={z clg:||z|]| =1}

which is a closed subgroup of I, since it is the preimage of the closed set {1}. By the product
formula, K* is contained in I}, so I} is a saturated closed set with respect to the quotient I —
Ix/K*. Thus C} =1} /K* is a closed subgroup of Cf.

Lemma 10. I} is also closed as a subset of the adeles.
Proof. Let a € Ak \ Ik.. We must find a neighborhood W of o which is disjoint from Ik-.

Case 1: []||el]» < 1.

The set S consisting of archimedean places as well as those v for which ||a,|| > 1 is finite.

Adjoin finitely many places to S to ensure that [] ||e|l, < 1. For € > 0 and small, let W, = {x €
vES

w=][[w.[]o.

veS vES

K, : ||z — ay||y < € and define

Then W is a neighborhood of o, and as long as € is chosen small enough, we will have []||8]], < 1

for any 5 € W.
Case 2: []||a|]» > 1.

Let C =[] |le]o- I claim all but finitely many places v satisfy the following property: if z € K,

and ||z]|, < 1, then ||z||, < 5. This is true because for p, lying over p, we have |[z||, < 1 implies

l|z]]o < [Ipllo = [p/®/P)|, < %, and there are only finitely many prime numbers p satisfying zl) > %
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So, take S to include all the archimedean places, all those places v for which |||, > 1, all

those places for which ||a||, < 1 (there must be only finitely many, otherwise [] |||, converges to
v
0) and all those places which do not satisfy the property we just mentioned. For small € > 0, set

Wy, ={z € K, : ||z — ayl||, < €}, and define

W]::II‘MG)II(OU

vES vgS

just as we have above. Then W is a neighborhood of «, and as long as € is small enough, we can
ensure that any § € W will have [] |||, # 1. As long as we choose € to be very small, if 3 € W

and ||B]]l, = 1 for v € S, then [] |||l = I[1118]l» will be strictly between 1 and 2C.
vES v

On the other hand, if 8 € W and |||y, < 1 for some vy & S, then ||B|]y, < 55, S0

1
< — 20=1
IZIIIBHv < IIBIIUOE\IBIIU <5520

O

Suppose C, X, Y are subsets of a set Z, and C' is contained in both X and Y. If X and Y are
topological spaces, when is the induced topology on C from Y finer than the induced topology from
X? By the definition of the subspace topology, this happens if and only if for any open set W of
X, there exists an open set V of Y such that VN C = W N C. An equivalent and more easily
applicable condition is that for any open set W of X and any a € W N C, there exists an open
neighborhood V' of a such that VN C C W.

Lemma 11. The subspace topologies which 1% inherits from the ideles and the adeles are the same.

Proof. Let W be an open set of the adeles, and o € W N1T}. To show that the idele topology
on IL is finer than the adele topology, we must find an idele-open neighborhood V' of « such that
V NI CW. Actually, we will just find a V so that V C W.

Now ||al|, = 1 for almost all v, say all v € S. Any neighborhood of « in the adele topology

contains a neighborhood of the form

w' =[] w. [] 0.

veS vgS

where W, is a neighborhood of «,, not containing 0. We may suppose S contains all the archimedean
places; if not, it is fine to shrink W’ further. But then W’ contains

ve=][[w. []o;

vES vgS
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which is an open neighborhood of « in the idele topology.

Conversely suppose V is open in the ideles, and o € V N1IL. To show that the adele topology
on I}, is finer than the idele topology, we must find an adele-open neighborhood W of « such that
Wnlj CV.

Now V contains an idele-open neighborhood of « of the form

v =][E []o;

veS  vgS

where S contains all the archimedean places as well as all those places v for which «,, € O}, and
E,={z e K,: ||zt — v <€}

where € > 0 is very small. In order for V' to be open in the ideles, ¢ would in any case have to be

small enough to exclude 0 from E,. We can also make e small enough so that for any g € V/,
| RIEE
vES
is extremely close to 1 (as close as we like). Let
w=]]E. ][]0
veS vgS
11

5, g’ ceey
hence the absolute values ||z||, for v finite and = € p,,, are bounded away from 1. We can use this

so W is an open set of the adeles containing cv. Now the reciprocals of the prime numbers

fact to argue that if € is chosen small enough, then W N1} C V’. For suppose 8 € W NIk. To

show 8 € V', we have to show that 8 € O} for v ¢ S. Already [] [|8]|» is extremely close to 1. If
veES
vo & S is a place for which 8,, € O; (which means 3,, € Pu,), ||8]ls, Will be small enough so that

[1Blve -+ IT 118llv, and hence ||B8]| (for |||, < 1 for all v & S), is strictly less than 1.
veES
O

We define the S-units, Kg, to be the group of x € K* which are units at all v ¢ S. In particular
Kg_ = OF. Identifying the elements of K* as ideles, we have Kg = ]I;g{ N K*. Since K* is discrete,
so is Kg, so Kg is closed. Hence H%/KS is a topological group. Also

It ={w € IF : ||2l] = 1} = I NIk

is closed (in I3, I, same thing) and contains Kg, so Hf(’l/KS is a closed subgroup of I3, /Kg.
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Lemma 12. There are embeddings of topological groups
I3 /Kg — I /K*

1/ Kg — Tk /K
where the image of the group on the left is an open and closed subgroup on the right.

To prove the next proposition, we will rely on some technical details of direct limits, which we

leave as exercises:

Exercise: Suppose X = lim X in the sense we defined earlier, and §; € S. Find a sufficient

s€
condition for which we still have X = lng X,.
SEST

Exercise: Let X = hem XY = ll€H71_Y;5, and assume each X, Y; isopenin X,Y. Let 7: S — T
be an order preserving bijection, and f : X — Y a function such that for each s the restriction
Xs — Y;(s) is a homeomorphism. Show that f is a homeomorphism. If the X,,Y;, X,Y are all
topological groups, and each fx, is a topological group isomorphism, show that f is as well.

Theorem 13. Let L be a finite extension of K. There is an isomorphism of topological groups

ﬁAK —)AL

i=1
n
where n = [L : K]. Under this isomorphism [[ K corresponds to L.
i=1
Proof. Let Sy be a finite set of places of K, containing all the archimedean ones. Then one can
argue, as in the first exercise, that Ag = Shjrg A%.. Proposition 3 extends to finitely many products,
=20

giving us
n n
T s
H A = hén H A%
i=1 i=1

Here we are only taking those S which contain Sy. Given such an S, let T be the set of places of
L which lie over all the places in S. Again, we can argue that Ay = li%n A%. Fix a basis for L/K.

For each place of K, we know there is a homeomorphism (in fact, an isomorphism of topological

groups)
D, : HK =] Lw

wlv

which is defined using this basis. It sends H K to ] L. For almost all v (say, all those which are

=1 wlv
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not in Sp), restriction induces another topological group isomorphism

@v;ﬁ(f)vaﬂow
=1

wlv

(see the last part of the appendix on the topological tensor product). Now a collection of isomor-
phisms A; — B; induces an isomorphism on the product [ A; — [] B;, so we obtain a topological
group isomorphism

[T 1% I1 110~ IT Iz I1 ITo-

vESH i=1 ngO =1 weT u)|'u ng w|'u

The product topology is commutative/associative, so we have actually described an isomorphism

ﬁAi—H\xf

i=1

Our claim then follows from the second exercise.

1.3 Compactness theorems
Theorem 14. Agx /K is compact.

Proof. By Theorem 13 we have an isomorphism of topological groups

AQ@"'@AQ ~

A/K= 0e o0

Ag/Q® - Ag/Q
so it suffices to just prove the case where K = Q.
To do this, we let

where W is clearly a compact subset of Ag. We have a continuous composition W — Ag — Ag/Q,
so it suffices to show that this composition is surjective. In other words, given any adele o € Ag,
find an z € Q such that a —z € W.

For each prime p, o, € Q, can be written as a sum

ag a_q
7++7+a0+a1p+

p p

where a; € {0,1,...,p — 1}. If we let b, := %+...+%7 then ap — by, € Zy,.

Actually, b := )" b, is a finite sum, because «, € Z,, for almost all p, in which case b, = 0 from
P
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the way it is defined. And, for any prime number ¢, b, € Z, for every p # ¢ (because % will be a
unit). Thus b — b, € Z, for every p, and hence

|0‘p - b‘p = ‘(ap - bp) + (bp - b)‘p < Max{|ap - bp|pa |b— bp|p} <1
We have found a rational number b such that

a-beAy =Rx ][]z,
p

Let v be the unique infinite place of Q. The fact that [f%, %] has length 1 means that we can find
—3.3]. Since a, — b € Z,, for all p, so is a, — b —s. Thus

a—x €W, where z = b+ s. O

an integer s such that (a, —b) — s € |

Corollary 15. There exists a sequence of positive numbers d,, with 6, = 1 for almost all v, such
that A = W + K, where
W = H{x e Ky x|y, <8y}
v

Proof. Suppose by way of contradiction that W + K C Ak for every set W of that form. Then
7(W) = 7(W + K) is properly contained in A /K, where 7 is the quotient map Ax — Ax /K. We
can modify W to make it an open set: just replace < by < when v is an infinite place. Still we will
have m(W) C Ak /K. Furthermore, we can find a sequence of these sets W, say Wy C Wy C ---

for which

AK = U Wn

by increasing the d,, finitely many at a time. Hence Ax /K = |Jm(W,). And quotient maps of
n
topological groups are open maps, so we have produced an open cover with no finite subcover,

contradicting the fact that Ay /K is compact. O

The compactness theorem we just proved can be used to produce two powerful results. First,
there is another compactness result, this time for the ideles, which is equivalent to the classical
unit theorem. Second, there is the strong approximation theorem, which generalizes the existing
approximation theorem.

Let u, be a Haar measure on K,. As indicated in the introduction, it is possible to normalize
ty SO that py(zE) = ||||optw(E) for any 0 # 2 € K, and E C K, measurable. For example if v is
finite, all we have to do is normalize u, so that O, has measure 1. Since A is a locally compact
topological group, it also has a Haar measure y. It is possible to normalize p to be the product of

the local Haar measures, in the sense that if S is a finite set of places containing all archimedean

24



ones, and F, C K, : v € S is u,-measurable, then

/j'(H £, H Ov) = H Mv(Ev)

veES vES veS

It follows, by an identical argument as the one given in the introduction for u,,v < oo, that if
z € Ig and E C Ak is p-measurable, then p(zE) = ||z||u(E).

A complete justification for why p can be normalized as we have claimed would be too long to
include in this chapter. The approach we are familiar with depends on the Riesz representation
theorem and a special version of Fubini’s theorem. In the appendix on Haar measures, we sketch

the proof and give references on where to find more rigorous justifications of certain claims.

Lemma 16. (Minkowski-Chevalley-Weil) There exists a § > 0, depending only on the field K, such
that for any n € Ik with ||n|| > §, there exists an x € K* with |x|, < |ny|y for all v.

Proof. For an infinite place v, let U, denote the closed ball of center 0 and radius 1 in K,. Also let

M=1Juv. [T 0. € Ak
v|oo

<00

M is a compact neighborhood of 0, so there exists another compact neighborhood V' of 0 such
that V. —V C M, where V — V is the set of all possible differences v — v’ (see the appendix on
topological groups). Now K being discrete in Ak, let A be the counting measure on K. By the
theorem mentioned in the section on Haar measures, it is possible to choose a Haar measure fi on

Ak /K such that for any measurable function f : Ax — C

| fan= [ i

AK/K A

where

aeK

flat+K)= /f(a +a)ira) =Y fla+a)
K

Given this Haar measure, set
5= i(Ak/K)
wV)

Remember that V' and Ag /K are compact, so ¢ is finite and nonzero. We will prove the contra-
positive of our theorem: suppose 7 is an idele, but there is no x € K* with the property that
[|£]|» < ||n]|o for each place v. We will show that ||n|| < 4.

Now nM N K must be 0: for otherwise, there is a a € I, ||aw|| < 1 for each place v, and there
is an # € K* such that na = x. Then ||n,||, = || || ||2]|s > ||2||s, contrary to what we assumed

about 7.
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Also, given any a € Ak, there is at most one a € K such that o« +a € nV. For if a + a1 = nu;

and a + ag = nug for aj,as € K and vy,ve € V, then
as—a; = (a+a) —(a+a))=nlvy—wv)en(V-V)NKCygMNK =0

which implies a1 = as. If we set f : Ax — C to be the characteristic function of nV, this shows
that f < 1, where f is as we defined it above. Thus

V) =) = [ sdu= [ Jap< [ dn=pssc/x)
Ak Ak /K Ak /K
so ||n]] < 4, as required. O
Proposition 17. I}, /K* is compact, and so is Hf(’l/Ks for any S containing the infinite places.

Proof. The second statement follows from the first because ]If(’1 /Kg is homeomorphic to a closed
subset of I} /K*.

Take § as in the previous lemma, and fix an idele 5 for which ||n|| > ¢. Let
W= H{x € Kyt ||z[lo < [Inollo}

Then W is a compact subset of A, hence a compact subset of I by (?). Therefore W NIk is

compact, as a closed subset of a compact space. It is enough to show that the quotient map
W NIk — 1k /K*

is surjective. In other words, given ainl}, find an x € K* such that ax € W. Since ||n|| > d, so is
[la=1n||. The Minkowski-Chevalley-Weil lemma says there is an z € K* for which ||z||, < ||ag nu||v

for all v, which is exactly what we need. O

Theorem 18. (Strong approximation theorem) Let vy be a place. Given a finite set of places S not
containing vo, elements a, € K, : v € S, and € > 0, there exists an © € K such that ||a; — ||, < €
forve S and ||z||l, <1 forv g S and v # vp.

Proof. By Corollary (7), there is a sequence of positive integers J,, with §, = 1 for almost all v,
such that Ax = W + K, where

W= H{CE € Ky« ||zl[o < 6u}
Let n be an idele for which 0 < ||n,||, < 8, e for v € S, ||ny|ls < 0, for v & S and v # v
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(remember that 0, ! = 1 for almost all v), and |[7y,]]v, is very large. As long as |[7y,]]v, is large
enough, the norm ||n|| will be greater than the number § described in the Minkowski-Chevalley-Weil
lemma. So there will exist a A € K* such that ||A||, < ||n]|» for all v.

Now let a be an adele for which a, = a, for v € S, and a, = 0 for v € S. We can write aA™!
as f+bfor § € W and b € K. We claim that z := Ab does what is required. For v € S:

l|ay = zlly = [law — 2[[v = [[ABu]lo < [[A][o60 < (5;16)51) =€

and for v € S, v # vg:
llllo = [IABullo < [IAlludy < 8516, =1

1.4 The Unit Theorem

The Dirichlet unit theorem is a classical result which describes the structure of the group Kg. The
hardest part of the unit theorem involves calculating the rank of a certain lattice. The compactness
of Hf(’l /Kg is actually equivalent to the determination of this rank (some treatments of algebraic
number theory, e.g. by Neukirch, determine the rank first and use it to deduce compactness).

The proof of the unit theorem will rely on the following idea: if V' is a vector space over R, and
G is an additive subgroup of V', then G and V are topological groups with respect to addition. We
will be interested in looking at the subspace W generated by G, and in particular the vector space
(and topological group with respect to addition) V/W.

Let S = {v1,...,vs} be a finite set of places containing all the infinite ones, and assume v; is
infinite. Take the vector space R® in the product topology, so it is a topological group with respect
to addition. Let

H={(z1,...,z5) ER* 121+ - + 2, =0}

Then H is an (s — 1)-dimensional subspace of V: it has as a basis e; — e, e3 — €y, ..., €1 — €n,

where ey, is the vector whose ith coordinate is d;,. Now, define
5,1
oIy —R®

by the formula

v.)

O(zq,...,x5) = (log||x1]|vys -, log || 2]
By the product formula, it is clear that ® maps ]I}g(’1 into H.

Lemma 19. ® is continuous. Also, the subspace (that is, the R-vector space) spanned by the image
of ® is all of H.
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Proof. A map into a product of topological spaces is continuous if the corresponding map into each

component is continuous. In other words, we need to show that the mapping (z1, ..., zs) — log ||z;|

Vi
is continuous for each i. But we already know this to be the case. Thus ® is continuous.

We already remarked that the image of ® is contained in H, so all we have to do is find s — 1
linearly independent vectors in the image of ®. Let x € K be any element for which |[[z[|,, # 1.

Since vy is archimedean, we can find a y € K for which |[y[|,, = [|z[|;,}. Then

5,1
(x,1,...,y) € I
and this element is mapped by @ to

(log [|z[lv,,0; ..., 0, = log [|]v, )

This is just a scale of the basis vector e; — e, we mentioned earlier. Similarly we can find scales of
the vectors es — e, e3 — e, etc.in the image of ®.

O

Proposition 20. The image of Kg under ® is a lattice, and the kernel of Kg is the set of all roots
of unity in K.

Proof. We first make the following claim: if N,n > 1, there are only finitely many algebraic integers

x for which:

e The minimal polynomial of z over Q has degree < n.

e |o(z)| < N for all embeddings of K into C.

For if x is such an algebraic integer, and p is its minimal polynomial of degree, say, t < n, then
the coefficients of u, being symmetric functions of o(z), will also be bounded in terms of N. For
example, the next to leading coefficient of u is the trace of z in Q(z)/Q, and this is bounded in
absolute value by ¢t - N <n - V.

Also, the coefficients of these minimal polynomials are rational integers. Thus there are only
finitely many minimal polynomials to consider, hence only finitely many algebraic integers which

satisfy the given description. This establishes the claim.

Remember that the canonical absolute values || - ||, induced by infinite places v are directly
carried from the embeddings of K into C.

Now to show that the image of K is a lattice, it suffices by (?) to show that if D is a bounded
subset of R*, then ®(Kg) intersects D at only finitely many points. We will actually show something

stronger: that only finitely many points of Kg map into D. Since D is bounded, there exists an
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M > 0 such that |z;| < M for all (z1,...,25) € D. Now if ®(z) € D for some = € Kg, then
log ||z||,, < M for all 4, and hence ||z||,, < eM. In particular this holds for the archimedean places,
so we see there is an N > 0 such that |o(z)| < N for all embeddings o : K — C.

And the minimal polynomials of the x € Kg have degree < [K : Q]. By the claim at the begin-
ning of the proof, there are only finitely many « € K for which ®(z) € D. Thus ®(Ks)ND is finite.

The last thing we have to show is that the kernel of ® is the set of roots of unity in K. If
x € Ker Kg, so is 22,23, ... and all of these powers lie in a bounded set, namely {(0, ...,0)}. Hence
there are only finitely many distinct powers of z, giving us 2° = 27 for i < j, hence /=% = 1.

Conversely if x is a root of unity, then ™ = 1 for some m > 1. Then
0,..,0) =®(z™) =m - d(x)

which implies ®(z) = (0, ...,0).
O

So the image of Kg is a lattice which is contained in a space of dimension s — 1. To complete
the proof of the unit theorem, we need to show that this lattice has rank exactly s — 1. Here we

give a slick proof which uses the compactness of ]I%l /Ks.
Theorem 21. The rank of the image of Kg is s — 1.

Proof. Let W be the subspace spanned by the image of Kg. Then the rank of this image is the
dimension of W. Since W C H, the dimension of W is < s — 1, and equality of dimensions is

equivalent to saying that W = H. We have by composition a topological group homomorphism
51 @
f:17" —H— H/W

whose kernel contains Kg. By the universal mapping property, there is an induced topological
group homomorphism
fI9Y Ky — HIW

Now, suppose by way of contradiction that W is a proper subset of H. Then f, and hence
f, cannot be the zero mapping: this would assert that every vector ®(z),z € H}z’l is a linear
combination of elements in ® K g, and hence every element in H is a linear combination of elements
of ®Kg (for H is equal to the span of the image of ®). Thus f being the zero mapping implies
W =H.

Now H/W can be identified (as topological groups) with R* for some k& > 1. Since f is not the

zero mapping, and ]Ifgl /Kg is compact, the image of f must be a nontrivial compact subgroup of
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H/W. But there are no nontrivial compact subgroups of R*. We have reached a contradiction, so
we must have W = H.
O

Corollary 22. Kg modulo the roots of unity in K is a free abelian group of rank s — 1. Hence

there exist elements cy, ...,cs—1 € Kg such that every element of Kg can be uniquely expressed as
Cept ety

where n; are integers and ¢ is a Toot of unity.

This corollary also describes the structure of the units of K, since Ks = O} when S consists

only of infinite places.

Corollary 23. Suppose K contains all the nth roots of unity, and S contains s elements. Then
[Ks : Kg] =n®, where K¢ is the group of 2" : x € K.

Proof. If C' is a finite cyclic group with order divisible by n, then C/nC has exactly n elements. If

k
T is free abelian of rank k, then T'/nT is isomorphic to @ Z/nZ, and hence has k™ elements.
i=1
Now take C' and T as multiplicative abelian groups: C' is the group of roots of unity in K, and

T is free abelian of rank s — 1. The previous corollary tells us that Kg = C & T as an internal

direct sum.
O
1.5 More on Ok
Define a map (0,00) — [[ K I] {1} by the formula
v|oco v<00
p—a, = (/p,.... /p,1,1,...)
where n = [K : Q). Since ||a,||, = p when v is complex, it is easy to see that l|lap|| = p. This map

is continuous (continuous into each component), and the codomain inherits its topology from H}gg",

hence from Ix. We have by composition a continuous function (0, 00) — Ck.

Proposition 24. The map
Ch x (0,00) = Ck

(aK*,p) — aa,K*

s a topological group isomorphism.
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Proof. Let us first establish the algebraic properties. Obviously this map is a homomorphism. To
show injectivity, suppose that ca, € K*. Then 1 = ||aa,|| = p, hence a, = 1. But then a € K*.
For surjectivity, BK* is mapped to by (5pﬁﬁluK*, 181)-

The given map is continuous, as a product of continuous functions. The inverse mapping is

given as we mentioned by the formula

-1
BK" (59\\5HK*’ I181[)
Since the inverse maps C'k into a product, we just have to show the mapping into each component

is continuous. But this is just as clear.

O

31



2 Towards the first inequality

2.1 L-function and convergence theorem

Let I denote the idele group of the the number field K, d*x denote the normalized Haar measure
on g, a continuous character on I is a continuous function y : Iy — C!, such that y(xy) =
x()x(y), for Va,y € Ik

An Adelic Bruhat-Schwartz function is a finite linear combination of functions of the form
foo ® fo, where foo € C°(As), Asw = [] Koy, (here a function is smooth is in the usual sense that

v|oo

/
it is infinitely differentiable), fo € C°(Ag), Ag = [][ K., the restricted direct product, meaning
v<o0o

K, = O, for almost all finite places v. where fo = Qy<oofo,; fo, € C(K,), meaning compactly
supported and locally constant, and f,, = 1o, for almost all v. We note such a function by
feC&(Ak).

Lemma 1. ("No Small Subgroup Argument’). There exists an open neighborhood U of 1 in

C, which contains no non-trivial subgroup of C*.

Proof. The existence of such U is guaranteed since otherwise suppose some non-trivial e € U,
then if U contains a non-trivial subgroup that contains e, then e’ € U for all natural numbers

n, this is impossible if we pick U small enough. O

By the 'No Small Subgroup Argument’, Ker(x) is open in I, since x(Ix) NU = {1}, therefore
Ker(x) = x 1(U) if we pick U to be an open neighborhood of 1 € C which contains no non-trivial

subgroup. Moreover, we have x " 1(U) D [[ U, x [] O}, for some S a finite set of places, since
veS vgS
such sets form a basis of open sets in Ix. This implies x,(O}) = 1 for Vv ¢ S, where x, is the

character of K induced by the imbedding K} ~ (1,--- ,1, K}, 1,---,1) C Ix. If x,

vy

o; = 1, we
say X, is unramified at v.
Let S1 = {v < oo| Yv ¢ S1,x0» unramified, and f, =1o,}. Let

Lo(fox0) = / Fol@)xo(@) 2] d s,
S

For any S, a finite set of places, S D S7, define

LS(S;faX) :/f(x)x(x)HxHSd*x: HIv(mev) H Ly (foy X0) H Iy (fo, Xv)-
1%

v|oo vES—S1 v€EST

Lemma 2. Suppose x, is a continuous character on K, then x, =1 on some small open neigh-
borhood of 1 in O;
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Proof. By 'No Small Subgroup Argument’, there exists an open neighborhood U of 1 € C, such
that U contains no non-trivial subgroup of C*, then x~!(U) is an open neighborhood of 1 in K}.
Choose m large enough such that 1+ p™ C x~1(U), then x,(1 + p™) = 1. The smallest such m is
called the conductor of x,. O

For v € Sq, without loss of generality (cover supp(f,) by open sets of the form 1+p"*, we can write
fv as a finite linear combination of characteristic functions 1y4pm), we may assume f, = 1i4pm,

then I,(fu,xv) = [ d*zy = po(1 +p') < oo. This implies that | [T I,(fv, xv)| < co. Also
1+p vES

there are only finitely many v|oo, and for those places, since f;,, is smooth and compactly supported,

we also have | [ L,(fv, xo)| < 0.
v|oo
Now we only care about

[T 2w

veES—S,

Since now f, = 1p,, we have

Iv(f'qu'u) :/Xv(x)\x|;d*xv

Oy

Write Ov = HnZO(pZJL - p'LT)H_l)a then

L (fo, x0) = Z / Xo () |molyd 2y = Z /Xu(ﬁ)lmlﬁsd*%

nZOEGO* "ZOO*
n\ NS * n_—ns 1
= va(ﬂ-v)qv d*x, = Z Xv(ﬂ'v) q, "’ = ﬁ
n>0 O n>0 — Xv (ﬂ-v)QU

We conclude that

H Iv(mev): H (1_Xv(7Tv)qv_s)_1,

veES—S, veES—S,

Note that

for o > 1, we have

[T - nlme) = 30 3 X0,

veES—S] vES—S1 m>1

Here we use the fact that .

—
-
[
g
=
|
N

m
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when |z| < 1.

Lemma 3.

1
IPIE

vgSE m>1

converges for Re(s) > 1.

Proof.

1 1 1
T= Z qulr)ns: Z(*+qu3}ns)’

s
vgS; m>1 v Sy T m>2

therefore

112 Y+ Y )

o
v Sy T m>2

1 1 1
S N
p p

1 1 1
Sngp E#‘TL Ep (ﬁ+ﬁ+"')
<n§ x +n§ ])_2"71
- P pU p l—pg

1 n 1
Szp:]?+71_2fgzp:]%.

Here o0 = Re(s), n = the number of imbeddings from the number field K to C. Note that the first

sum on the right hand side converges for ¢ > 1, the second sum converges for o > % O
We conclude the above results as follows:

Theorem 4. Let

Lk (s, x) = H (1- Xv(ﬁv)qv_s)_lv
V¢S,

then we have the product [] (1—xu(my)q, %)~ converges for Re(s) > 1, and thus Lk (s,x) defines
’U¢51
a holomorphic function for Re(s) > 1. Moreover, we can write

Lic(s,x) = exp( ), xo(m)a;*) - exp(go(s, X)),
v Sy

where go(s,x) is a holomorphic function for Re(s) > 1.
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Proof.

H (1 - Xv(ﬂ'v)q;s)il = &Ip Z Z Xv

qms
vES—S, veES—S1 m>1 v
(3 )y Y et
= exp( -exp( qmg
vES—S] v vES—S1 m>2 v

order the finite sets of places S which contains S; by inclusion, let S goes to infinity, we have

Licts.0 = [T (0= xalmda ) = enp( 3 30 Xm0,

v Sy vgS; m>1
Xo Xo Xo
= eop( Y XA (3 Y qi;s = eop Y XA cap(gn(s. )
vé Sy @ v¢S1 m>2 v v¢ Sy v
where
Xo
o) = Y 3 el
vg Sy m>2 v
The claimed convergence is guaranteed by the above lemma. O

Theorem 5.
/ f@X@]a]ds

converges for Re(s) > 1, and therefore defines a holomorphic function on {s € C|Re(s) > 1}.

Proof. The partial L-function

/ f@x(@) o) d"z

=[] o(foxo) JI Lo(forxo) T Lo(forxo).

v|oo veES—S1 vESL

We showed that both [] I,(fv, x») and [] I,(fs, xv) have finite absolute value. Moreover,

v|oco vES,

hén H I’l)(f1)7XU) :L(SvX)'

veES—S,

Therefore there exists a constant M > 0, depending only on [] I,(fv, xv) and [ I,(fv, Xxv), such

v|oco vES

that
|LS(87f7X)|§M| H Iv(fvaXv)|'

veES—S5;
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Then taking limits on both sides, we have

Since L(s, x) is holomorphic for Re(s) > 1 by Theorem 1, we have |L°(s, f,x)| < oo for Re(s) > 1,

and VS D 51, the bound does not depend on S. By monotone convergence theorem,

/ F@)x(@)2]*d = lim / F@)x(@) 2l d"z

exists for Re(s) > 1. Thus L(s, f, x) is holomorphic when Re(s) > 1. O

2.2 Analytic continuation of L-function

A function F : Ax — C is factorizable if there exists local functions F, : K, — C(Vv < o),
where F, = 1o, for almost all v < co. such that we can write F as a product F(z) = [[ F,(z,) for

all z € Ag.
Let f e C (AK) be an Adelic Bruhat—Schwartz function, F' is a bounded factorizable function
on Ak, define L(s f f(z)F(x)||z||*d*2x. Note that the integral converges for Re(s) >

1(since F' is bounded, using the same argument as before). We say F' is automorphic if F(z) =
F(&x) = F(x), for V¢ € K*,x € k. Then if F is automorphic, F' can be regarded as a function on
I /K*.

Proposition 6. I /K* ~ 1} /K* x R}

Proof. Note that I ~ I} -R?%, which sends « to a! -, where = (1, - -- St YY) e Dt =
lee]| = H |ty |, b = Tag- Let @ Irc/K* — Ik /K* x R% be defined as ®(a) = (al,t), if a = o' - 1.

Flrst ® is well-defined: if & = 3, then a = B - &, for some £ € K*. = t = ||a|| 6 -¢l =
181 1€l = 11811, by product formula.= ol = & = ££ = a1 = Z£ = gl = (al,1) = (61,1) =
o(a) = 2(B).

Second, ® is injective: if (al,t) = (B,t), write 8 = B -5, then t = s,al = Bl = t =
50l e K* = af = (a)(F19) = (a1 (E) ! = (@18 ) e K = a= .

Next, ® is surjective: take (al,t) € I}, /K* x R%, let a = o' - £, then ®(a) = (al,t).

Finally, since ® is obviously a homomorphism of abelian groups, and both ® and ®~! are

continuous, we see that ® is an isomorphism of locally compact abelian groups. O

Lemma 7. Let G be a locally compact abelian group, I' be a discrete subgroup of G, d*x denotes

the Haar measure on G, then there exists a unique Haar measure dix on the quotient group G/T,

such that [ f(z)d*z = [ > f(avy)dix
G G/T vel
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Proof. We write fr(z) = > f(zv) = [ f(xv)dur, where dur is the Haar measure on T, since T
~yel T
is discrete, one can see that up to a scalar, it is the counting measure on I'. This is why the last

integral above is the same as the sum. Moreover, if z,y € U, U compact, then

|ﬁ@—ﬁ@»ﬂ/ﬂmwﬁwwWﬂsM@nUﬂMgmmm—m»
N

where K = supp(f). Since f is continuous on a compact set, therefore uniformly continuous. This
shows that fr is continuous. It is easy to see that fr is left(right) T-invariant, so it defines a
continuous function f on the quotient group G/T', such that f(2T') = fr(z). Let ¢ : G — G/T" be
the quotient map, then since f is supported on K, f is supported on ¢(K). So f € C.(G/TI"). Since
G is a locally compact abelian group, G/T" is also locally compact, therefore there exist a unique
Haar measure(up to scalar) djz on G/T. Let A : C.(G) — C be a functional defined by

A= [ Fdia

This linear funtional is positive, i.e. if f > 0, then A(f) > 0. By Riesz representation theory,

there is a regular Borel measure g on G such that

Af) = [ fdpa
/

It is easy to check that this ug is left(right) invariant, so it is a Haar measure, therefore it is d*z
multiplying by a scalar. Replace diz by a scalar multiple of it in the beginning if necessary, without

loss of generality, we have

Af) = / fdx.
G

Therefore we obtain

/fd*xz/fd;;xz / S flam)dge.

G G/r G/r €T

O

Theorem 8. Let F' be a bounded automorphic factorizable function on lx, f € CX(Ak) be an
Adelic Bruhat-Schwartz function. Then L(s, f, F') has a meromorphic continuation to {s € C|Re(s) > 0},

with only simple pole at s = 1.

Proof. First we know for Re(s) > 1, the integral defining L(s, f, F') converges absolutely, since F'
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is bounded. Moreover, by lemma 7,

L(s. . F) = / (@) F (@) |a]*d"z = / Fa) (S (el die,
5%

g /K> SR~

where dfz is the unique Haar measure on Ix/K* such that the formula works. Since Iy /K* ~
IL/K* x R% as locally compact groups. Let dz! be the Haar measure on Ix/K*, d*t = % be the
Haar measure on R} . Through the isomorphism & in the above proposition, and by uniqueness

theorem of Haar measure on locally compact groups, we may identify djz = da! - d*t. Then

L(s,f,F) = / F@)( Y f(@0) el dsa

e EEK™
> s 17 17, 1dt
=/ ¢ F'f) Y flaig)da’— = (1) +(2),
0 ]Il * 5EK*
K/ K

where

1
(1):/0 t° / F(z't) > f(mlfg)dxl%

IL K+ LeK:
’ o0 ; _dt
(2) = / e / Fa'h Y St Y,
1 « t

H}(/K* (EK

here I}, = {z € Ik|||z|| = 1}, we write = 2! - £ via the isomorphism in the above proposition.

@-[¢ [ red Y st - [ j@r@ldes

K*
L /K* &€ {z€lk|[e]>1}

For o1 > 09, we have

[f@)]- |[F(@)][[«]|7d"x > / [f@)]- [ F(@)][[x]|3d .

{zelk|||=]>1} {eelk|||xl|>1}

Since we already know
F@)F ()] *d*x
{z€lk|l=] 21}

converges for Re(s) > 1, this implies that (2) converges for Vs € C.
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/tS/ (@'%) Y fa'te)da

I /K* cekr

make the substitution z — x71, ¢+t~ 2! (21)71, we have

W= [T [ RE)E D et

HK/K* EeEK™
g0 [T [ ro
t
HK/K*
> —5 1y\—17-1 —1 1dt
+ [t F(H)'E D) f((= Jdz'— ... (%)
! I /K* £EK

To continue, we need

Theorem A. Let f € C°(Ak) be an Adelic Bruhat-Schwartz function, dz be the Haar measure
on A, then there exists constants Ci, Dy, Nk, depending only on the number field K, such that

for any given x € Ik, we have

S F(€) = Cella - /f )y + g(J2]),

{EK
where |g(|])| < Dicllz]|, for ¥N > Nic.
Proof. See later. U
By theorem A,we have

_ (0)/1°Ots / F((xl)’lf’l)dxl%

I /K

+/1 = / P~ (Cxe - t/f Yy + g(t~1))dw 1%

e
dt
o [T [ e
LK
o - d
+f le/’ﬂmvﬂ*mfwK/ﬂwmf
L /K* Ax
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+/100 t° / F((xl)*lffl)g(tfl)dxl%

/K-

denote - it

W= [ [ P

I /K-
)= [T [ R e [ s,
Ik /K™ Ak
©= [T [ R e
/K-

For (A), since F is bounded, and I}, /K* is compact, there exists a constant C' > 0, such that

& dt t=°
O A
1 t g
if o > 0, here 0 = Re(s). Therefore, (A) converges for Re(s) > 0.
For (C), again since F is bounded, and I}, /K* is compact, and by theorem A, there exists a

constant C'y such that

- N at . [ N+1 / 1 N
I(C)] < C}V/ 7ot N = = CN/ t= N g — O ——— 177V < 0
1 t 1 —0 — N
if o+ N >0,ieif N> —o. Fix o, we can choose N large enough such that N > maxz {—0, Nk }.

Then the desired estimate holds. Therefore (C') is converges for all s € C.

Now we just need to work on (B). As F is factorizable, we can write F(z't) = Fy(x')F, (1),
where Fj is a function on I}, /K*, F is a function on R%. Since F is bounded, both Fy and Fy are
bounded.

Define
Fy(t) — F4(0)

4
Assume F is right continuous and right differentiable at 0. Let G(0) = F’ (0), Fy (t) = tG(t) +
F.(0).

G(t) =

)= [T [ R et [ e,

/K"
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since Cx [ f(y)dy is a constant, let’s look at

/ t—s—i—l / F((Z‘l)_lf_l)dl‘l%.
1

I /K
‘We have
[ [ or e = [Teenc [ R et e
' K- ' /K-
1
=c~/t€ 1F<>dt—c-</ e 0% ¢ /tG()dt>
0 t 0 t 0 t
where

c= / Fo((zh)™)dat
1L /K~
is a constant. We claim that G is bounded near 0: Since by the assumption on F'; F, (t) is right
continuous at 0, so F, (0) exists, I (t) is right differentiable at 0, therefore G/(t) is right continuous
at 0 and G(0) exists. This implies that there exists € > 0, such that G(t) is bounded for V¢ € [0, €).
For t € [¢, 1], note that F (¢) is bounded, so G(t) is also bounded on [e, 1], therefore G(¢) is bounded

on [0,1].
This implies that
1
tO’
|/ t°G t— <o / 7t dt = O —|§ < o0,
0 ag

if o > 0. Therefore

0

s—1 1
B =cx [t EOI 5+ [ rend)
A

converges for Re(s) = o > 0, with only simple pole at s = 1, with residue

/Fo dx/f

/K>

This proves the theorem. O

/ @)@l d
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defines a holomorphic function for Re(s) > 1. A continuous character x on Ix/K™* is called a
grosséncharacter. Applying theorem 8 to the case F' = , we obtain the Analytic Continuation

of L-function defined by a grosséncharacter:

Theorem 9. L(s, f,x) defines a holomorphic function for Re(s) > 1, for f € C*((A)k), an
Adelic Bruhat-Schwartz function, and x : I /K* — C', a continuous character. L(s, f,x) can be

extended to a meromorphic function on Re(s) > 0, with only simple pole at s = 1, with residue

OKA[ f@is [ xola')ds

1 /K"

Here Ck is a constant depending only on the number field K, X = Xo * Xoo, X0 &S @ continuous

character on Ik /K* induced by x.

Proof. 1t follows from theorem 8 immediately. We leave it to the reader to check that a grosséncharacter

X satisfies the assumptions on F in theorem 8. O

Now we prove theorem A.
We first reduce theorem A to a real-vector space case(theorem A’ see later), then we prove

theorem A’ to complete the proof of theorem A.

Proof. I =T} -R%, we can write = z* - £, where = (1, - - At tw),t = ||lz]|. We need to
show

> flaie) = Cct™ [ sw)duty) + 90
Ag

feEK

(Here to be clear, we write the Haar measure on Ag as du(y)).
Let L, f(y) = f(z'y),Vy € Ak, then we need to show

> Lo f(#) = Cct™" [ f@)dnty) + (0
Ax

£eEK

— Ot / F(@ty)du(y) + g(t) = Cret™? / Lot f(y)dia(y) + (2).
Ak

Ak

The second equality follows from that

[ 1@t int) = [ swina"w = [ fwdaw),

since the Haar measure dp(xl_lu) = ||x1_1\|du(u) = du(u). Thus, replace f by L1 f if necessary,

we may assume f is a function on R} C Ag.
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Moreover, since f € C(Ag), f is a finite linear combination of functions of the form fy ® fx,
where fo = @) fu, fo € Ce(Ky), locally constant and of compact support, f, = 1o, for almost
all v. The sum on the left hand side is a finite sum since K is discrete in Ak, and f is of compact
support. the right hand side is an integral, which is also linear in f. It follows that without loss of

generality, it suffices to show the desired equality for functions of the form f = [] 1.,4a, [] lo,-
veS vgS
Using this f, the left hand side of the desired equality becomes

> ) = > Foo(tos),

€K 3s H (Tv+aw) [T Ou

vgSs

here we write £ = (£, ,£) = (£, &0 )-

By strong approximation theorem, take the special place vy = co, we can find £’ € K, such that
€], < 1,Vv ¢ S;¢ =z, (mod a,),Yv € S.

Then
> r) = > foo(tboo) = > footor) = Y foolton).
§eK §€ IT (zvtay) I Oy E=¢'€(I] av [T Ou)NK E-¢ca

vES vgS vES vgS

Here a = ([] aw I] Ov) N K, a fractional ideal of K. Since each «, is generated by some 7}
veS vgS
(since it is principal), multiply by ¢ = [ #7* for those v € S, such that m, < 0. Then ca C Ok.
vES
Since Of is a free Z module of rank n, so is a.

Let V=K Q@R >~ @y Ky V is a free R module of rank n. Therefore V' ~ R" as R modules.
So a is a lattice in V, and V/a ~ &P ; (R/Z) ~ (S*)" is compact.
The right hand side of the desired equation becomes

Cit™ 1/f Ydu(y) + g(t) = Crct ™ ] polwo + ) - [T 1o(O )/foo(y)duoo(y)+g(t)
A

Ax veS vgS

= Crt ™ [ o) - T 10(00) / Foo)dpoe(y) + 9(t)
Aso

veS vgS

_cKt—lﬂ”” ) S TL (00 [ i)+ 000
A

vgS

_ Cpt- 1NK/@ /foo dtioo (y) + 9(t)
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1 1
— Cpt Vv, / Foo (9)dioe () + 9(t)

1 1
= Cxt ™ s V/ foo (8)dpioo () + 9(2)

here N,(-) is the local norm at v, Nk q(-) is the global norm from K to Q. Also note that
Vol(V/a) = 2’T2’D}(//QQNK/@_)(Q)7 o is the number of imbeddings from K to C, Dk q is the dis-
criminant. Ay = [[ K, ~ K @R~ V.
v|oco
Therefore it suffices to show that

. 1
2 el = O s V/ oo )i () + 911

Let A = ¢ — ¢, we obtain

AEa

S el + 1)) = cKt*m / Fro (@)oo (9) + 9(2)
Vv

Let Trer foo (y) = foo (t€' +y), Yy € V, the desired equation becomes

A€o

S Tig flP0) = Ot s [ fl)dion0) + 50
Ak

— et [ Tio tw)dunc (o) + 900,

Ak

Vol(V/a)

by the left invariance of Haar measure. Replace Tj, foo by foo if necessary. Write f instead of
foo, f is then a function on V, a real vector space. Since now f is a function of ¢, we may write
t instead of . Then we have reduced the original equation to the case in a real vector space. It

suffices to show the following result to complete the proof of theorem A. O

Theorem A’. Let V be an n-dimensional R vector space, L a lattice in V', with V/L compact.

Given f € C°(V), then we have

Z ftx) = CKt’"m /f(x)da: +g(t),
v

AEL

lg(t)| < Ckt"N, for Vt > 0,VYN > Ng, where C, D, N are constants depending only on V.

Proof. In order to prove theorem A’; we need some preparations:
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First, let’s introduce some background of Fourier analysis on a real vector space.

Let V, L be as in theorem A’. Let B be a symmetric non-degenerate bilinear form on V. Let
L*={neV|B(,n) € Z,V¢ € L} be the dual lattice of L.

For F € C°(V/L), define the Fourier transform of F by

- 1

P = vy / Fl)emnotmdy

V/L

Note that the integral on the right hand side only depends on the equivalent class of v in V/L.
For if v/ = v+ A\, \ € L, e 2miBwtAn) — o=2miB(vn) . o=2miB(vn) — ¢=2miB(v:n) gince A € L,n € L*
implies e 2™ B = 1. So the integral is well-defined.

Next, we have

Lemma 10. Given a polynomial P € Rlxy, -+ ,x,], there exists a linear differential operator D

with constant coefficients, such that

—

DF(¢) = P(¢) - F(9),
forVF € C*(V/L),V,E €V

Proof. Let {ey,--- ,e,} be aZ-basis for L, {e},--- , ek} be the dual basis of {eq, - - - , e, } for the dual
lattice L*. Then for x € V, we can write x = z1e1+- - -+xpep, for & € L*, write £ = &1e7+- - -+E€pel,

*
Moreover, B(ei, €}) = d;; here

D L M
0, if i#3

is the Kronecker function.

For £ € L*, using integral by parts, we have

5-? —2m/=13> &
axl(f) Vol( V/L / / 1y (@, e dry - dan

—271'\/751 / / F xl, .z )67271'\/?12 Eil’idzl . dl‘n — L i71§1ﬁ’(§)
0

=~ Va(V/L) ~ Va(V/L)
Inductively, we have r = (r1,--- ,r,), |r| = > 7,
i=1
TF a1,

oxyt -+ - Oy = (Vol(V/L)) LT T ()
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Since polynomials are linear combinations of monomials, the lemma follows in general. O

Corollary 11. Given P, V, and F € C*(V/L) as in the above lemma, there exists a constant
c> 0, such that

IPOF(E)] <,
forvé eV,

Proof. By the above lemma, |P(¢)F(€)| = |[DF(€)] for some differential operator D with constant
coefficients. Since F' € C*(V/L), DF € C>*(V/L), V/L is compact, so |ﬁ‘(§)| < ¢ for some

constant c. O

Proposition 12. (Fourier Inversion Formula).

Fo)= 3 F(me P
neL*

The sum converges absolutely and uniformly on compact sets.

Proof. F(n) < B> by the above corollary. Take P& =(&+--+ &)~

|3 PP < 3D

nerL* 0£teL*

It is easy to see when k is large, we get that the sum converges absolutely and uniformly on compact
sets, by Weirestrass M-test.

Let G(v) = Y0 F(n)e®™B@m)  then
neL*

~ 1 ~ .
_ B ()27 B(E0)~B(n,v)
G = Vol(V/L) / (n)e dv
el V/L

1 - A .
= E (2™ BE=nv) g, = F
geL~ V/L

2miB(¢—n,v)

this is because v — e is a character of V'~ R™. Let G be a locally compact topological

group, if x # 1 is a continuous character of G, take go such that x(go) # 1, then

I= /X(g)dg = /X(ggo)dg = x(go)/x(g)dg = x(g0) - I,

G G G
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therefore I = 0. Indeed,

G), i =1
I:/x(g)dg= Al ) fox (2)
4 0, if x#1

So we have (G/—\F)(n) =0,Yne L*

A Fourier Polynomial is a finite linear combination of exponential functions, by Stone-
Weirestrass theorem, the *-algebra generated by Fourier polynomials is dense in the space of C-
valued continuous functions(We will discuss this explicitly in the next chapter, the reader could

admit this result here).
Let H be a Fourier polynomial, since (G — F') = 0, we have [ (G — F)H(v)dv = 0,VH. Take
V/L
a sequence of fourier polynomials H,, with limit G' — F, we obtain

/ (G - F)(0)( @~ F)(v)dv =0,

V/L

[ |G —=F|?dv=0,s0 G=F ae. O
V/L

By the Fourier inversion formula, we have F(0) = S F(n). If f € C®(V), let F(v) =
X:L f(v+¢). Then since f is of compact support and L isngig(*:rete in V', the sum on the right hand
Ziede is finite, this implies F(v) € C*°(V/L). And then . f(¢) = F(0) = 3. F(n).

Let H(v) = f(v)e 2™ B®m  then < "

VOZ(V/L / Zf v+ e —2miB(v+£.1) 1y,
v/L $€L
/ZHU—I—f dv—/H dv—/ (v)e=2miB M) gy
v/L $€L v

Define
= [ fee P,
\%

we obtain the

Proposition 13.(Poisson Summation Formula). Let f € C°(V), then

Zf WZ(-FJC)(H)

el neL*
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We use this to prove theorem A’: Denote f;(x) = f(tx),t € R%. Fix t, then we have

1
PRAGE Vol(V/L) > (Ffom)

£el neL*
__ L -1
Vol V/L / fo dv+0¢neL*(ff)(t_ln>)

Then recall

th W Z(}-f)(t_l’?)

(el neL*

)d FHE!
- T /f v Y FNE)
0#neL*
Let P(n) = (n? +---n2)*, k € N, n; € Z, the coordinates of 1 with respect to a Z-basis of L*.

Let
t—" 1
Vol(V/L) Z (FHE " n),

0#neL*

g(t) =

then

|g(t)| < ct™" Z 1 . C/t2k7n Z 1
= VollV/L) | 2=, TP )]~ Vol(V/L) | 2=, TP’

. . / c
for some constant ¢’. Denote Vol(V/T) OinZG:L \P(n)l as Dy, set N = 2k — n,it’s clear that they both

depend only on V, we have |g(t)| < Dg - V. This completes the proof of theorem A’.

2.3 Non-vanishing property of L-function at 1, Dirichlet’s theorem

Recall for f € C°(Ag) an Adelic Bruhat-Schwartz function, we defined the L-function

/ f@o@ alPdr= T L foxe) T 0 xelm)ar)

v|oo,vES] v Sy

=TT ZGs. for x0)Lic(5,%),

veS
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here S = S1U{v|oo}, 51 = {v < 00| fy =10, Xv

o; =1 Yo g Si}, Lr(s,x) = ] (I—xu(m)a, )"
vESy
Note that [ L(s, fv, Xxv) is an entire function, since if v € Sy, without loss of generality, we may
veES
assume f, = 1,4 ,mv, then

L(svaaxv) = /fv(x)Xv(m”x'id*xv = / Xv($)|$|zd*$v
K=

moy

a+py

= q;smv / Xwv (x)d*xv =Cy- q;m”,

moy

a+py

where ¢, = [ xo(x)d*z,, therefore each L(s, fy, Xy),v € Sp is holomorphic.
a+py'v
For v|oo, f, is of compact support, say supp(f,) = Cy, then

d
|L(s7fv7Xv)| < / ‘xla% < o0, Vo €R,
Cy

since |z|% is a continuous function of x and C,, C R* or C* is compact. Therefore each L(s, f,, xv), v|oo
is holomorphic.

By theorem 3’ in the last section, L(s, f,x), where x : Ix/K* + C! a continuous character,
defines a holomorphic function for Re(s) > 1, and has a meromorphic continuation to the right half

plane, with only simple pole at s = 1. Moreprecisely,

Ck [ fx)dz [ xo(z')dz?

Ak Ik /K*

L(s, f,x) = F(s, f.x) + E(s, f,x) + 1 ;

here X = X0 Xoo, X0 i a continuous character of Ik-/K* induced by x, Yoo is a continuous character
of R induced by x. F'(s, f,x) is entire, E(s, f,x) is holomorphic on {s € C|Re(s) > 0}

Assume y

Rr = 1, we have

Proposition 14. (1), if x # 1, lirri(s —1)Lk(s,x) = 0; (2), if x = 1, lirq(s —1)Lk(s,x) =
s§— s—
Ck - Vol(l}/K*) [ f(z)dz, where Ck y is a constant depending on K and x.
Ax

Proof. Since [] L(s, fv, xv) is an entire function,
veS

P_}H% H L(Svaaxv) = H L(lvaaxv)v

veES vES

call it Cy. Then
s—1 s—1
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Co-Ck [ f(z)dz-Vol(li/K*), ifxo=1(&x=1); 5
— Ax
0, ifxo#1 (& x#1).
O

Theorem 15(Hadamard) Non vanishing property of Lx (s, x) at s=1. Let x be a grosséncharacter
of the number field K, trivial on R . Suppose X|H}< # 1. Then Lk (1,x) #0.

Proof. Case 1. Suppose x2 # 1.

Then for o > 1,
Xv v
L(U’X = €exp Z Z mao 7
vgSm>1 My

let f(S) = LK(S, 1)3 ' LK(sa X)4 ' LK(37X2)' Since Xu(ﬂ—v) € (C“éa Xv(’frv) = 61’01,’ then

£ — exp Z Z 2(3 + 4 cos(mb, )—|—cos(2m9v)))

U¢Sm>1 mq:]’w
2(cos b, + 1
(Y 3 Aot Yy
vgSm>1 mq,

since (cos, + 1)2 > 0. Suppose Lx(1,%) =0, "> x> # 1, by the above proposition,

lim (s — 1)L (s.x%) = 0
(then 1 is not a pole of Lk(s,x?), .. Lx(1,x?) # oo On the other hand, however, Lx (s, x)* has a
zero of order 4 at s = 1, Li(s,1)3 has a pole of order 3 at s = 1. = (ll_)ml |f(o)] =0. But |f(o)] > 1,
a contradiction.

Case 2. Suppose x?2 = 1. First we make some notations. Let a be an integral ideal of the
number field K. S is a finite set of places of K, and (a,S) = 1 means: if p|a, then p ¢ S. Suppose
X is unramified outside S.

Now Let S = S U {v|oo} as before. If a = [[pS, pp ¢ 5, = x(a) = [[xu(ens) =

[T xo(m)xe(mS) = T]xu(m), N(a) = [[N(pS) = [[¢¢*. Here N is the norm map. More-
over, if p € S, pla, let x(a) = 0. Then

Lt = [[0 -G = Y MO

vgS a integral

Now

50



Li(s,1)-Lr(s,x)= >, N@™ Y x(0)N(b)™

a integral b integral
= > xON@)T= > (O x(O)N()
a,b integral ¢ integral blc

Note that
> x() = [JA+x) + -+ x(p)),
blc ple
here ¢ = []p®. Since x? =1, = x(p) = 1.
If x(p) = -1,

o _ 1— x(p)er Tt 1, if ep is even; (@)
1—Xx(p) 0, if ey is odd.

L+ x(p) + -+ x(p)
If x(p) =1, we see that 14+ x(p)+---+x(p)¢ > 1. Soif cis even, i.e. if ¢ = ¢?, for some ¢ integral

ideal of K, then all >~ x(b) > 1,
blc

= Li(s,1) - Lc(s,) = S0 (OxO)NE = 3 ac- N(9)~* +g(s),

¢ integral blc ¢ even

with a. > 1,9(s) = > (O_x(b))N(c)~°. Also note that g(o) > 0if o > 1.

¢ not even b\c
To proceed, we need

Lemma 16(Landau). Suppose f(s) = Y. a,n~* converges when Re(s) > 0, with a, > 0. Assume
n>1
that f(s) extends to a holomorphic function at og. Then there exists o1 > 0, such that f(s) =

> ann~* converges for Re(s) > o9 — o7.
n>1

Proof. replace s by s — o if necessary, we may assume og = 0. For § > 0,0 < o < 4,

f(O') _ E annfcr _ E anefélogn _ 2 an€7(075) logn efélogn

n>1 n>1 n>1

- Z aned1sm . Z 7(6 —0)’ (logm)®,

v!
n>1 v>0

Note that 6 —o > 0, a, > 0, e~ (©=9187 5 ( thus all terms in the sum are non-negative and

f(o) < oo by assumption. By Fubini’s theorem,

o1



£0) =3 ES anttogmye (o - o)
v>0 n>1

It is the Taylor expansion of f(o) at §, which converges for 0 < o < §. Therefore the radius
of convergence is at least J, i.e. the series converges for 0 < |0 — J| < 9, i.e. it converges for
0 < o < 26. And it extends to a holomorphic function at s = oy = 0(being holomorphic at 0 means
being holomorphic in a neighborhood of 0), which means the series converges for —e < o < 2§ + ¢

by the general theory of Taylor series. O

Now since we know Lk (s,1)Lk(s,x) converges for Re(s) > 1, and Lk (s,1) extends to a mero-

morphic function on Re(s) > 0, with only simple pole at s = 1, we can write

c
s—1

Lk(s, 1) = + F(s),

c is a constant and F is a holomorphic function on Re(s) > 0. And since x # 1,we also have
L (s, x) extends to a holomorphic function on Re(s) > 0.
Suppose Lk (1,x) = 0, then Lg(s,x) has a zero at s = 1 with order at least 1. Therefore
Lk (s,1)Lk(s,x) extends to a holomorphic function on Re(s) > 0, thus on Re(s) > 1/3.
)

Apply Landau’s lemma to op = 1, we see that Lx(s,1)Lk(s,x) converges absolutely up to
Yy

Re(s) > 1/3.
On the other hand, Lk (s,1)Lk(s,x) = > ac-N(c)~®+ g(s). Note that
¢ even
> ac-N@© 7= > N,
¢ even ¢/ integral

and Y. N(¢/)727 has a pole at 0 = 1/2, since L (s, 1) has a pole at s = 1. This implies that
¢/ integral

Lk (s,1)Lk(s,x) has a pole at s = 1/2, a contradiction. We conclude that Lx(1,x) # 0. O

Corollary 17. Let x = ®]x, be a grosséncharacter of a given number field K. S D S1 U {v|oo}
be a finite set of places such that x, is unramified outside S. Then

1 . .
(2).1f x #1 on I, thenalinll+ %Xv(m)qv exists.
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Proof. Recall that for Re(s) > 1, similar to the previous argument, we have

L3 (s,x) = exp(Y  xw(mo)ay *exp(go(s, x)),
vegS

where go(s,x) is holomorphic on Re(s) > 1/2. = L3.(0,1) > 0if ¢ > 0( Take x = 1), =

lier(a —1)L3(0,1) = k > 0 ( since L(s, f,1) = [[ L(s, fo,1,) - L3-(s,1) has simple pole at s = 1,

o—1 veES

and [] L(s, fu,1,) is holomorphic for all s € C by previous theorem, = L% (s, 1) has simple pole
veS

at s =1 ), then

lim In(o —1) 4+ lim In(L%(0,1)) = lim Ink

o—1+ o—1+ o1+
In(L3 1 1
H(Ki(f’))%lJr nlf -1, as 0 — 1T,
> 47 (o.1)
:>U¢Sl % =1, as0— 17,
ln(ﬁ) h’l(ﬁ

This proves (1).

For (2), note that In(L%-(s,X)) = Y. xo(m0)ay® + g0(s, X), lim+ go(o, 1) exists, it suffices to
vgSs o—1
show that lim+ L3-(0,x) exist. But by previous theorem, saying that Lx (s, ) defined by a non-
o—1

trivial grosséncharacter x does not vanish at s = 1, and note that the same proof also works for
L3 (1,x). We have L3-(1,x) # 0 for x # 1, = glijrllJr In L3 (o, x) exists. This proves (2). O

For the rest part of this section, we use the non-vanishing property of Lx(s,x) at s = 1 to
show the famous Dirchlet theorem, which states that there are infinitely many prime numbers of
the form an + b, n € N, where a and b are coprime.

Suppose v is an unramified place of the number field K(i.e. the ramification index e, =
e(K,/Qp) = 1), here v|p. If we also have the corresponding inertial degree f, = f(K,/Q,) =1, we
call such a place is of absolute degree 1. Note that for an absolutely degree 1 place v, we have
K, =Qp since [K, : Qp] =€, - fu = 1.

Theorem 18. Let x be a grosséncharacter on Iy, assume x

re =1,8D 81 U{vfec} be a finite
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set of places such that x, is unramified outside S we have

Xo () gy 7 :

. vg S,abdeg(v)=1 1, Zf X = 1;

lim i = (5)
o1t In = 0, if x#1

> a,
25— 1; Andif y # 1, then lim 3 xo(m)q;°
1

In o— o—1+ ’U%S
exists. So it suffices to show that for v ¢ S and of absolute degree > 1,

Proof. Recall that by the previous corollary, lim+
o—1

| Z Xo(T)q, ¥ < 00, as Re(s) =0 — 1T
v¢S, abdeg(v)>1

So without loss of generality, we may assume y = 1, then

> 0,7 <[K:Q-) > pm

véS, abdeg(v)>1 P m>2
=[K:Q]- ﬂ<[[( @].Zp—%. 1 < 00
—1-p 7 - 1—2°
O
Given a place v of K, to simplify the notation, let 7, = (1,---,1,m,,1,---,1) € Ig, t =
(1,---,1,t%,--- ,tw) € R:, where t = |m,|,. Then ||m,|| = ||, = t, = mpt 1 € T} Assume

Ty

ry =1, = x(m) = x(r5)-
A Fourier Polynomial is a function on Ik of the form f =ajx1 + -+ + a,x,, where

X

Xi I /K*—Cli=1,2,--r

are continuous characters on Ik /K*. Specifically, let x; = 1.

Define
f(ﬂ'v)%_o

vg S, abdeg(v)=1

D(f) = lim

o—1+ In——

the limit exists by previous theorem, and it’s easy to see that D(f) = a1. Moreover, we have

| f(z)d*z = a1, by orthogonality. Therefore we have
L /K~

f(mo)a; ”
v¢S, abdeg(v)=1
1
o—1

/ f(z)d*z = D(f) = lim

oc—1+ In
]I}(/K*
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Lemma 19. The limit
f(mo)a,?

. vgS, abdeg(v)=1
lim T
o1+ In——
o—1

exists for any continuous function f on Ik /K*, and it equals [  f(z)d*w.
L /K~

Proof. The proof is essentially the

Theorem 20(Stone-Weirestrass) (1). Let X be a compact Hausdorff space and let S be a
subset of C'(X,C), the space of complex-valued continuous functions on X, which separate points.
Then the complex unital *-algebra generated by S is dense in C'(X, C).(Here separate points means
if z # vy, =,y € X, then there exists some f € S, such that f(x) # f(y). And in our case f* = f,

the complex conjugation.)

Now let G =1I% /K*, then as we know, G is compact. Let
S ={x:I/K* — Cl|x is a continuous homomorphism}

We see that 1 € S and the *-algebra generated by S is F, the space of Fourier polynomials. Note
that if x1, x2 € S, we have x1 - x2 € S, and (x1 - x2)* =X1 X2 = X2 - X1 = X5 - Xi. Therefore, if
f1 and fy are Fourier polynomials, f; - f5 is also a Fourier polynomial.

To see S separates points on G, let 2,y € G, * # y. Then z = zy~! # 1, and z € G since
G is a group. Suppose Vx € S,x(z) = x(ry~!) = 1, by Pontryajin duality, G ~ G, it is an
isomorphism of locally compact groups. Suppose the isomorphism is given by the map z — ¢, and
then ¢.(x) = x(z). Now if x(z) =1 forall y € S, ¢.(x) = x(z) =1, for all y € G. = ¢, = 1, but
z # 1, contradicting the Pontryajin duality. Therefore there exists a x € S, such that x(z) # 1,
ie. x(zy) = x(x)x(y)~! # 1, i.e. there exists a xy € S, such that x(x) # x(y). S separates
points. Thus F is dense in C(X,C), by Stone-Weirestrass theorem. This means that for Ve > 0,
and Vf € C(X,C), there exists some g € F, such that ||g — f|lco < €, then |f(z) — g(x)| < €, for
Vo € Ik /K*.

Let T be a finite set of places, everything unramified, let h = f — g, we have

> f(mo)g, ” = > 9(m)q, ” + > h(mo)q, 7,

veT,abdeg(v)=1 veT,abdeg(v)=1 veT,abdeg(v)=1

Let
f(mo)a, ”
vET,abdeg(v)=1
1 )

In —

D(fao-):
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R(T,0)= > h{m)g ",

veT,abdeg(v)=1

then |R(T,0)| < €- > g, ?, and we have
veT,abdeg(v)=1
R(T,o
D(f,0) = Dlg,0) + L7,
o—1
we know
4 °
R(T, O') veT,abdeg(v)=1
| . | . o < 2e.
e | no

Let D(f) = lirn+ D(f,0), then if we choose o — 17 be close enough, say o — 1 < §, we have
o—1

|D(f70)_D(g)| S |D(fa0)_D(970)|+|D(gag)_D(g)| <26+6:367

[ swia [ g@aed<e [ da—

Ik /K> IL /K~ 1L /K~

Also note that

So we have
|D(f,0) — / flx)d'z| <4de, if o—1<$§

I /K"

O

Corollary 21. Let S D {v|oo} be a finite set of places of a number field K, then the image of
{|7:;”|v v ¢ S} is dense in 1L /K*.

Proof. Let C be the closure of the image as stated. Suppose C # I}, /K*, then the complement of

C in I} /K*, call it V, is open. Since I} /K* is compact and Hausdorff, therefore normal. So we
can find a compact subset K C V, and d*z(K) > 0 since d*x is a Haar measure.
By Urysohn’s lemma, there exists f € C(I}/K*), such that f|x = 1,and suppf C V. Then

/ flz)d*x = d*z(K) > 0.

I /K"

On the other hand, since Fourier polynomials are dense in C(K), we can find a sequence of Fourier
polynomials g,, on K such that g, — f. Now note that supp(g,) C K C V =1} /K* — {W},
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SO
In()qy 7
« . vgS,abdeg(v)=1
/ gn(x)d*z = lim T =0,

o1t In =
1L /K

o—1

since g,m, = 0 for v ¢ S, abdeg(v) = 1. But this implies that

/ f(z)d*z = lim gn(z)d*z =0,

o—1+
K /K-

a contradiction. O

Corollary 22. If ¢ : [}, /K* — G is a surjective continuous homomorphism of topological groups,

Ty
[0 |

where G is a finite group with discrete topology. Then there are infinitely many v for which

goes to any fized element. (i.e. the fibre of ¢ over any element in G is infinite)

Proof. suppose ¢~ !({x}) is finite. Since ¢~!({x}) is open and {Igjlu v ¢ S} is dense in I}, /K*.

Then there is an open set in I}, /K* which contains only finitely many

Ty
[70 [

since Ik, /K* is a metric space. (Simply take balls of radius % contained in the open set, by density

in it. A contradiction,

we can find infinitely many such =) O

‘ﬂ'v "u

Lemma 23.
Io=Q"-[[2; R
p

Proof. Let x = (z,), € lg, let n = [] p°"%®, then @ = (n,---,n) € Q* and thus (7) "'z € U-R*,

p<oo
where U = ] Z. Let the last coordinate be the place of infinity, note that (1,---,1,-1) =
p<oo
(-1,---,=1)(-1,--- ,=1,1), (-1,--- ,—-1) e Q*, (-1, -~ ,—1,1) € U, so multiply by (1,---,1,—1)
if necessary, we obtain (2) "'z € U -R%, ie. x € Q*-[[Z; - R%. The lemma follows. O
p

Next, we prove the famous

Theorem 24(Dirichlet). Suppose a and m are integers, (a,m) = 1, then there are infinitely many

prime numbers p such that p = a( mod m)

Proof. We have ]I(b = Q* - U, then it is easy to see
IL/Q" = (Q"-U)/Q ~U/(Q" NU) =T,
as topological groups, let

U,, = H 7 - H(l + porde(m))
ptm

plm
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the map
15/Q* ~ U = U/Up =~ [[ Z/(1 + p” ™) ~ (Z/mZ)*
plm
(the last isomorphism follows from Chinese Remainder Theorem) is continuous, since U,, is open
in U, and surjective. So by the previous corollary, the fiber of any element in (Z/mZ)* is infinite.
Let p([il = (1, a]-apilv]-v"' a]-) = (pv vpv]-apv"' apv]-) ’ (pila”' 7]371) ’ (]-, a]-»p) € HQ
Note that

(p7"' 0, Lp, - ap71) el, (p_lv"' 7p_1) € Q*? (17 ?17p) € Rj—

So the image oqui1 in H@/Q* ~Uis(p,---,p,1,p, -+ ,p,1). Since the isomorphism Z; /(1+p"Z,) —

(Z/p"Z)* is given by = - (1 + p"Z,) — x mod p"Z, we can see that for ¢ # p, the image of

ord, (m)Z7 for q =D, the image

ord

(p,---,p,1,p,--- ,p)in (Z/q° %™ Z)* is the conjugacy class p mod ¢

of (p,--,p,1,p,---,p) in (Z/p°" (™ Z)* is the conjugacy class 0 mod p°"®("™)7Z. So we can see

that the image of (p,---,p,1,p,---,p) in (Z/mZ)* is the conjugacy class p mod m, by Chinese
Remainder Theorem. Therefore by the argument in the first paragraph of the proof, if we have
(a,m) = 1, there are infinitely many prime numbers p such that the image of (p,--- ,p,1,p, -+ ,p)
goes to a mod m. i.e. there are infinitely many primes p such that p = a( mod m), if (a,m) = 1.

O

2.4 The first inequality.

Theorem 25(the first inequlity). Let L/K be a Galois extension of number fields, then
h=[lx:Npr(I)K* ] <[L:K]=n

Proof. Let
S, ={w place of Llw < 00, w|p, L, = Qp},
S;, ={mulweSL, ru=14+--+1=p, €Q,}.

If we Sp, wlv|p, it is easy to see that [L,, : Q,] = 1, this is equivalent to say that [L,, : K,] = [K, :
Q,] = 1. Note that S} C Ij.

Lemma 26. The norm map Ny i : 1y — Ix maps S7, into Sp.

Proof. If 7, € S,y =pu = (1,--+ , 1,pu, 1,--+ ,1) € I.
NL/K(WLJJ) :NL/K(17 717pwa17'“ 71) = (17 ’17NLW/K'U(pw)’1"” ’1)

:(17"'alapgwalf"al)::(lﬂ"'717pva1a"'71)6‘9}(7
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since e, - f, = [Ly, : K,] = 1, and then we have e, = f, = 1. Here e, = e(L,/K,) is the

ramification index at w, f, = f(L,/K,) is the inertial degree at w. O

Lemma 27. The norm map Ny, : Sy — Sk isn to 1, n = [L : K|, i.e. every p, =
(1,---,1,py,1,---,1) € Sk has exactly n preimages in ST .

Proof. Let p, = (1,---,1,py,1,---,1) € Sk be fixed. Since L/K is Galois, if w € S}, w|v|p,

suppose w |[v|p for another place w; of L, then

1=[Ly: Ky] =L, : Kv] = €w; * fors

it follows that wy € S;. Let wy,- - ,w, be all conjugate places of w|v|p, then
(Lo, : Kyl = Loy : K] = = [Ly,, K] =1,
This shows ey, = fo, = 1, for all ¢ = 1,2,--- ,r,. Since we know e, f,r, = n = [L : K], and

now e, = f, = 1, so 7, = n. Then it is easy to see that Ny i : S} — S% maps each m,,, (i =

1,2,---,7, = n) to p, by the above argument. Therefore Ny x : S} — S% is n to 1. O

Moreover, we know Ny /x (I} )K*/K* is an open subgroup of I} - K*/K* = I} /K* of finite
index, therefore Ny, (I} )K*/K* is also closed in I}, /K*, since I} /K* is a topological group(In
a topological group G, any open subgroup H is also closed since H = G — UggxpgH, and each
gH is open since ¢(g) : G — G defined by ¢(g)(z) = gz is a homeomorphism and H is open, thus
each coset gH is open, so H is closed.). Then if we let f = 1NL/K(H1L)K*/K*’ we can see that f is a
continuous function on the compact group Ik /K*.

Now we have

1 1 - [ 1o
h [Iy/K*: Npj()K*/K*]
g /K*

this is because the Haar measure du = d*z on the compact group I} /K* is normalised so that
(Il /K*) =1, and the fact:

Lemma 28. Let G be a locally compact topological group, du is a (left) Haar measure on G. H is
a subgroup of G, let f = 1y be the characteristic function of H, then

(,/ o= [g(:Gfir]'
[ tin= [ 1d = i),

G G

Proof. Note that
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on the other hand,

WG = [du= [ 1dp =3 nlgh) = 3" uH) = (G : HIu(D),

G UgH

here u(gH) = u(H), Yg € G, by the left-invariance of Haar measure, therefore

[ fdn=uti) =

g

Now we have

1 * . 1:
> = / f(x)d*z = lim D(f,o0)

o—1t
I /K*
f(po)ay®
. véS,abdeg(v)=1
= lim T ,
o—1+t In P
where p, = (1, ,1.py, 1,- -, 1), thus |py|s, = ||po]|-

Lemma 29.
«

[lee]

a €Ny ()K" < € Ny (Ip)K*

Proof. a € Ny jx(IL)K* = o = Np/k(x)8, for some x € I, € K*. Since I ~ I R*, we can

write x =2l -7 2t e}, 7= (1, - 1,7 ,T%), 7 = ||z||. Then
a=Npg(@" 7)-B=Npx@ )Ny -B=a" -t 8,
where a! = Ny g (¢') €Ik, B € K*, §=(1,---,1,tn, -+ ,tw) = Npg(7) € R%. Then

ldl = lla™ - & Bl = o || - 1]l - 181l = 18]l =t = INL/x (Pl = Ny (ll=])).

T _ T __ T 1
since [|pll = mp = L = oy € Ik
o T
= — =Ny /(@' —) B €Ny /k(}) K*,
o] / B /

Conversely, if or = NL/{((acl) - B, for some at €I}, B e K*, = a= Npk()|of -8, let
t = |||, then @ = Ny g (a! - 1) - B, now z' - € I} - R% =11, = o € N jg(Ix) - K*. O
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By the lemma, it is easy to see that

Pov _ Du
|Pv‘v ||pv||

Now we can see f(p,) = f(ﬁ) = HZ—ZH = 1ifm € Npyk(I)K*/K* < p, € Ny (Ip) K*/K*.
Also note we require v ¢ S and abdeg(v) = 1, this is equivalent to say that v € S, so

1 fo)ay
o / f@)d'z = lim D(f,0) = lim VS ebdeg(v)=1

o1+ In —
/K-

n—1

. e _
> G > 4 > 4w

. vESE 3 1 wesy 1 . abdeg(w)=1 1

= lim ———2> lm - ——5—=— lim ————— = —,
o—1t In—— o1t n  In—— n o—1+ In — n

n—1 n—1 n—1

here first note that ¢, = ¢f* = qu,, and recall that Ny x : S; — Sk is n to 1. Moreover,

w
WES}‘@WESL, Ty=14---4+1=p, & w < 0, w|p’Lw:Qp’ ﬂw:pw:pe([‘w/@p) =p&
ey = fu =1<% abdeg(w) = 1. And by previous theorem we have

—0
> 4
. abdeg(w)=1
lim T
o1+ In —
n—1

=1

> %, so h < n. Now we completed the proof of the first inequality in class field theory. [

,_.
@
=
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3 Cohomology, and the Second Inequality

3.1 Herbrand Quotients

Suppose that A is an abelian group, B is a subgroup of A, and f is a homomorphism of A into some
other abelian group. Let Ay = Ker f and Al =Tm f. By restricting f we obtain a homomorphism

of B, for which we use similar notation: By = Ker(f|z) and Bf =Im fiB

0 0 0
T T T

0 — Af/Bf — A/B — Af/Bf —0
T T T

0o - A - A = AT =0
T T T

0O - B — B — B =0
T T T
0 0 0

The diagram above has all of its columns as well as the bottom two rows exact. It is easy to
see that the obvious maps in the upper row are well defined, and a diagram chase shows that this

row is exact. Hence we have the identity
[A: B] = [A; : Bf|[AT : BY]

in the sense that if two of the indices above are finite, then so is the third and equality holds.
Now, suppose that f and g are endomorphisms of A such that fog=go f=0. Then A9 C Ay
and A7 C A9, and we can define the Herbrand quotient

Qf,g(A) = Q(A) m

provided the numerator and denominator are finite. Note that if f(B),g(B) C B, then there are

unique induced homomorphisms
f,g:A/B— A/B

satisfying f(x + B) = f(x) + B and g(z + B) = g(x) + B. So again we will have fog= fog=0,
and we can define another Herbrand quotient

[(4/B)f : (A/B)°]

[(A/B)g : (A/B)T]

Qfg(A/B) =Q(A/B) =
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when the numerator and denominator are finite.
Lemma 1. If A is finite, then Q(A) = 1.

Proof. We have A/A, = A9 and A/A; = A/ so

|A9] - [Ag| = |A] = |AT] - | Ay

We will investigate the properties of the following hexagonal diagram:

Apjas 2@,

(A/B)9
D/ Y
By/BY Bg/Bf
5'\ Ag
(A/B)g

— f
(A7B) “p Ag/A

The definitions of the homomorphisms D5, D; are morally obvious, while those of ¢, ¢’ are not.

We explain all the definitions in detail:

e For the composition By — Ay — A;/A9, the fact that B9 C A9 implies that the map
Dy : By/B9 — Ay /A9 given by Dy(x + BY) = x + A9 is well defined. Dj is defined similarly.

e The image of the composition Ay < A — A/B is clearly contained in (A/B), so we have
a well defined homomorphism 7 : Ay — (A/B)yf given by m(z) = z + B. Clearly the image
of A9 under 7 is contained in (A/B)J, so the mapping D : As/A9 — Eﬁjgg given by

Dy(z + A9) = (z + B) + (A/B)Y is well defined. D) is defined similarly.

e To define 6, we first define a homomorphism p : (A/B)§ — B,/B/ given by 2+ B  f(x)+B/.
It is not clear that the formula we have given makes any sense at all. We will explain.
The group (A/B); consists of all those cosets x + B for which the representative = satisfies
f(z) € B. Since Im f C Ker g, we have that if x + B is an element of (A/B)y, then f(x) € B,.
Thus p maps (A/B)f into the desired codomain. To show the map is well defined, suppose
z+ B,y + B are clements of (A/B) with z+ B =y+ B. Then z —y € B, so f(x —y) € B,
hence p(z + B) = p(y + B).

With p well defined, we observe that (A/B)9 is contained in the kernel of p: any element
of (A/B)9 can be written as g(z) + B for some 2 € A, and we know that f(g(x)) = 0, so
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p(g(z) + B) = 0+ BY. This gives us a well defined homomorphism

/B B,
(/B B

(x+ B)+ (A/B)? — f(z) + B
Proposition 2. The diagram above is exact.

Proof. 1. Ker Dy =Im D,

A typical element of Im Dy is « + A9 for some = € By. Then D;(x + A9) = (z + B) + (A/B)9,
which is zero because € B. Conversely suppose that  + A9 (for = € Ay) is in the kernel of D;.
Then z + B lies in (A/B)Y, so there is some y € A for which z + B = g(y) + B. There is then an
element b € B, necessarily in Ker f, for which © — g(y) =b. Then x + A9 = —g(y) + A9 = b+ A9,
with b+ A9 € Im Dy. The equality Ker D] = Im D), is similar.

II. Kerd =Im D,

A typical element of Im Dy is (x + B) + (A/B)? with z € A;. If we apply 6, we get f(z) + B/,
which is zero because f(z) = 0. Conversely suppose z = (x + B) + (A/B)? be in the kernel of 4§,
where 2+ B € (A/B)j. Then f(z)+ B/ =0+ B, so there exists b € B such that f(z) = f(b).
Then x + B=2—b+ B, so (x + B)+ (A/B)Y = (x — b+ B) + (A/B)9, with  — b € Ay. Thus
z € Im D;. The equality Ker 8 = Im D] is similar.

III . Ker D) =Im§

Let (x + B) + (A/B)7 be an element of %. If we apply J, we get f(x) + B, and applying
D}, to this gets us f(x) + Af, which is obviously zero. Conversely suppose = + B, for = € By, lies
in the kernel of D). Then x € A7, so there is some y € A with = f(y). Since z € B, the coset
y + B lies in (A/B)g, with

3((y + B) +(A/B)?) = f(y) + B/ =+ B/

This shows that @ + B/ lies in the image of Dy. The equality Ker Dy = Im ¢’ is similar.
O

Let C be the quotient A/B. From the previous proposition, we see that if two of the three
Herbrand quotients Q(A), Q(B),Q(C) are defined, then so is the third. For example, suppose
Q(A) and Q(B) are defined. Already four of the six objects in the diagram are finite groups. The

image of D, is finite, and if we take the group % modulo this image, the resulting quotient is
by exactness isomorphic to a subgroup of By/ BY, also finite. Hence % is finite, and similarly

(A/B)g

A/ is finite.

one can argue that
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Proposition 3. We have the identity
Q(A) = Q(B)Q(A/B)

whenever these Herbrand quotients are defined.

Proof. The cardinality of any object in the diagram is equal to the cardinality of the image of the
map preceding it, multiplied by the cardinality of the image of the map following it. For example,
Ay /A9 modulo the kernel of D; is isomorphic to the image of Dy, so

|Af/AY = |Ker Dy| - |Im Dy| = |Im Ds| - | Im D |

Therefore,

(A/B)
|By/B| Foviard _ |Tmd'| - |Tm Dy| | Tm Dy |- [Tm |

QA
Q(B)Q(A/C) = |B,/B| |(A/B)g| |Im |- |Im D4 |Im D}| - |Im &'

[T Dyl [ImDy| _ |A /A7)
[Tm Dyl - [TmD}| ~ |4, /A7]

=Q(4)

3.2 The first two cohomology groups

Let G be a finite multiplicative group with identity 1¢ = 1, and R a ring. We recall the definition of

the group ring R[G]. As an abelian group, R|G] is the product [] R, where an element is written
geG
as a formal sum ) gry for r, € R. This becomes a ring when we define multiplication by
geG

(Z grg)(z hsp) = Zghrgsh
g,h

gelG heG

Suppose A is an additive abelian group. If A is a module over the ring Z[G], then we call A a
G-module rather than a Z[G] module. A G-module structure on A can equivalently be described
as a group action of G on A for which g(x + y) = gz + gy for any g € G and z,y € A.

Suppose A is a G-module. We define the trace homomorphism Trg : A — A by

a > Zga

geG

and we also let A be the submodule of A consisting of all a € A which are fixed by every g € G.
Check that Trg(ga) = g Trg(a) = Trg(a) for any g € G,a € A. Tt is easy to see that Trg A C A,
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so we may define the cohomology group

AG

HO(G,A) - m

Also, let I be the additive subgroup of Z[G] generated by 1 — g : g € G. This is actually an ideal,

since for g,h € G we have
h(l—g) =h—hg=(h—1)+ (1 - hg)

Therefore IgA = {ga : g € Ig,a € A} is a submodule of A, and it furthermore contained in
Ker Trg, since
Tre((1 — g)a) = Trg(a — ga) = Trg(a) — Trg(ga) =0

So we may define the next cohomology group

Ker Trg

H,(G,A) = ToA

Although we have taken quotients of submodules, we really only care about Hy(G, A) and Hy (G, A)
as abelian groups (and, more specifically, we will be interested in their cardinalities). There are
higher cohomology groups Ho(G, A), H3(G, A) etc. but they are more complicated to define and
work with, and we shall only require the first two. See the appendix for a more categorical treatment
of the groups Hy and Hi.

Suppose A is a direct sum i A;. We say that G acts semilocally on A if G permutes the A;
transitively. In that case, deﬁrfg}uhe decomposition group G; = {1 € G : TA; = A;}. If pA; = Ay,
then the decomposition group of Ay is ¢G ¢!, so we can stick with just one decomposition group,

say G1. Write G as a disjoint union of left cosets

G = UUiGl

i=1

and arrange the indices so that oy A; = Aj. Therefore, every element a € A can be uniquely

expressed as o1(a}) + -+ + o4(al,) for a} € A;.

Lemma 4. The projection w: A — A1 induces an isomorphism
H°(G, A) = H°(Gy, Ay)
Proof. We first claim that
AC = {oy(ar) + -+ 0s(a1) 1 a; € AS"Y
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First suppose o € A®. Write a as a; + - - - + a5, where ai € Ay. If ¢ € Gy, then ¢(a1) € Ay, and
¢(ax) is not in A; unless it is zero, for otherwise ay € ¢~ 'A; = A;, whose intersection with Ay
is trivial. Thus ¢(a1) + -+ - + ¢(as) = ¢(a) = a, and by unique representation we get ¢(a;) = as.
Since ¢ was arbitrary, we have a1 € AlGl.

Now also @ = oy(a}) + -+ + os(a’), where a} = o} '(ax) (we know a; = o1(a}) = a;). For a

fixed k, apply 0'k_1 to o to get aj, + > Jk_loj(a;) = ok_la = «, with none of the Jk_laj(a;) €A
ik

unless a;- = 0 (otherwise U,?lale = (G4, so j = k). Hence by unique representation we obtain

a1 = d}, 50 a = o1(ay) + -+ os(ar), with a; € AP as required.
Conversely suppose a € A takes the form o1(ay) + - + os(a1), with a1 € A?l. Then oy (ay1) €
Uk(Afl) = Aka. Now if ¢ € G, then ¢ permutes the Ay, sending Ay to, say, Agx). It follows that

for each k, we have
porAr = QA = Apry = Tp Al

SO 0¢(k ¢o, € G1. Hence oy ¢Uk(a1) = a1, which implies ¢oy(a1) = ok (a1). But then
p(a) = doi(ar) + -+ dos(ar) = ogy(ar) + -+ + 45 (a1) =

Now that we have proven the first claim, we see that restriction to A of the projection map
A — Ay, given by (for a; € A?l)

o1(a1) + -+ os(ar) — o1a1 = a4

is an isomorphism. So we only have to show that under this mapping, Trg(A) is mapped onto
Trg, (A1). This is done if we can show that

Trg(A) = {Z Trg, (a1) : a1 € Ar}
i=1

Remember that o;,i = 1,...,s is a set of left coset representatives for G; in G. For the inclusion,

D’ we have
ZO’Z ’I‘TGI (11 ZJi Z T qual Tra al) € T‘I'G(A)

Conversely let us take the trace of an element ) 0;(a;) for a; € A;. Define b = )" Trg, (a;) € A;.
i=1 i=1
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Using the same argument as in the first inclusion, we have

S S S S
Tra(D) oj(a;) =Y  Traoj(a;) =Y Y 0iTrg, (ay)
j=1 j=1

j=1i=1

S

= Zo’i ZTrgl ((lj) = Zai(b)
i=1  j=1 =1

Lemma 5. There is an isomorphism

Hl(G,A) = Hl(Gl,Al)

Proof. At the end of the last proof, we showed that for any o € A, written as oy(a}) +---

for uniquely determined af € A;,
S
Trg(a) = Z oi Trg, (a) + -+ +al)
i=1

Thus Trg(a) = 0 if and only if Trg, (a) + -+ - + a%) = 0. Thus

avsal + -+ adl

maps Ker Trg onto Ker Trg, (surjectivity is obvious). This mapping, A, induces the desired iso-

morphism, provided we can show that IgA is mapped onto Ig, (A1).

+os(a

!
S

)

First, to show MgA C I, Ay, it suffices to show that if 7 € G and « € A, then A(7(a) — ) €

I, Ay So fix 7 and «. Since 04,7 =1, ...s are a set of left coset representatives for G; in G, there

is for each j a unique index 7(j) and a unique element 7.(;) € G1 such that 70 = 0,(;7Tr¢;). In

fact, we can take 7 as a permutation of 1, ..., s. Thus
S S
T(a) =Y _roi(al) =Y on(iTa(i(al)
i=1 i=1

so AM(7(a)) = > Tr(;)a@;. But then
i=1

AM7(a) —a) = ZT,F(Z-) (a)) —a; € Ig, A1
i=1

For the converse, suppose that A(«) = a) +-- - +a, is equal to some b € Iz, A;. Now Ig, A1 C IgA,
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sobe IgA, and
azb—l—oz—bzb—kZoi(a;)—aielgA

i=1

3.3 Applying the above machinery

For most of the rest of this chapter, G will be a finite cyclic group, in fact the Galois group of a
cyclic extension of local or global fields. We will continue to take A as an abelian group with a
G-module structure, but will write A multiplicatively. Hopefully the fact that we have written A

additively up to this point will not cause any confusion. For example, the trace map

N-1

Tra=9: A=Az~ Zaz(x)

i=0
will actually be the norm. If we set f: A — A by f(x) = o(z) — z, then I A is exactly the image
of f. This is not difficult to see from the identity

l—o'=1-0)1+o+---+oh

Furthermore A% is exactly the kernel of f, so in the notation of the first section we have

Ho(G, A) = Ay /A9

Hy(G,A) = A, /AT

_ [Ho(G, 4)]

U =17 @A)

We may deal with Herbrand quotients involving different groups, so we will write Q(G, A) instead
of just Q(A). If & : A — A’ is an isomorphism of abelian groups, then there is an obvious induced
G-module structure on A’ for which the cohomlogy groups H;(G, A), H;(G, A’) are isomorphic and
Q(G,A) = Q(G, A"). Another way of saying this is that an isomorphism of G-modules induces an

isomorphism of cohomology groups and equality of Herbrand quotients.
Lemma 6. If G acts trivially on Z, then Q(G,Z) = N, the order of G.

Proof. Just check that Ay = Z, A9 = NZ, and A, = Af =0.

Examples:
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e Let L/K be a cyclic extension of global fields. The Galois group G = Gal(L/K) acts on L
and gives L* the structure of a G-module. Let o generate G. Now H; (G, L*) is equal to the
group of % : x € K* modulo the group of x € L* with norm 1. Hilbert’s theorem 90 just
asserts that H; (G, L*) is the trivial group.

e If I and K are global fields, then G acts on the ideles Iy, and therefore the idele class group

Cr =15 /L*, in a natural way. There is a natural injection Cx — C}, for which one obtains
|H1(G,CL)| = [Ck : Npyr(Cr)] = [k : K*Np/x(I1)]

Work out the details as an exercise.

e If L and K are p-adic fields, then O, has a G-module structure, and

Hy(G,0r) =[Ok : Nk (OL)]

3.4 The local norm index

Let k C K be finite extensions of Q,, with n = [K : k]. Suppose K/k is cyclic with Galois group G.
We have the cohomology groups Ho(G, K*) = k*/Ng/,,(K*) and H,(G, K*), the group of norm 1
elements modded out by the set of o(x)/x, which is trivial by Hilbert’s Theorem 90. Thus

_ [Ho(G, K7)|

A e )

= [k" : Ng /i (K")]

The maps = — o(x)/z and N/, send Uk to itself, so we can discuss the Herbrand quotients
QUgk) and Q(K*/Uk).
Proposition 7. Q(Uk) =1

Proof. The logarithm and the exponential functions may both be defined for p-adic fields by their
power series. These series do not always converge, but exp will map sufficiently small open additive
subgroups homeomorphically and isomorphically onto small open multiplicative subgroups, the
inverse mapping being the logarithm. See the appendix for more details.

Any finite Galois extension of fields F'/E has a normal basis, i.e. a basis w, : v € Gal(F/E) for
which ¢gw, = wgy. Let wy,...,wn be such a basis for K/k. Multiply these elements by sufficiently
high powers of p so that the elements of subgroup

M= Opwy + -+ Orwy

are all very small, p-adically speaking. The group G acts semilocally on M with trivial decomposi-

tion group, so Q(G, M) = 1. If M is chosen very small, exp gives an isomorphism and homeomor-
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phism from M into the unit group Ug. Since exp ¢(z) = ¢pexpx by continuity, the induced action

of G on exp M is the same as that obtained by restricting the regular action on K*. Thus

Q(Uk) = Qexp M) - Q(Ur / exp M)

where Q(exp M) = Q(M) = 1. Also since M is open, so is exp M, so by compactness exp M is of
finite index in Ug. Therefore Q(Ux/exp M) = 1.
O

Theorem 8.

and
Uk : Ni/k(Uk )] = e(K/k)

Proof. The first result follows directly from the previous proposition. Already we mentioned that
Q(K*) = [k* : Ng(K*)]. Also, K* /U is isomorphic to Z, with G inducing the trivial action on
the quotient. Therefore

QK™)
Q(Uk)

(K : k] = |G| = QK" /Uk) = = [k : N/ (K7)]

For the second assertion, we again use the fact that Q(Uk) = 1. Let e = e(K/k). We have
[Uk : Niyu(Uk )] = [Ho(G, Uk )| = [H1(G, Uk))|

By Hilbert’s Theorem 90 and the fact that automorphisms preserve absolute values, it is not
difficult to see that |Hi(G,Uk)| = [K*9 : UY], these latter two objects respectively denoting
the images of K* and Uk under the map g = 1 — 0. Actually, Uy, = (k*Uk)9, so by the identity
[A: B] =[A : Bf|[A; : By] we have

[K*: k*Ug]

|H1(G,Uk)| = & (k" Ux),)

The denominator of this fraction is 1: both K and (k*Uk), are equal to k*. If &,p denote the
respective primes of K, k, then ord,(z) = eord(z) for any « € k*, so it is not difficult to see that

the kernel of the composition
K* 22,7 5 7/e2

is exactly k*Ug.
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Corollary 9. If K/k is abelian, then

and
[Uk : Niy(Uk )] < e(K/k)

Proof. Actually, equality still holds even when K/k is abelian and not cyclic. But it will disrupt
the elegance of our progression to prove this before we have developed local class field theory. In the
meantime, we can quickly prove this lesser result as follows:

There exists a tower of intermediate fields
kCECE C---CK

where the extensions E/k, E'/E etc. are cyclic. By induction, [E* : Ng,g(K*)] < [K : E]. By the
identity [A : B] = [Af : Bf][A; : By] introduced in the beginning of this section, we have

Now we use the theorem:
[k : Ny (K)] = [K* : Npju(E¥)|[Np/k(E™) : Ngji o Niyp(K")]

< [k Npgw(EY)][E™ : Nijp(K™)] < [k : Np/(EV)[K : E]
=[E:k|[K:E]=[K:k|

The argument for the unit group is identical.
O

While we are on the subject of local indices, let us prove another result which will be needed
later in the proof of the existence of class fields. Take k,p etc. as we have above, and let O,U be
respectively the integers and units of this field. Let = be a uniformizer for k. Multiplication by 7’
gives an isomorphism of O-modules O/p — p*/p**1. The multiplicative analogue of the powers p;
are the groups 1+ 7'O. Let U; = 1+ 7O for i > 1. Reduction modulo 7 induces an abelian group
epimorphism U — (O/p)* whose kernel is U;. For ¢ > 1, the map x — 1+ z gives an isomorphism
p! /it = Ui/Uiya.

Therefore the cardinality of U; /U;; 1 is p/ (#/P) Notice that

1

f(p/p)|p — )
p

I7llp = [Nisg, (m)lp = [p
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Fix an n € N, and let U™ = {z™ : € U}. The corollary to Hensel’s lemma mentioned in the
introduction shows that for sufficiently large i, U; C U™. Thus [U : U"] is always finite. We will

now determine this index.

Theorem 10. Let W be the group of nth roots of unity in K.

[U:.U"] = 1w
[Inl]p
n
[k* : k"] = ——|W|
I

Proof. Let s = ord, n, and take r to be large enough so that:
e r>s+1.
e U, is contained in U™.
e 1 is the only nth root of unity in U,.

The first condition ensures that [na"!|, > |7[2". Then if (1 4 z7") is any element of U,, we
have
I4+zr")*=1+ner" +--- € Upgs

This shows that U™ C U,1,s. On the other hand U,, and hence U, g, is contained in U™. Thus
Urts =U. Let f: U — K be the homomorphism x — z"™. Then

U U] = [T f T fi, [Ker f : Ker fig,] = [U7 < U 2 1] = [U7 < Uy - (W]

and

Since [U; : Uj11] = pf®/P) we have

1 1

(U : Upys] = [Uy : Upyq]® = pf#/P)s = = —
’ Ixlly  [Inll

This proves the first assertion. For the second assertion, we need only use the fact that k* =2 ZxU

as abelian groups. Then
ZxU

K" /k T nZxUn

> 7/nZxU/U"
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3.5 The cyclic global norm index equality

In this section L/K is a cyclic extension of number fields, N = [L : K], G = Gal(L/K). Let S be
a finite set of places of K containing all the archimedean ones, and let S; be the set of places of
L which lie over the places of K. Then w € S; implies ow € S; for any ¢ € G. Choose s := |5|

symbols z,, : w € S1 and let V' be the R-vector space having x,, as a basis. If we define
OTyw = Tow

then we obtain a G-module structure on V. For an element v = ) ¢,z (for ¢, € R) in V, the
€s
sup norm e

[[v]loo = sup |cw]
weS

induces the product topology on V. It is obvious that ||ov||s = ||[v]||eo for v € Vo € G.
Let M be a full lattice of V. As topological groups,

PR
V/IM~ X — =~ R/Z
so V/M is compact in the quotient topology. Giving the same topology on V/M is the induced
norm

lv+ M|| = inf |[v—m||s
meM

Since V/M is a compact metric space, it must be bounded, so there exists § > 0 such that |[v+M|| <
6 for all v € V. But by the definition of the quotient norm, § has the property for every v € V,
there is an m € M such that ||v — m||e < 9.

Proposition 11. Let M be a full lattice of V' which is G-invariant (oM C M for o € G). There
exists a sublattice M’ of M such that [M : M'] is finite, M' is G-invariant, and there exists a basis
Yuw ' w € Kg for M’ such that

OYw = Yow

Proof. Remember that for a sublattice M’ C M, the index [M : M'] is finite if and only if M’ is of
full rank. To say that M is G-invariant means that M inherits the structure of a G-module from
V. Let s, N, be as above, and for each v € S, fix a place w, of Sy lying over v. For w also lying

over v, let m,, be the number of o € G such that cw, = w. Let m be the mimimum of these m,,,
sbN

m

and choose t >

For each v, we can find a z,, € M such that |[tzy, — 2w, || < b. For w € Sy, if we set



then for any 7 € G, we have

TYw = Z TOZy, = Z P2w, = Yruw

TWy =W PWy=TW

This shows that y,, € M has the desired G-module properties. We will be done once we show that
the y,, are linearly independent.

Suppose that Y ¢,y = 0 for ¢, € R, not all zero. Then we can arrange that all |¢,| < 1, with
w
at least one ¢, being equal to 1. Let By, = 2y, — tZw,, 50 || By, ||cc < b. Then

Y = Z o(txy, + By,) = Z tTw + Z 0By, = tmy, - Ty + By

TWy=w TWy=w Wy =W

where B, = >, o0B,,, and

TWy =W

[Buwlloo < Z loBu, |lc = Z [[Buw, |lc < Nb

TWy =W TWy=w

Now
0= chyw = ch(tmwxw + B,) = Z(cwtmw) Ty + B

w

where B = > ¢y By, 50 [|Blloo < sMaxy, |¢y| - Maxy, ||Bwl|leo < $b|G|. We should have ||Bl|s =
w

[| 3> (cwtmy) - Twl|oo- But, letting wo be a place such that ¢, = 1, we have
w

1D (Cwtmu) - T lloo = Maxy [cuwtmay| > |ew,tmu,| > tm > sNb > ||B|«

w

a contradiction.
O

Suppose G acts on an abelian group A = Ay @ --- @ A,, such that 0 A; = A; for all o and
1 <i<s. We have

Q(G,A) = Q(G, A1)Q(G, A/A1) = Q(G, A1)Q(G, A2 @ - - ® Ay)

so by induction, we have

Q(G,A) =Q(G, A1) - Q(G, Ay)

On the other hand, if G acts semilocally on the A;, and G is the decomposition group of A1,

then we proved

Q(G,A) = Q(G1, Ay)
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Let X be the full lattice of V' with basis x,, : w € S;. For each v € S, choose a place w, lying

over it. We can write X as a direct sum

X = @@wa

vES wlv

and so

QG Xx) =[] @G Pzr.) = ] QG 22y,

veS wlv veES

where G, is the decomposition group of w, (actually, of any w | v). Since G, acts trivially on the

cyclic group Zx,,,, we have Q(G,, Zw,) = |G,|.

Corollary 12. Let M be a full lattice in V which is G-invariant. Then

Q(GvM) = H |Gv‘

veSs

Proof. Find a sublattice M’ of M satisfying the proposition. Clearly M’ is G-isomorphic to X, and
the quotient M /M’ is finite, so we have

Q(G’M) = Q(GaM/) = Q(GaX) = H |G1)|

veS

O

We can now calculate the Herbrand quotient of the Si-units Lg,. Remember that S;-units are

those z € L* which are units outside of S;.

Proposition 13. Q(G, Ls,) = [ |G|
veES

Proof. The image of Lg, under the log mapping log : Lg, =V
§ Y 1og [[¢]luwTuw
is a subgroup of V' contained in the s — 1 dimensional subspace

H:{chozw S VCZCw =0}

and the Dirichlet unit theorem tells us that this image is a lattice of rank s — 1, and that the kernel
is the group J of roots of unity in L. Thus Q(G,J) = 1. Notice that |{|s-1, = |0€|, for any
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¢ € Lg,. This implies
log(0€) = Y [0€luwtw = D €lo-10ww

= Z |§‘wxaw = Ulog(f)

so log is a G-module homomorphism, and hence induces a G-module isomorphism Lg, /J = log Lg, .
Thus

Q(G,Ls,) =Q(G, Ls,/J) = Q(G,log Ls,)

Now xg := > x4, is linearly independent of log Lg, , since it does not lie in H. Thus M = log Lg, +

w
Zxo is the direct sum of log Lg, and Zxg, and is also G-invariant. Its two direct summands are also
G-invariant, so

Q(G, M) = Q(G,log Ls, )Q(G, Zxo) = Q(G, Ls,) - N

We calculated Q(G, M) in the corollary.

We’re about to prove the global norm index equality for cyclic extensions. We have

[Cx : Nk (CL)]
|H1(G,CL)|

Q(Cr) =

The significance of the group Hq (G, Cp) will not be made apparent in these notes, but we will show
as a byproduct of the global cyclic norm equality that it is trivial.

As a final preliminary, suppose A is a G-module which is direct product of abelian groups
Ay X A x Az x -+, with 0 A; = A; for all i. Suppose that Ho(G, A;) is trivial for all i. One can
then prove that Hy(G, A) also trivial. Just use the definition of Hy. Similarly if each Hi (G, A;) is
the trivial group, then so is H; (G, A).

Theorem 14. (Global cyclic norm index equality) For L/ K cyclic,
[HK : K*NL/K(HL)] = [L . K]

and
|H,(G,Cpr)| =1

Proof. Let S be a finite set of places of L which contain all the archimedean ones, all those which
are ramified in L/K, and enough places so that Iy = L*]Ifl. Also, complete Sy in the sense that if

w € 57 lies over a place v of K, so does ow for 0 € G. Then let S be the set of places of K over
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which the places of S; lie. We can write ]I“z1 as a direct product
Bx A

where

B=[[]]Lw-A=]I]]ox

vES wlv wtv wl|v

SO Q(G,]Iil) = Q(G,A)Q(G, B). Now A is the direct product of A, = [[ Oy . The decomposition
wlv
group G, is the Galois group of L, /K,. Since G acts on the components of A, semilocally, we

have
Hy(G,A,) = HO(GU,(’)ZJU) =1

and
Hi(G,Ay) = Hi(G1,0}, ) =1

by the local norm index computations. By the remark just before this theorem, this implies that
Q(G, A) = 1. On the other hand, we can compute

QG,B) =[] I] L) =[] QGv. Lu,) =[] IG.]

wlv

again a local computation from section 3. Now we use the computation of Q(G, Lg,) to get

Q(G,IF)
Q(G’ LSI)

=Q(G,I/K*) =Q(CL)

We used the fact that the inclusion Hil CK *Hil induces an isomorphism of G-modules ]Iil /Lg, =
K*I5'/K*. Thus

[L:K]= =Q(G,17"/Ls,) = Q(G, K*I7* | K*)

[Cx : Np/k(CL)]
‘Hl(Gv CL)|

[L:K]=

Since [Ck : Np/kx(Cr)] < [L : K] by the global norm index inequality, we must have equality, and
this implies H; (G, C) is trivial.
O

Corollary 15. Let L/K be cyclic of degree > 1. Then infinitely many primes of K do not split
completely in L.

Proof. Let o € I . If the set T of places of K which do not split completely is finite, then by the

weak approximation theorem we can find an z € K* for which za, — 1 is very small for v € T, say
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small enough so that xzc,, is a local norm in K,,. For all v € T, x«,, is already a local norm, because
K, = K, for w | v. Thus za € Ny k(Ir). This shows that Ix = K*Np,/x(Iz), so

[L : K] = []IK : K*NL/K(]IL)] =1
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4 The Law of Artin Reciprocity

The original approach to global class field theory involved looking at generalized ideal class groups,
which we will define below. Later, Chavalley introduced the ideles to simplify the global results,
and to tie local and global class field theory together. Analogous to ideal class groups are idele
class groups, which we will also define.

The idelic and idealic approaches to class field theory are equivalent. But there are advantages
to each approach. Ideals are really the more natural way to approach the classical problem of
describing, via congruence conditions, how prime ideals decompose in a given abelian extension.
But for the classification of abelian extensions, the treatment of infinite Galois extensions, and the

development of local class field theory, the idelic approach gives cleaner results.

Let L/K be abelian, and p a prime of K which is unramified in L. We know that there exists
a unique o € Gal(L/K) with the property that

ocr=a2V?  (mod 2)

for any x € Op, and any prime & of L lying over p. This element o is called the Frobenius element
at p, and will be denoted by (p, L/K). The map (—, L/K), defined on unramified primes of K,
extends by multiplicativity to a homomorphism on the group of fractional ideals of K which are

relatively prime to the discriminant:

(0, L/K) = [J (b, L/ K)o @

p

We call this homomorphism the Artin map on ideals.

Proposition 1. (Properties of the Artin map)

(i) If o is an embedding of L into Q (not necessarily the identity on K ), then
(ca,0L/0K) =o(a,L/K)o"

(it) If L' is an abelian extension of K containing L, then the restriction of (a,L'/K) to L is
(a, L/K). This is known as the consistency property.

(i) If E is a finite extension of K, then LE/FE is abelian. If b is a fractional ideal of E
which is relatively prime to the discriminant of L/K, then the restriction of (b,LE/E) to L is
(Ng/k(b), L/K).

(i) If E is an intermediate field of L/K, and b is a fractional ideal of E which is relatively
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prime to the discriminant of L/ K, then

Proof. Since the Artin map is a homomorphism, it is sufficient to check everything when a is a
prime ideal. An embedding such as o preserves the relevant algebraic structures, for example cOg
is the ring of integers of 0 K, and 0Oy, is the integral closure of cOk in o L. So (i) is just a definition
chase.

For (ii), let &' | & | p be primes of L', L, K respectively, and 7 = (p, L' /K) € Gal(L'/K). If
x € Op, C Op/, then 7 has the effect

rz=2N?  (mod 2)

So 7 —aNP € P’ N Oy = . This means that the restriction of 7 to L does what is required. By
uniqueness, 7z, = (p, L/K).

Now let P8 be a prime of E, relatively prime to the discriminant of L/K, so if 8 lies over the
prime p in K, then p is unramified in L. Let f = f(P/p), P a prime of LE lying over P, and
P =PNOg. Finally, let 7 = (B, LE/E). Now

¢ = (Ng/x(P), L/K) = (', L/K) = (p, L/ K)’
has the effect
p(z) = 2N (mod 2)

for any x € Op,. But also for x € O, C O g, we have
2 — NP e PnO, =2

with N (P) = N(p)f. Thus 7, has the same effect as ¢ on L. Combining the uniqueness of 7 with

the fact that any element of Gal(LE/FE) is completely determined by its effect on L gives us (iii).
(iv) is just a special case of (iii).

O

As a consequence of the global norm index equality, we can prove the surjectivity of this map.

Theorem 2. Let S be a finite set of prime ideals of K containing all those which ramify in L, and
1(S) the group of fractional ideals of K relatively prime to S. Then the restriction of the Artin
map to I(S):

(=, L/K):I(S) — Gal(L/K)

18 surjective.
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Proof. Suppose the Artin map is not surjective. Let F be the fixed field of the image of (—, L/K).
Then E/K is abelian of degree > 1, so we can find an intermediate field F; C E such that Fy /K
is cyclic of degree > 1. If p is a prime of K, not in S, then (p, E1/K) is the restriction of (p, L/K)
to Ey. But (p,L/K) € Gal(L/E) C Gal(L/Ey), so (p, E1/K) = 1.

This shows that for p € S, the inertia degree of p in F; is 1. Thus almost all primes of K split
completely in F;. But this contradicts 3, Theorem 19. O

One of the main goals in this chapter is to prove the existence of a similar homomorphism, also
called the Artin map, defined on the ideles. A natural way of doing so is to introduce the language

of cycles.

4.1 Cycles

First, we introduce the language of cycles. By a cycle m of K we mean a sequence of nonnegative

integers m(v), one for each place of K, such that:
1. m(v) = 0 for almost all v.
2. m(v) =0 or 1 when v is real.
3. m(v) = 0 when v is complex.

Another cycle ¢ is said to divide m if ¢(v) < m(v) for all v. A place v divides m if m(v) > 1.
A fractional ideal a is said to be relatively prime to m if ord,(a) = 0 whenever m(v) > 1. The
meaning of other statements involving divisibility, for example two cycles being relatively prime, is

obvious. Given m, we define

o = T 14on0 & TL &

v|m vim v|m
v<o0 v|oo

which is a subgroup of the ideles. Here K, refers to the connected component of 1 in K. So

Ky = K} if v is complex, and (0, 00) if v is real. We also set

W= [ 1+e0 0 [] &3

vlm vim v|m
V<00 v|oo

where U, is either O} or K, depending on whether v is finite or infinite. Given 2 € K* we write
z=1 mod *m
to mean that x € Hy,.
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Lemma 3. Let m be a cycle of K. Then
Ix = K*Hy

Proof. Given «a € Ik, we must find an x € K* such that ax € H,. We can use the approximation
theorem to produce an x which simultaneously takes into account all the places dividing m. Note
there is no contradiction in designating an x € K N R to be simultaneously positive and negative
at different real places. For example, if K = Q(1/2), then /2 is positive at one of the real places,
and negative at the other.

For v real, we can choose x to have the same sign as «,, so that o,z € (0,00) in K,. For

example, if we want x to be positive at the place v, then we can arrange that \% — 2|y < %

(v) o

For v finite, we want .,z — 1 to be very small, specifically |,z — 1|, < |7y Choose x so

that

—1 m(v)—ord, «
, —$|v§|ﬂ'v() vow|

la

ord, (o)
v

Multiply both sides by |a,| = |7 » to get the result.

O

We will eventually use Lemma 3 to define the Artin map for ideles. We will first define the
Artin map ¢ on Hy,. Then given an « € [, there is an x € K* such that ax € Hy, by the lemma,
so we can define the Artin map on « to be ¢(ax). Showing that this is well defined is the hard

part, and we are a long way from that point.

4.2 The transfer principle

Let L/K be abelian, m a cycle of K. We will say that m is admissible (for L/K) if:

e m is divisible by all ramified places.

e For v finite, 1+p*) is contained in the group of local norms N, /v(L,) for some (equivalently

any) place w lying over v.

e If v is real and there is a complex place lying over it, then m(v) = 1.

The second condition says that K7 = (0,00) coincides with the norm group N,,,,(L},), since
Ng/r(C*) = (0,00). Some authors refer to a infinite place as ramified if it is real and it has a
complex place lying over it. We will adopt the name generalized ramified place which, although
cumbersome, will help us avoid ambiguity as well as even more cumbersome statements.

It is clear that there is a unique smallest admissible cycle | which divides all other admissible
cycles, and it can be described as follows: § is only divisible by ramified places and real places which

have a complex place lying over them. For v ramified, f(v) is the smallest number such that 1 —|—pz(v)
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is contained in the group of local norms. We call this smallest admissible cycle the conductor of
L/K.

We are almost done making definitions. Let m be a cycle, not necessarily admissible.
e Id(m) is the group of fractional ideals which are relatively prime to m.
e P, is the group of principal fractional ideals (z), where x =1 (mod *m).

e J(m) is the group of norms Ny, (b), where b is a fractional ideal of L and relatively prime

to m (that is, relatively prime to any places of L which lie over places dividing m).

The next results depend heavily on the approximation theorem. We remark that if v is a place
of K, and x is a norm from L, then x is a local norm from L,,, for all w lying over v. This is

because if * = Ny /i (y) for y € L, then x = [[ Ny, (y). For a fixed place wo, each Ny, /,(y) is a
wlv
norm from L, hence it is a norm from L, since L/K is Galois. Thus z is a local norm from L,

as a product of such norms.

Lemma 4. Let x € K*, and S a finite set of places of K with the property that x is a local norm
from Ly, for allv e S, w|v. There exists a v € L* such that x Ny, (y™") is close to 1 at each
veS. If|z|, =1 for a particular v € S which is finite, then v can be chosen to be a unit at all
w | v.

Proof. Fix a v € S. Since each local norm L,, — K, is continuous, so is the map [[ L, — K,

wlv

given by
(Yw) — HNw/v(yw)
wlv
as a product of continuous functions. Let wg,ws, ... be the places of L lying over v. Write = as
Ny o (0) for some vy € L7, . By the approximation theorem, there exists a v € L* which is close
to 7o at wp, and close to 1 at the other places wy,ws, .... Since (7o, 1,1,...) and (7,7, ...) are close
to each other in [] L., we have that
w

[N o (70) — HNw/v(7)|v =]z = Np/k (7)o

wlv

is also very small. Given ¢ > 0, we can choose v € L so that |z — Nz /k(7)s < €|z]y, and then
multiply both sides by ||, ! to get that |[1—2 ' Ny, x(7)|y < €. Since 2~ "Ny k() is very close to 1
at v, sois Ny k(v '), which is what we wanted. The claim follows when we use the approximation
theorem simultaneously for all v € S.

If v is finite, and |z|, = 1, then z € O}, so the element 7o such that N, /,(70) = = must be a
unit in O,,. Since O} is open, any element of L which is very close to a unit will automatically

be a unit.
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Proposition 5. Let m be admissible. The inclusion Id(m) C Id(f) induces an isomorphism
Id(m)/PyM(m) = 1d(f)/ PN(f)

Also, P(J) N1d(m) = PpN(m).

Proof. Injectivity and well definedness of the desired map is equivalent to the assertion that P(f)N
Id(m) = Py9(m). The inclusion '2” is clear, so suppose J € PN(f) N1d(m) is equal to (2) Ny x (b)
where z =1 (mod *f) and b is a fractional ideal of L which is relatively prime to f.

For each place v dividing f, and each w | v,  is a local norm from O}, (or L¥ for v infinite). By
Lemma 4, we can produce a y € L* such that 2Ny, /x(y~!) is very close to 1 at each v | f. For v | f
finite and w | v, we can choose v to be a unit at w.

Using the approximation theorem, we can also do a little more than what we just did. We
applied the lemma to the places v | f (or more specifically, the places lying over those which divided
f). At the same time, we can take all the finite places v which divide m, but not f, and add the
stipulation that ord, v = —ord,, b, for all w lying over such v. This ensures that N /x(vb) is a
unit at each finite v | m,v 1 f. But v and b were already units at all w lying over finite v | f, so in

fact Ny, x(7b) is a unit at all finite places v | m. We can write

J = (x)Np/k(v"") - Npyx(7b)

Since Ny, i (vb) and J are both units at v | m,v < oo, so is :ENL/K(WA). We are almost done,
but we do not know that Ny /x(y™!) is =1 (mod *m).

Let 8 = xNL/K(’y_l). At each v | f, we have that g, having been forced so close to 1, is a
local norm. But for v finite, v | m,v { f, we also have that § is a local norm. This is because v
is necessarily unramified, 8 € O}, and the local norm O} — O} is surjective. And for v infinite,
v | myv {f, v is necessarily a real place which has only real places lying over it, so § is trivially a
local norm here. Thus § is a norm for all v | m, finite or infinite.

Since [ is a local norm for all places v dividing m, we can apply the same argument as we did
at the beginning of the proof. Specifically, we can find a 6 € L* such that BNy, (671) is very close
to 1 at all v | m. This gets us BN, (67') =1 (mod *m). In picking §, we can assume that § will
be a unit at all finite places w | v | m. Thus Ny, /x(vb), and hence Ny, (dvb), is in M(m). Thus

J =aNpk(v " )NLk (6 )Ny (076) = [BNL/sc (6] - [NL/k (67D)]

is in Pu9(m), as required.

Finally, let us prove surjectivity. This is much easier than the injectivity we just did. Given
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a € Id(f), it is enough to find an z € K* such that 2 = 1 (mod *f) and za is relatively prime to m.
Just use the approximation theorem: for v | f, pick x to be very close 1, and for v | m,v { f,v < oo,
pick = so that ord, x = — ord, a.

O

For m an admissible cycle, let I1,(1,m) be the set of ideles in L which have component 1 at all
w | v | m. Recall the definitions of Hy,, Wy, given earlier. It is straightforward to check that

WmNL/K(]IL(l,m)) = Hm n NL/K(]IL)

Just use the fact that the local norm is surjective for v { m.

Theorem 6. Let m be admissible. There is an isomorphism, to be described in the proof:
Ik /K*Np k() = Id(m)/Pp9(m)

Proof. Let 1 : Hy — Id(m) be the homomorphism o+ [[  p2"%® which is obviously surjective.

vtm,v<oco

Let 1) be the composition

Hy % 1d(m) — Id(m)/ Pu9(m)

And, let ¢ be the composition
Hy, Clg — HK/K*NL/K(]IL)

This is surjective by Lemma 3. We claim that Ker = Ker ¢. This will suffice for the proof, since
then
Id(m)/PaN(m) = Hy,/ Kertp = Hy/ Ker ¢ =2 Ix/K*Np k(L)

First, we claim that
Kert = (Hy NK*)WaNp/k(IL(1,m))

The inclusion ’2’ is straightforward: just check that (K* N Hy), Wiy, and Nz g (Ir(1,m)) are
each contained in the kernel. Conversely, suppose that o € Hy, lies in the kernel of 1. Then
¥(e) = ()N, x(b) for some 2 = 1 (mod 'sm and fractional ideal b of L which relatively prime
to m. Let 8 be an idele of L such that ord, S = ord, b whenever w < oo and ord, b # 0, and
otherwise set 3, = 1. Then YNy /x(8) = Ny, (b). Also (z) = ¢z, where x € K* N Hy. This
implies az ™' Ny x(87") is in the kernel of ¢. But it is easy to see that the kernel of ¢ is Wi,. This
proves what we wanted, since x € Hy, N K* and N /i (8) € Np/x (IL(1, m)).

Now, by the remark just above this theorem and by what we just proved, Kery) = (Hy N
K*)(Hnw NN (IL). And it is easy to see that Ker ¢ = Hy NK* Ny (I1). So, the only thing left
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to prove is that
(Ho NK*)(Ho NN /g(Iz)) = Ho N K*Np i (Iz)

The inclusion 'C’ is straightforward. Conversely, suppose a € Hy is equal to a product
xNp/k(B) for x € K* and 3 € I. By the approximation theorem, it is possible to find a v € L*
such that Np,/x (B)Np/x(v™*) = Nk (v~ ) is close to 1 for all v | m. (Lemma 4). If chosen close
enough to 1, we will have Ny, (v™'8) € Hn NNy /k(I). Since o € Hy, and

a=aNp/k(Y)NLx(y'B)

it follows that 2Ny, x(v) € Hn N K*. This completes the proof.

Corollary 7. If m is admissible for L/ K, then
Mk : K*Np g (I)] = [Id(m) : Pa(m)]

4.3 The kernel of the Artin map

Let L/K be abelian, and m a cycle of K which is divisible by the ramified places. We defined the
Artin map for ideals
® : Id(m) — Gal(L/K)

in the beginning of the chapter. This mapping is surjective (Theorem 2). Suppose that P, were

contained in the kernel of ®. Then, we can enlarge m (and thus shrink Py,Id(m)) so that m

is admissible, and Py, is still contained in the kernel of the new Artin map. So without loss of

generality, we can assume m is admissible. Clearly 9t(m) is always contained in the kernel of ®, so

we have Py9(m) C Ker ®. But combining Corollary 7 with the first global norm index inequality,
(Id(m) : PaN(m)] = [Ix : K*Np,(I1)] < |Gal(L/K) = [Id(m) : Ker ]

we must have equality everywhere. We state this as a proposition.

Proposition 8. If L/K is abelian, m is admissible for L/K, and Py, is contained in the kernel of
the Artin map on Id(m), then the kernel is exactly Pn9t(m), and

L : K] = [Id(m) : PaM(m)] = [Ix : K*Np, (1))

If m' is another admissible cycle, and m divides w', then Py is contained in the kernel of the Artin
map on Id(m’), hence Py N(W') is the kernel of the Artin map on Id(m’).
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The goal of the next chapter is to show that the hypothesis of Proposition 8 holds for all abelian
extensions and all admissible cycles. For a fixed abelian extension L/K, in order to prove that the
kernel of the Artin map on Id(m) is P,9t(m) for all admissible cycles m, it suffices by Proposition
5 to do so with an admissible cycle ¢ which is only divisible by generalized ramified places.

The first step is showing this holds for cyclotomic extensions.

Proposition 9. Let K = Q, and L = Q(¢) for ¢ a primitive mth root of unity. There is an
admissible cycle m of Q, divisible only by ramified places (that is, those places which divide m) and
the unique infinite place of Q, such that Py, is contained in the kernel of the Artin map on Id(m).

Proof. Let x € Q*, and x = § for a,b € Z. We know that if ¢ is a prime which does not divide
m, then (¢, Q(¢)/Q) is the map ¢ — (2. Tt follows by multiplicativity that (z,Q(¢)/Q) is the map
C— C“b_l, where by b~! we mean an integer which is an inverse of b modulo m.

Define a cycle ¢ to be the formal product of the integer m (that is, ¢(v) = ord,(m)) and the
unique infinite place, and suppose x = 1 (mod *¢). We want to show that (z,Q(¢)/Q) = 1, or in
other words ab=! =1 (mod m). Afterwards, we can enlarge ¢ to be admissible (although it doesn’t
matter for this chapter, actually ¢ is already admissible for Q(¢)/Q. This is 7, Corollary 4).

Write m as pi* - - - p&* for primes p;. For each 7, we have by hypothesis that z —1 € p;'Z,,,. Then
% € Zp, NQ = Zp, (the localization of Z at p;), so x =1 (mod p§*Z,,)). We have isomorphisms

s S
@/mz)" = 1[@/52)" = [ @ /95 L)
i=1 i=1

which send ab™! € (Z/mZ)* to z at each coordinate on the right. Thus ab™! is the identity.
O

An exercise: where did we use the fact that x was positive?

Corollary 10. Let K be a number field, K C L C K((), where { is a primitive mth root of unity.
There is an admissible cycle | for L/ K, divisible at the finite places only by v dividing m, such that
Py is contained in the kernel of the Artin map for L/ K, this Artin map being defined on 1d(I).

Proof. We first prove the case L = K((). Let m be the admissible cycle for Q(¢)/Q in the last
proposition. It is only divisible by places dividing m and by the unique infinite place of Q. Since
the local norms are continuous, it is possible to find a cycle [ of K such that if x = 1 (mod *I),
then Ng/g(z) =1 (mod *m). This does what is required.
The case L C K (() follows easily from what we have just proved.
O

Although all the ramified primes of K must divide m, a prime divisor of m need not be ramified.

So we have yet to find an admissible cycle for K ({)/K which is only divisible by generalized ramified
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places. However, the cycle we have found so far is small enough for us to be able to deduce what

we want about cyclic extensions, which is the next section.

4.4 Admissibility of cyclic extensions

Lemma 11. Let a,r,q > 1 be integers with q prime. There exists a prime number p such that a

has multiplicative order q" in (Z/pZ)*.

For r large, we know of course that ¢" divides p — 1, so also p must be large. So from the lemma
we see that, given 1 < ry € N we can find arbitrarily large primes p such that the order of a is
divisible by ¢".

If G is an abelian group, we say that a,b € G are independent if the cyclic groups they generate

have trivial intersection.

Lemma 12. Let a,n > 1 be integers, with

— 471 T
n_ql ...qss

for distinct primes q;. There exist b, m, with m squarefree and divisible by 2s distinct primes, such
that:

(i) The multiplicative orders of a and b (modulo m) are divisible by n.

(ii) a and b are independent modulo m.

Moreover, all the prime numbers comprising m can be chosen arbitrarily large.

Let p be a prime of K, and ¢ an mth root of unity. Then K(¢) is an abelian extension of K,

and for any K-automorphism of K((), restriction to Q(¢) induces an isomorphism:

Gal(K(¢)/K) = Gal(Q(¢)/K NQ(¢))

If we assume that p does not divide m, then p will be unramified in K(¢). We have

(b K(O)/E)jae) = Niso(p), Q(C)/Q) = (p, Q) /Q)!*/P)

where p lies over p. Since (p, Q(¢)/Q) applied to ( is equal to (P, we conclude that

(b, K(Q)/K)(C) = ¢7'"'" = (M

Alternatively, without the Artin map, this can be seen by the fact that the mth roots of unity are
distinct in Ok (¢) modulo any prime lying over p.
Before the next lemma, we recall a result from Galois theory. It will be used at the end of the

next lemma.
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Fact: let /1, /5 be finite extensions of a field k. The following are equivalent:
(1): [€14s : K] = [€1 : K][l5 : K]

(2): [1ly = 1] = [€2 : K]

(3): [€10s : Lo] = [€1 : K]

These conditions imply that

(4): 61Nty =k

and the converse is true if at least one of /1, /5 is Galois over k.

If 45 is Galois over k, and ¢ is an an intermediate field of ¢; /k, we can use the fact to conclude
that ¢4 N {y = k implies that £; N 0ly = ¢.
For if ¢, N ¢y =k, then £ N ¥y =k, so (4) = (2) tells us that [¢ly : £] = [¢2 : k]. Also (4) = (1)
tells us that [€105 : k] = [¢1 : k][l2 : k]. We then have
[flfg : ki] [61 : k‘][ﬁg : k]

[flfgaz [fk} = [fk} :[Elg][fgk]:[glf]wfgg]

Since ¢1(Lly) = l14o, we get that €1 Ny = £ by (1) = (4).

Lemma 13. Let L/K be abelian, p an unramified prime of K, and S a finite set of prime numbers.
Then there exists an integer m, relatively prime to p as well as all members of S, such that:

(i) LN K(¢) = K, where ¢ is a primitive mth root of unity.

(i) [L : K] divides the order of (p, K(¢)/K).

(#ii) There exists a T € Gal(K(¢)/K), independent of (p, K(()/K), with order also divisible by
[L: K].

Proof. We know that the Galois group Gal(K(¢)/K) is isomorphic to a subgroup of (Z/mZ)*, so
the proof is a straightforward application of the last lemma.

Apply the previous lemma, where a = Np, and n = [L : K|. Take the primes which divide
m to be large enough so that they are distinct from the primes of S, the primes which ramify in
L, as well as the primes over which p lies. Now let ¢ be a primitive mth root of unity. Then p is
unramified in K (¢), and (p, K(¢)/K) has the effect ¢ — ¢VP.

We first claim that L N Q(¢) = Q (which implies L N K(¢) = K by the fact above). This is
true because L N Q((¢) is unramified over Q: any prime in Q which ramifies in K N Q(¢) must also
ramify in K and Q(¢), and we chose m to ensure that there are no such primes.

Thus also KNQ(¢) = Q, so by the remark just above the statement to this lemma, the canonical
inclusion Gal(K (¢)/K) — (Z/mZ)* is an isomorphism. Therefore for any ¢ relatively prime to m,
the map ¢ +— ¢* extends uniquely to a well defined K-automorphism of K(¢). Taking b to be as in

the previous lemma, and letting 7 be the map given by ¢ + ¢, we see that since a = N'p and b are
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independent modulo m and have order divisible by n = [L : K], the automorphisms (p, K(¢)/K)
and 7 are also independent in Gal(K(¢)/K), and their orders are divisible by [L : K].
O

We will shortly deal with many roots of unity at time, so from now on let (,, denote a primitive

mth unity.

Proposition 14. (Artin’s Lemma) Assume the hypotheses of the previous lemma. If L/ K is cyclic,
there exists an m relatively prime to all elements of S, and an abelian extension E of K, such that:
(i) LNE=K.
(it) L(Cm) = E(Gm)-
(i) LN Q) =Q and LN K(¢y) = K.
(iii) p splits completely in E.

Proof. Choose m as we did in the previous Lemma. So already (iii) holds, and we know in this case
that the map
Gal(L(¢)/K) — Gal(L/K) x Gal(K(¢)/K)

¢ = (D1, DK (0))

is an isomorphism. Let o generate Gal(L/K), and let 7 be as in the previous lemma. Let H be the
subgroup of Gal(L(¢)/K) generated by the elements (o, 7) and ¢ = ((p, L/ K), (p, K(¢)/K)).

Our first claim is that ¢ is the Frobenius element (p, L(¢)/K). If v1, ...v, is an integral basis for
L/K, and wy, ..., ws an integral basis for K(¢)/K, then we know that v;w; is an integral basis for
L(¢)/K. Tt follows that ¢ has the effect

d(viw;) = (p, L/K)(v;) - (p, K()/K)(w;) = (vsw;)M P (mod O(y))

which proves our claim.

Let E be the fixed field of H. The fact that (p, L(¢)/K) € H means that H contains the
decomposition group Gal(L(¢)/K),. Hence E is contained in the decomposition field, giving us
that p splits completely in E. This establishes (iv).

If t € LN E, then z is fixed by (o, 7). But (o, 7)(z) = o(z), so o(z) = x. This implies x is fixed
by every element of Gal(L/K), so x € K. This proves (i).

Since E C L((), of course E((n) € L((n). Now E((y,) is the compositum of K((,) and E,
so Gal(L((m)/E(¢m)) is the intersection of Gal(L((n)/K (¢n)) and H. To prove (ii), it suffices to
show that this intersection is trivial. Since L N K ({) = K, restriction to L induces an isomorphism
Gal(L(¢m)/K (¢m)) = Gal(L/K), which means that Gal(L(()/K (Grn)) (interpreted as a subgroup
of Gal(L/K) x Gal(K ((n)/K)) is just Gal(L/K) x {1}.
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To show that Gal(L/K) x {1} intersected with H is trivial, write (p, L/K) = o7 for some j, and
let ¢ = (p,, K({)/K). Suppose there are integers [, ki, ka such that

(Uv l)l = (07 T)kl (Ujv C)kz

Then (1,1) = (o*1 k2=l rhickz) Qo rkick2 = 1. This implies 751 € (¢) N (1) = {1}, so 7% = 1.

The order of 7 divides ki, and is divisible by n, so n divides k;. Similarly n divides ko. Then

1= o,kl-'rkzj—l — 0,—l
so (o,1)! must be the identity.
O

Artin’s lemma extends to the case where we have a finite collection of primes p1, ..., p, of K, all
unramified in L. Use the lemma to find numbers my, ..., ms, divisible by successively large primes,
as well as extensions Fj, ..., E, of K, so that each pair E;, (,,, satisfies the conditions of Artin’s
lemma. Take the numbers m; to be pairwise relatively prime, so that Q(Cmy, -y Cm..) = Q(Cmy oy )-

We quickly recall another result from Galois theory.

Fact: Let ¢4, ..., ¢, be Galois over k. Restriction induces an injective homomorphism
Gal(ly -4, /k) — Gal(¢1/k) x -+ x Gal(¢,./k)
If for each 1 <4 < r, it holds that £;N(¢y - - - £;_1€;11 - - - £,) = k, then the injection is an isomorphism.

This is exactly the case here. We have that L N Q((m,...m,.) = Q, since the intersection
is unramified over Q. It follows that K = L N K(Cnyoom,) = L N K(Cnyy-ers Cm,. ). Similarly
Q(Gmy )NL(Cmgs -+, Cm,.) = Q, the intersection being unramified over Q, from which we get K ((n, )N
L(Cmys s Cm,) = K.

Therefore if we set .Z = L(Cmy s vy Cm,. ), then £ is the compositum of L and K (¢, ), ..., K (¢m,.),
and

Gal(Z/K) 2 Gx Gy x -+ X G,

where G = Gal(L/K) and G; = Gal(K((n,)/K). Note that by our choice of m;, we can identify
G; with the Gal(Q(¢;)/Q), which is isomorphic to (Q/mQ)*.
Now, we know that for the Galois extension L((,)/K, E; was constructed to be the fixed field
of
H; C G x G; 2 Gal(L((m,)/K)
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where H; was generated by (o,7;) and (p, L(¢m,)/K). In turn, Gal(L(¢y,)/K) is the quotient of
Gal(Z/K) by

Gal(Z/L(le)) = {1} X G1 X X Gi—l X {1} X Gi+1 X o+ X Gr
so one can check that E; is also the fixed field of
Hi XG1 Xoee XGi—l XGi+1 Xoee XGT QGal(ﬂ/K)

Lemma 15. Let E=Fy---E;. Then LNE =K, and Gal(L/K) = Gal(LE/E).

Proof. The second claim follows from the first, using a standard result from Galois theory. Now,

Gal(Z/L N E) is equal to the subgroup of Gal(.Z/L N E) generated by G and Gal(¥/E) =
Gal(Z/E;) = () H;. Check that

=1 i=1

(2

3

(o,71,...,7) € Gal(Z/E)

Also (1,71,...,7), hence (1,7, ..., 77~ 1), is in Gal(Z/L). We then have

(0,1,.,1) = (0,71, 0y ) (1,774 727 € Gal(Z /LN E)

This shows that Gal(¥/K) C Gal(¢/LNE),so LNE C K. Hence LNE =K. O

In Proposition 7, we deduced the kernel of the Artin map by showing that Py,91(m) was contained
in it. To deduce the kernel of the Artin map for a cyclic extension, we will prove the opposite

inclusion, and use the global cyclic norm index equality.

Theorem 16. Let L/K be cyclic, and § the conductor of L/K. The kernel of the Artin map on
Id(f) is equal to PyN().

Proof. Let f be the conductor of L/K. Let ® : Id(f) — Gal(L/K) be the Artin map. By the cyclic
global norm index equality, that is [L : K] = [Id(f) : P0(f)], it suffices to show that Ker ® C Py(f).
So let a = pi* - - - p3~ be in the kernel of the Artin map on Id(f), for p; distinct primes of K which
are unramified in L. Find integers my, ..., m, which are pairwise relatively prime and divisible by
large primes, along with fields E, F1, ..., E,. so that the conditions following Artin’s lemma hold.
Now E; C LE; C E;(¢m,), so by Proposition (?) there exists a cycle ¢; of E;, admissible for
LE;/E;, such that the kernel of the Artin map of LE;/FE; on Id(c;) is equal to P, Ny g, /g, (c;). In
the proposition, ¢; is only divisible by prime ideals of F; which divide m;. But there is no problem
with enlarging ¢;, in particular to make it divisible by places lying over all those which divide f.
The identity for the kernel of the Artin map will still hold. If ¢; is chosen large enough, we will
have by the contiuity of the local norms that 3 =1 (mod *¢;) implies Ng, ,(8) =1 (mod *f).
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Let o generate Gal(L/K), and let d; be an integer such that (p;’, L/K) = o%. We know that
restriction to L induces an isomorphism Gal(LE/FE) = Gal(L/K), and the Artin map on LE/FE is
surjective, so we may find a fractional ideal bg of E, relatively prime to § and all the m;, such that
o is the restriction of (bg, LE/E) to L. But then o = (b, L/K), where b = Ng, i (bg). This gives
us

(pi*, L/K) = (b%, L/K)

Now b, being a norm from F to K, is also a norm from F; to K. And p;, splitting completely in

S

FE;, is trivially a norm from E; to K. Hence pi"’b_di is equal to Ng, sk (J;), for some fractional ideal

J; of E;. Necessarily J; is relatively prime to f and all the m;. And
1= (pjib~% L/K) = (N, k(Ji), L/K) = (Ji, LE; | Ey)|1,

so (J;, LE;/E;), being completed determined as an automorphism of LE; by its effect on L, must
be the identity. Thus J;, being in the kernel of the Artin map on Id(c;), must be equal to

BiNLE, /5, (B:)

where 8; =1 (mod *¢;) and B; is relatively prime to § and all the m;. We now take the norm back

down to K to get
piiph = Ng,/k(Ji) = Ng,/k(Bi)NE, )k (NLE, /E, (Bi))

with Ng, /x(8;) =1 (mod *f) and
Ng, )k (Npg,/5,(Bi)) = Nog,/k(Bi) = Nk (Nog, /0.(Bi)) € N(f)
Now just multiply all the p;*b% together to get that
ab® Tt e P()

We’re almost done. Since
1= (a,L/K) =gttt

we have that n = [L : K] must divide dy + - - - + d,.. Hence b%* "+ is a norm from L, necessarily
in N().
O
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4.5 The Artin map for ideles

Since we have proved what we wanted for cyclic extensions, we can now do so for arbitrary abelian

extensions.

Theorem 17. Let L/K be abelian, and m an admissible cycle for L/K. The Artin map, as defined
on Id(m), has kernel Poy(m), and

[L: K] = [Ix : K*Np g (I1)] = [Id(m) : Pad(m)]

Proof. Proposition 8 and Theorem 16. O

Now we can define the Artin map on ideles. Let m be admissible. Recall the definition of Hy,
(Section 1). We first define
& : Hy — Gal(L/K)

by
)= [ (o L/E)"*
vtm,v<oo
Of course this is a finite product. There is an obvious analogy between the Artin map on Id(m)
and that on H,,, and we can immediately transfer some results over. For example, ® is surjective,
and by Theorem 16 we can see that ® is trivial on K* N Hy,.

We will now extend ® to all of Ix. Let o be an idele. By Lemma 3, there is an z € K*
and a § € Hy such that @« = z8. We then define ®(a) to be ®(8). This is well defined: if
x1 € K*, 01 € Hy, and zf8 = x167, then @(ﬂﬁfl) =1, because 56{1 = xacfl € K*N Hy.

Furthermore, ® is independent of the choice of admissible cycle m, because if ¢ is another
admissible cycle, then Hy, N H. = H{, where [ is the least common multiple of m and ¢, and this is

admissible.

Theorem 18. The Artin map ® : Ix — Gal(L/K) has the following properties:

(i) ® is surjective with kernel K* Ny r(Ir).

(i) If v is unramified, and © € K, then ® maps x (interpreted as the idele (...,1,2,1,...)) to
(pu, L/ K)ot ().

(iii) ® is continuous.

(iv) © is the unique continuous homomorphism Ix — Gal(L/K) which is trivial on K* and
satisfies (ii).

Proof. (i) and (ii) follow from looking at the isomorphism given in Theorem 6, but it is also not
difficult to prove these directly using Theorem 16. (iii) follows from (i), since K*Np k(1) is open

in HK
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For (iv), let A : Ix — Gal(L/K) be a homomorphism satisfying (i), (ii), and (iv). Each K}
inherits its topology as a subgroup of I, so we can restrict A to a map A, : K — G(L/K). Then
A is just the product [[ A,. When v is unramified and finite, A, : K} — Gal(L/K) does what we
want by (iv). '

When v is ramified and finite, restrict A, to a continuous map O} — Gal(L/K). The preimage
of {1} is an open and closed subgroup of OZ, necessarily containing 1+ p? for some n > 1. We can
enlarge n to a number n, for which 1+ pJ'* is also contained in the group of local norms.

When v is infinite, the preimage of 1 under the map K} — G(L/K) is an open and closed
subgroup of K. If v is real, this can either be all of K or (0,00). If v is complex, this has to be
all of K.

In any case, we can restrict A to a homomorphism on
/
He=[[wo0 ][] 5:
vlc vte

for a suitable admissible cycle ¢, and here A agrees with the global Artin map. Since H . K* = I,
A agrees with the global Artin map everywhere by (i).
O

Last, we will restate Proposition 1 for the idelic Artin map. The assertions are immediate.

Theorem 19. Let L/K be abelian with Artin map ®p ) : Ix — Gal(L/K). The following hold:

(i) If o is an embedding of L into Q (not necessarily the identity on K ), and x € I, then

Pyr/ox(0x) = 0Pp ) (x)0

(i) If L' is another abelian extension of K containing L, and x € Ik, then the restriction of
@ k() to L is @k (x).

(i) If E is a finite evtension of K, and y € lg, then the restriction of ®rg/p(y) to L is
1k (Ne/K(Y)-

(iv) If E is an intermediate field of L/K, and y € 1, then ®1/5(y) = ®r/k (Neg/k(y)).
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5 Class Groups and Class Fields

In the last section, we went to great lengths to define an idelic Artin map

for L/K. This homomorphism is surjective, and its kernel is exactly K*Np, /x(IL). Since for w | v
the local norm maps Lj, onto an open subgroup of K, one can see that Ny, (Iz), and moreover
K*Np/k(IL), is an open subgroup of I containing K*. We will show in this chapter that every
open subgroup of [ containing K* is obtained from an abelian extension in this way.

In fact, the mapping

L— K*NL/K(HL)

is an order reversing bijection between finite abelian extensions of K and finite index open subgroups
of I containing K*. This is a remarkable fact, for it asserts that all information about abelian
extensions of K are predicated on K’s local information.

In Proposition 1, we will establish the injectivity of L — K*Np k(Iz). Given L, we will refer
to the kernel of the Artin map of L/K, i.e. K*Np x(IL), as the class group of L, and L as the
class field of K* Ny x(Iz).

Proposition 1. Let L1, Lo be finite abelian extensions of K with class groups Hy, Hs.

(i) Hy N Hy is the class group of LiLs.

(i) HyHs is the class group of L1 N Lo.

(iii) Ly C Lo implies Ho C Hy

(iv) Hy C Hy implies Ly C Lo.

(v) If E/K is finite and L/K is abelian with class group H, then NE/lK(H) is the class group
of LE/E.

Proof. (i): Consider the composition
PriLy/K j
HK —_— Gal(Lng/K) — Gal(Ll/K) X Gal(Lg/K)
where j is the injection o — (0|L1 , O'|L2). By the consistency property,

Jo (DL1L2/K($) = (¢L1/K(m)7 (DL2/K('T))

so (x,L1Ly/K) =1 if and only if (x, L1/K) and (z, Ly/K) are both 1. Thus H; N Hy is the kernel
of the Artin map for LiLy/K.
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(ii): Let N be the class group of L N Ly. Consistency (4, Proposition 1) tells us that Hq Hs is

contained in N. Now

[]IK : Hl][HK : HQ] o [Ll : KHLQ : K]

I : HHHo| = —
[T + Hy H| Ik : Hy N Hy) [L1Ls : K]

:[LlﬂLQZK]

=[Ix : K*Np,ar,/x (I, nL,)]

which gives us equality. We have used (i), as well as Galois theory and basic group theory.
(iii): Suppose that Ly C Lg. Since

Nr,yk(Ie,) = Np,yk(Npyyz, (In,)) € Ni,yx(Ie,)

multiply both sides by K* to get Hy C H;.
(iv): If Hy C Hy, then Hy = H; N Hay, so Hs is the class group of LiLs by (i). Thus
K*Nyp,/k(Ip,) = Ho = K*Np,1,/k (I, L,). Now the global norm index equality tells us that

[Lg : K] = []IK : H2] = [L1L2 : K]

S0 Lo = L1Ly, or Ly C Lo.
(v): An element in Gal(LE/FE) is the identity if and only if its restriction to L is the identity.
But for any z € g,
(z, LE/E)|L = (Ng/k(z), L/K)

so the assertion is obvious. O

We are a long way from proving the surjectivity of L — K*Np k(I1), but we can already find
class fields of large subgroups of Ix.

Lemma 2. Let H C Hy be open subgroups of I containing K*. If H has a class field, then so
does Hy. Specifically, if H = K*Np k() for L/K abelian, then Hy is the class group of the fived
field of H under the image of the ®p .

Proof. Let Ly be the fixed field of @1, (H1), so @15 (H1) = Gal(L/Ly). Since H; is a subgroup
containing the kernel of @, we have H; = <I>Z/1K(<I>L/K(H1)).

Now @,k is the restriction of @1,k to L1. So an z € I lies in the kernel of ®; ,x if and
only if the restriction of ®,/x(x) to Ly is trivial, if and only if &,k (x) € @1,k (H1), if and only
if v € Hy. O
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5.1 Kummer Theory

We will briefly introduce the notion of duals in abelian groups, which is similar to that of dual
vector spaces. There is a theory of duals over arbitrary modules, but there is no reason for us to

introduce such a general concept. Let A, B be (multiplicative) abelian groups, and let
T:AxB—C"

be a bilinear mapping. This is to say that 7 is a homomorphism in each slot (obviously this is
different from saying that 7 is a homomorphism from the product group). Normally, the dual of A
(regarded as a Z-module) is understood as the group Homy (A, Z), but here we will define the dual
of A to be Homgz (A, C*). Denote the dual by A*.

Lemma 3. If A is finite, then A* = A.

Proof. 1f |A| = m, then a homomorphism from A into C* is the same as a homomorphism into the
group of mth roots of unity, which is cyclic of order m. So A* = Homy(A,Z/mZ). We know that
Homy(Z/nZ,Z/mZ) = Z/dZ, where d is the greatest common divisor of m and n. Also finite direct
sums commute with the functor Hom(—,Z/mZ). It follows that if we decompose A into a direct

sum of prime power cyclic groups Z/p®Z with p° | m, we obtain the given isomorphism. O

Let n be an integer. We say that a (multiplicative) abelian group G has exponent n if 2™ =1
for all x € G. An abelian extension of fields is said to be of exponent n if its Galois group is.

Let K be a number field, which contains all the nth roots of unity. If a € K, and ¢/a € C is an
nth root of a (that is, a root of the polynomial X™ — a), then the remaining roots of X™ — a are
exactly /aC’,i =1,2,...,m — 1 where ¢ € K is a primitive nth root of unity. So given an a € K*,
either all or none of its n nth roots also lie in K*.

The set

K" ={2" 2 € K"}

is a subgroup of K*. It is the set of a € K whose nth roots all lie in K. Suppose D is a subgroup
of K* with K*" C D and [D : K*"] finite. Let oy, ..., a,, be a set of coset representatives for K*"
in D, with /a; € C any nth root of a;. We then set

Kp = K(3/a5, ..., Yam)

Since the nth roots of unity lie in K, we see that Kp/K is Galois, and is the same field regardless
of the choice of nth root of any «;. Furthermore each K({/c;), and hence the composite Kp, is a
finite abelian extension of exponent n of K (why?).

Finally, the choice of representatives «; does not matter, because in fact Kp is equal to K
adjoined with all the nth roots of all the elements of D. For if {/a is an nth root of some a € D,
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we can write a = xq; for some i and some z € K*". Then {/a is an nth root of = times an nth
root of oy, both of which lie in Kp.

Lemma 4. Conversely, any finite abelian extension of K is equal to Kp for some subgroup
D D K*™ with [D : K*"] finite. The abelian extensions of K are then in bijection with the given

subgroups.

Proof. If L/K is abelian of exponent n, then L is a finite compositum of cyclic extensions, and
every cyclic extension of K can be obtained by taking an nth root of an element in K (why?). So
L = K(y/oq,..., {/ay,) with a; € K. If we then let D be the subgroup of K* generated by K*™ and
a1, ..., 0y, then [D : K*"] is finite with L = Kp.

We have established that the mapping D — K is surjective, and injectivity is pretty clear. [

A pair (D, Kp) can also be understood as a pair (G, H), where G = Gal(Kp/K) and H =
Kp/K*". For 0 € G and d € H for d € D, we will define a bilinear mapping

7T:Gx H—=C*

by 7(0,d) = "7\;‘/5, where {/d is an nth root of d. The choice of root ¥/d does not matter: any other

nth root of d is equal to ¢* ¥/d, and o(¢*) = ¢*. The choice of coset representative similarly does

not matter.

Theorem 5. There are natural isomorphisms
G=H"

and
H=>=G*

Thus the groups G, H and their duals are all isomorphic to each other, and so

[Kp:K]|=[D: K™

Proof. Given o € G, we define o* € H* by the formula 0*(d) = 7(0,d). To show this homomor-
phism is injective, suppose that ¢* is the identity of H*, which is to say that 7(o,d) = 1 for every
d € H. In other words, o ¥/d = {/d for every d € D. Since Kp is generated by all nth roots of all
elements of D, it follows that o is the identity on Kp, which implies o = 1 since Kp/K is Galois.

The injection H — G* is similarly established. Combining a pigeonhole argument with Lemma
1, we see that the maps are also surjective, and we obtain the given isomorphisms.

O
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5.2 The existence theorem

Proposition 6. Let K be a number field which contains all the nth roots of unity, and S a finite
set of places of K containing all the archimedean ones as well those which divide n. Also assume
S is large enough so that K*13- = . If x is an nth power in K for allv € S, and ord,(x) =0

for allv & S, then x is an nth power in K.

Proof. Let L = K({/x) for some nth root {/z of x. Let v be a place of K which is not in S, and w
a place of L lying over v. We claim that v is unramified in L. We can identify L, = K, (/). Since
x is a unit at v, /= is an integral generator of L,,/K,, so we can apply the theory of the different.
Let f(X) = X" — z, and pu(X) the minimal polynomial of {/z over K,. Then u(X) divides f(X),
hence 1/ (/z) divides f'(¥/z) = n/z""'. The different 2(L,,/K,) is the ideal of O,, generated
by all ¢’'(5), where 8 € O, L, = K,(f), and g is the minimal polynomial of 5 over K,. Then

n{/a" 'Oy C U (a)Or € 9(Lu/K,)

0 < ordy 2(L/K) < ordy(n /27" ") = ordy(n) + (n — 1) ordy (/)

with ord,(n) = ord,(n) = 0, since all the places corresponding to primes dividing n are in S, and
ord,, (¥/x) = 0 since z is a unit in OF, and hence {/z is a unit in OF. Thus ord,, 2(L/K) = 0,
which implies that v is unramified. Thus the local norm O}, — O; is surjective by the local norm
index inequality.

Now, if v is in S, the fact that z is an nth power in K means that L,, = K, for any w | v. Thus
v splits completely, and in fact we have shown that L/K is an unramified extension (so if K = Q
and n = 2, we are already done). So the local norm N/, : L, — K, is surjective (actually, the

identity map) for v € S. We have ultimately shown that 13- C N, /i (I), which implies
Ix = KI5 C K*Np x (1)

and hence I = K*Np,/k(I). Thus L = K by the global norm index equality.
O

Assume the hypothesis of the previous proposition. Recall that the S-units of K, denoted Kg,
is the group consisting of all z € K* for which ord,(z) = 0 for all v ¢ S. If we identify K* as being
contained in the ideles, then Kg is the same thing as K* N ]If(. Also, let

B=[[ k"] o;

veS vgS
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Proposition 7. Assuming the hypothesis above, let s be the cardinality of S, and L = K({/x : x €
Kg). Then L is the class field of K*B, and [L : K] = n®.

Proof. The field L is also equal to K adjoined with all the nth roots of K*" Kg, so Kummer theory
tells us that L/ K is Galois of exponent n with [L : K] = [K*"Kg : K*"]. Obviously K¢ = KgNK*",

and using the second isomorphism theorem we get
K*nKS/K*n = Ks/(K*n N Ks) = KS/Kg'

Let s be the cardinality of s. It is a corollary of the unit theorem (see 1, Corollary 3) that
[Ks: Kg] =n®.

We want to show that K*B = K* Ny /i (Ik). First, we claim that B and hence K* B is contained
in K*Np,/k(Ix). To see this, note that by the same argument as in the previous lemma, any v ¢ S
is unramified in L. For L is a finite compositum of fields of the form K (/z) for z € Kg, we proved
that v was unramified in K({/z), and a finite compositum of unramified extensions is unramified.
Thus the local norm N,,/, : Oy, — O} is surjective for v ¢ S. Also for v € 5, if a € K} is an nth
power, the fact that Gal(L/K) has exponent n means that « (viewed as an idele) lies in the kernel

of the Artin map, i.e. in K*Np x(Iz). It follows that for 2 € B, we may write x as

(0/117 ...,Oé?, Nw1/v1 (av1)7 Nw2/v2 (041,2), )

(v1,v2, ... are the places not in S), and this is clearly contained in K* Ny x(I1).

Now that we have shown one inclusion, equality will follow once we show that the index [Ix :
K*Blisequal to [l : K*Np i (I1)] = [L : K] = n®. The previous lemma tells us that BNK* = Kg.
Also I3 N K* = Kg, so [I3 N K*: BN K*] = [Ks : K2], which as we said equals n®.

Also, I3, modulo B is clearly isomorphic to [[ K}/K:™. Since K contains the nth roots of

veS
unity, the formula from 3, Theorem 10 tells us that [K : Ki"] = IIlelv' We specified that n is a

unit outside of S, so the product formula tells us that 1 = [] ||n||,. Hence
veS

2
[HS.B]:H n n2s
%

LLjap,

‘We then have

IS : B 2s
lx : K*B] = [K*I§ : K*B] = — Iy : B] ==
IS NK*:BNK* n°

Corollary 8. Let K be a number field which contains the nth roots of unity, and H an open
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subgroup of I which contains K*. If Ix /H has exponent n, then H has a class field.

Proof. The nth power of any idele will be in H. Take S, B as in the previous proposition. Recall
that we may embed K in Ix by the mapping = — (...,,1,2,1,...). Under this mapping, we have
O} C H for almost all v (why?), so we may enlarge S to include all those v for which this is not

the case. Let S = {v1,...,v¢}. Given an z € B, we may write x as

t
Y- 1_[(7 1,2y, 1,...)

=1

where y, =1 for v € S and y, € O} for v € S. The elements z,, are nth powers, so we can plainly
see that x € H. So B, and hence K*B, is contained in H. By Lemma 2, the fact that K*B has a
class field means that H also has one.

O

We're now ready to prove the surjectivity of the mapping L — K*Ix. But before we do, we
prove another result which will be used in local class field theory. Although logically the statement
of following proposition belongs in the next section, its proof is so similar to the arguments in

Proposition 7 that we place it here.

Proposition 9. Let L/K be abelian with class field H, and vo a place of K for which K; C H.
Assume that K contains the nth roots of unity and Gal(L/K) = Ix/H has exponent n. Then vg
splits completely in L.

Proof. The proposition is still true if we don’t assume that K contains the nth roots of unity or
that L/K has exponent n. The general case will be proved with local class field theory, and Lang’s
proof (which we are following) requires this special case.

Let S be a finite set of places containing vy, all the archimedean and ramified places, all those

dividing n, and enough other places so that Ix = K *]If(. We let

B =kK; x [ E"x]]o;
ves\{vo} vgs

Bo=K;"x [] Kix][o;

veS\{vo} vES
B=][&"1]0o;
veS vgS
We see that By N By = B. We will use the same computations involving B which we did in

Proposition 7. Since Ix/H has exponent n, we have K*B; C H (just look at it locally), so the
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class field L to K* By contains L. We will construct L explicitly and show that vy splits completely
here. What we want will follow: vy will split completely in L.
Let D; = K*N By and Dy = K* N By. We have

KiCDINK*" CBNK*" =K2

where the last equality follows from Proposition 6. Hence D; N K*" = K§, and by an identical
argument, Dy N K*" = K3g.
Now, consider the fields K({/D;) and K({/D3). We have

[K( \ DQ) : K] = [DQK*n : K*n] = [DQ : D2 ﬂK*n] = [DQ : Kg]

where the first equality is the correspondence from Kummer theory. By an identical argument,
[K(¥/D1): K] =[D; : KgJ.

We let H; be the class field of K(3/Dy)/K. By a standard argument, for example the one
invoked in the proof of Proposition 7, K({/Dy)/K is unramified outside of S. Also, vg splits
completely in K ({/Dz). This is clear, because K,,(/D3)/K,, is obtained from K,, by adjoining
roots of the equation X™ — x, where © € D5 is already an nth power in K,,. Thus K*B; C H;
(just look at it locally; clearly K is contained in the kernel of the Artin map, since any element

therein is trivially a local norm). Thus

[K( \ Dg) : K] = [HK : Hl] < [I[K : K*Bl}

[]IKtBl]
[K* N3 : K*N By

= [K*'I} : K*By] =

Now I3 /By is clearly isomorphic to  [[  K;/K:™. Also,
veS\{vo}

[KS Kg] - n®

TS . _ . _
(K" NIk : K" NBi] =[Ks: Di] = Dy : K7 [K(VDy) : K]

where s is the cardinality of S. The numerator of this last expression comes from the unit theorem,
and the denominator we just proved from Kummer theory. Thus
(K5 K
(K(3/Ds): K] < [Ig : K*By] < “S5\d

[K(¥/D1) : K]

nS

By an identical argument, K(3/D;)/K is unramified outside of S, with all the places in S\ {vg}
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splitting completely, so the class field of K({/D;)/K contains K* B, getting us

(K5, - K3

[K(3/D2) : K]

[K(\/E)K] <[Ig: K*Bsy] =

nS

By Proposition 7, [] [K} : K;"] = n?*, so we multiply to get
veS

[K(Y/D3) : K|[K(/D1) : K] < [Ix : K*Bi][lk : Ba] < [K(3/Dy) : K||[K(¥/D5) : K]

so we must have equality. Not only above: we can see that every inequality we have written in the
proof must be an equality. In particular, [Ix : H;] = [Ix : K*Bj], so K*B; must be the class field
of K({/D3). Since vy splits completely in K (3/Dz), we are done.

O

Theorem 10. (Takagi existence theorem) Let K be a number field, and H an open subgroup of I
containing K*. Then H has a class field.

Proof. We prove a special case first. Suppose L is a cyclic extension of K. Since H contains K™,
the preimage Ng/lK(H) is an open subgroup of Iy, containing L*. We claim that if Ng/lK(H) has a
class field (over L), then H will also have a class field over K. For suppose F'/L is the class field of
Npji(H), 50 Ny (H) = L* Ny, (Ir). We have

Nr/k(Ir) = Noyk(Npyp(Ir)) € Ny (L*Npy(Ir)) = NL/K(NZ/IK(H)) cH

and so K*Np/k(Ip) € H. We will want to use Lemma 4 to conclude that H has a class field
(namely the fixed field of the image of H under the Artin map ®p/ k). But we can only do this we
establish that F'/K is abelian.

To show F/K is Galois, let ¢ be a K-embedding of F' into C. It suffices to show that ¢(F) = F.
Since ¢ maps L to itself, it also uniquely extends to a K,-automorphism of F,, for any extension
of places w | v. It is easy to see then that qSN;/lK(H) = Ng/lK(H). We remarked earlier that
gZ)NL_/lK(H) will be the class field of ¢(F') over ¢(L) = L. By uniqueness, it follows that ¢(L) = L.

To show F/K is abelian, we already know that Gal(F'/L) is abelian. So it suffices to show that
To = oT, where 7 is an arbitrary element of Gal(F/L) and o is an element of Gal(F/K) whose
restriction to L generates Gal(L/K). The Artin map is surjective, so we can find an x € I, for
which 7 = (z, F/L). The idele norm Ny i of o(z)/ris 1 € H,s0 x € NL_/lK(H). But NL_/lK(H) is
the kernel of the Artin map ®r/z,, so (o(x), F/L)) = (x, F/L). Thus:

oro ' =o(x,F/L)o" = (o(z),0(F)/o(L)) = (¢(x), F/L) = o
For the general case, we know that I /H is finite, so it must have some exponent n. Letting ¢

105



be a primitive nth root of unity, there exist fields Fi, F5, ... such that each extension in the chain
KCFC-- - CF =K«

is cyclic. The group H; = le(lg)/K(H) is an open subgroup of Ix () which contains K(¢)*, and
furthermore one can see that I (c)/H; has exponent n. Thus H; has a class field over F. = K (()
by Corollary 6. But

Hy = NF’:/FPI(N;T:/K(H))

with F,./F,_ cyclic, so the argument we have given just above shows that N ;Tl_l / s (H) has a class
field over F,_1. But

—1 — —
NF,.,I/K(H) = NFT.I,I/F,.,Z (NF,.l,Z/K(H))

with F,._q/F,._s cyclic, so Nb?l_Q/K(H) has a class field over F,._,. Iterating this argument, we
obtain a class field for H.
O
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6 Some local class field theory

In global class field theory, one gives a correspondence between abelian extensions of a given number
field K and open subgroups of the ideles which contain K*. Local class field theory gives an
analogous correspondence between abelian extensions of a given local field and open subgroups of
its units. We will not prove all the main theorems of local class field theory. We will, however,
prove the main results about local norm index equalities.

To begin with, we recall that every finite extension of @, occurs as the completion of some
number field. In fact, every abelian extension of p-adic fields E/F can be obtained from an abelian
extension of global fields. To see this, let Ly be a number field whose completion at some place wq
is E. We can regard Ly as a dense subfield of E. Then let L be the composite of all oLy, where
o € Gal(E/F). Then L is also dense in E, and if we take K to be the fixed field of Gal(E/F') in L,
then K will be dense in F'. Then wq lies over a place v of K for which K, = F, and we also have
L,, = E for any w lying over wy. Work out the details as an exercise.

Thus to discuss abelian extensions of local fields, we will begin by taking abelian extensions of

number fields. This allows us to bring in machinery from global class field theory.

Lemma 1. Let L/K be an abelian extension of number fields. If v is a place of K which splits
completely in L, then K C K*Np i (I1).

Proof. For a place w of L lying over v, we have L,, = K,, so the local norm N,,/, is just the identity
map. Thus any z € K is equal to the norm of the local idele (z,1,...,1) € @ L%,.

wlv
The converse is also true, but it is harder to prove. We do it later this in this section. O

Just as we have defined a global Artin map @,k : [x — Gal(L/K), for places w/v we will
define a corresponding local Artin map &/, : K; — Gal(L,/K,). There is a natural way to

define this from the global map, namely via the composition
K = Ix — Gal(L/K)

The Galois group of L, /K, is essentially just the decomposition group Gal(L/K),, each K-
automorphism of L therein extending uniquely to a K,-automorphism of L,,. Our first goal is
then to show that the above composition actually maps K into the decomposition group. This is

done as follows:

Let Z be the decomposition field. For an z € K, we want to show that (z,L/K) is in

v

Gal(L/K),. Since v splits completely in Z, x = N,k (y) for some y € Iz. But then

(2. L/K) = (Ny/x (). LZ/K) = (y,L/Z) € Gal(L/Z) = Gal(L/K),
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When v is unramified, it is easy to see what the Artin map does: there exists an admissible
subgroup W depending on a set S containing only ramified places, so @/, (um;") = (pu, L/K)™.
When v is ramified, the local map is more mysterious. Given an z € K

v
which the product xy lies in H, so then ®(x) = [] (po, L/K)°"d @) Other treatments of local

class field theory give a more explicit description of the local Artin map.

one finds some y € K, for

The main result proved in the next theorem immediately gives the full complete splitting theo-

rem. But its proof makes use of the special case we just considered.

Proposition 2. Let L/K be abelian, v a place of K. The local Artin map K, — Gal(L/K), is

surjective.

Proof. Let Z be the decomposition field of v in L/K. If the image of K under the Artin map is
properly contained in Gal(L/K), = Gal(L/Z), then the fixed field of this image properly contains
Z. We may then find a subfield F' of this latter fixed field which has prime degree p over Z.

Let vg be a place of Z lying over v. Since v splits completely in Z, the fields K, and Z,, are
the same.

It follows that if the local Artin map K — Gal(L/K), is not surjective, neither is the com-
position Z; — Iz — Gal(L/Z). Hence neither is the composition Z; — Iz — Gal(F/Z). But

Gal(F/Z) has prime order, so the map we just mentioned is trivial.

*
V1

Now, let ¢ be a primitive pth root of unity, and vy a place of Z(¢) lying over vo. If 2 € Z(¢)
then the restriction of (x, F'(¢)/Z(¢)) to F is

(Nz(¢)/z(@), F/Z) = (Ny, o, (2), F/Z) = 1

Thus (z, F({)/Z(€)) is trivial on F' and, since it already fixes ¢, it must be the identity on F(().
Hence the Artin map ®p(cy/z(¢) is trivial on Z((); , i.e. Z(();, is contained in the class group of
F(O)/2(0).

Of course Z(¢) contains the pth roots of unity. And Iz modulo Z(¢)*Np () zc)(Ir(¢)) has
exponent p. This is clear, because any extension of completions of F({) over Z(¢) has degree either
1 or p. So we may apply the case of the splitting theorem we just proved above to get that v; must
split completely in F'(¢). Now, e,(F/K) = e,,(F/Z) divides

eo(F(C)/Z) = en(F(C)/Z(C)e(2(C)/2) = e(Z(C)/2)

which itself divides [Z({) : Z], which divides p — 1. But e, (F/Z) is either 1 or p, so it must be 1.
Similarly the inertia f,(F/Z) is 1. Thus v splits completely in F', which is a contradiction, since Z
is the largest subfield of L in which v splits completely.

O
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Corollary 3. (Complete splitting theorem Let L/K be an abelian extension, and v a place of K.
Then v splits completely in L if and only if K is contained in the class group of L/ K.

Proof. We already proved the implication =. Conversely if K/ is contained in the class group of
L/K, i.e. the kernel of the Artin map @, then (z, L/K) = 1 for all z € K. But every member
of Gal(L/K), is mapped to by some xz € K by the previous theorem. Hence Gal(L/K), is trivial,
i.e. v splits completely. O

Corollary 4. For an abelian extension of p-adic fields K/k, we have

Proof. This local principle is proved using global arguments, so let us write our extension of fields
L, /K, as we have been instead of K/k. We already have ”half” of each of the three claims, namely
the local norm inequalities and the fact that N/, (LZ%) is clearly contained in the kernel of the
Artin map. By the surjectivity in Proposition 12 we have:

[Lw : Ky] = | Gal(Ly/Ky)| = [K7 : Ker @y, ] < [KJ 0 Ny o (Ly,)] < Lo 0 K]

v

This also shows that N/, (L;,) is exactly the kernel of the local Artin map. O

Just as we have formulated a local condition for v to split completely, we also have a local

condition on when v is merely unramified.

Theorem 5. The image of O} under the local Artin map is the inertia group. Moreover, if H =
K*Np/k (L), then v is unramified if and only if O C H.

Proof. Let T be the inertia field, and w/v'/v an extension of places for K C T C L. All the
ramification of v occurs in the extension L/T, which has degree e(w/v) = e(w/v"). Hence if we take
a prime element in L,, and apply the norm N, /., we obtain an associate in O, of its e(w/v’)th
power, which is prime in O,s. So there is a uniformizer 7 of T which is a norm, i.e. which is in the
kernel of the local Artin map T, — Gal(L/T'),» = Gal(L/T) (all the splitting happens in T/ K, so
Gal(L/T) is its own decomposition group with respect to v’).

We know that the local Artin map is surjective, and here the map is trivial on a uniformizer.
It follows that surjectivity is accomplished by the units O}, i.e. the image of O}, under the Artin
map of L/T is Gal(L/T). But the image of O}, under the Artin map of L/T is the same as the
image of N,k (O},) = Ny /,(O;,) under the Artin map of L/K. The fact that v is unramified in
T gives us that N, ,,(O;,) = O3, so the first claim is proved.

For the second claim, the fact that the mapping from O} to the inertia group is surjective means

that O} is contained in H if and only if the inertia group is trivial, if and only if v is unramified. [
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Corollary 6. For an abelian extension of p-adic fields K/k, we have
[0k : Nii(Ok )] = e(K/k)
The main result of local class field theory (if we avoid infinite extensions) is this:

Let E be a p-adic field. If F is a finite abelian extension of E, there is a well defined surjective
homomorphism E* — Gal(F/E), called the local Artin map, whose kernel is Np,p(F*). The map
F — F* gives an order preserving bijection between open subgroups of OF and finite abelian exten-

sions of E.

As far as we know, we cannot quite prove the main result of local class field theory using the
global ones. Everything we are doing is in terms of global parameters. We obtain the local Artin
map for an abelian extension of local fields E/F by assuming E = L,,, F' = K,,, and L/K abelian.
The local Artin map F* — Gal(E/F) is then just the restriction of the global Artin map from
L/K. So we have the immediate problem of showing that this local map is independent of the
global parameters. We were unsuccessful in proving this. Let us state the result we want.

Theorem 7. Let E/F be an abelian extension of p-adic fields. The Artin map ®p/p : F* —
Gal(E/F) is defined by finding an abelian extension of number fields L/K and an extension of
places w | v such that L, = E and K, = F. The Artin map is independent of the chosen global
extension L/K.

The usual way of resolving this problem is to develop local class field theory in a purely local

fashion, e.g. Lubin-Tate formal groups. Assuming this is done, we easily get the following results:

Proposition 8. Let E/F be an abelian extension of p-adic fields. The following properties hold:

(i) If o0 : E — F is an embedding (not necessarily the identity on F), and x € F*, then
Qop/or(0x) = O"bE/F(.I)O’_l.

(ii) If E' is an abelian extension of F' containing E, and x € F*, then the restriction of ® g /(1)
to E is ®(E/F).

(iii) If M is a finite extension of I, and y € M*, then the restriction of ®np/n(y) to F is
Qg r(Nayr(y))-

(iv) If M is an intermediate field of E/F, and y € M*, then the restriction of ®g/n(y) to K
is ®p/r(Nayr(y)).

Proof. Restrict the global Artin map. O

We know that the kernel of the Artin map ®g/r : F* — Gal(E/F) is Ng,p(E*). As in the
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global case, we call Ng,p(E*) the class group belonging to E, and E the class field of the open
subgroup Ng,p(E*).

Proposition 9. The map E — Ng/p(E*) gives an order preserving injection from the (finite)
abelian extensions of F' into the open subgroups of F*. The class group of a compositum (resp.

intersection) of abelian extensions is the intersection (resp. compositum) of the class groups.
Proof. Same as in the global case. O

The surjectivity of the correspondence E — Npg,p(£*) is, as in Section 5, the difficult part.
Given an open subgroup H of finite index in F*, we want to find an abelian extension E of F' for
which Ng,p(E*) = H. Fortunately, the proofs from 5, Lemma 2 and 5, Theorem 10 carry over
identically to local fields, and allow us to reduce to the case where F' contains the nth roots of
unity, and H is of exponent n (that is, F** C H).

Theorem 10. The correspondence E +— Ng,p(E*) is surjective.

Proof. We just mentioned how to reduce the problem to where F' contains the nth roots of unity,
and our given open subgroup H of finite index in F*, which we want to show is the norm group of
some finite abelian extension, can be assumed to contain F*". As in 5, Lemma 2, all we have to
do is argue that F*" itself has a class field. Let E be the adjunction to F' of all the nth roots of

elements of F'. By Kummer theory, this is a finite abelian extension of F’ with
[F*: F*"|=[E: F]=|Gal(E/F)|

Now Gal(£/F') has exponent n, so F"*" is contained in the kernel K = Ng,p(E*) of the Artin map
for E/F. But also
[E:F)=[F*: K]

so in fact F*" = K. ]
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7 Applications of global class field theory

7.1 The Kronecker-Weber theorem

Let ¢ be a cycle of K. Without reference to any admissibility, we can define the subgroups H., W, C
[, defined earlier. Now W, is open, so K*W, is an open subgroup of Ix containing K*. Hence
there exists a unique class field M to K*W,, this is to say a finite abelian extension of K such that
K*W., is the kernel of the Artin map for M/K. We call M the ray class field of ¢. There is not a
bijection between cycles and abelian extensions: we can have K*W, = K*W for a different cycle

.

Proposition 1. Let L be another abelian extension of K. Then L C M if and only if ¢ is admissible
for L/K.

Proof. First suppose that ¢ is admissible for L/K. Then, the Artin map for L/K is trivial on W..
Just look at how the Artin map is defined on the ideles. Thus the Artin map for L/K is trivial on
K*W,. Thus the kernel of the Artin map for M/K is contained in the kernel of that for L/K. By
the order reversing correspondence of class groups and class fields, we get L C M.

Conversely, suppose that L C M. Recall our definition of W.:

We = [[We) [[ Ve

v|e vte

where W, is 1 + pZ(v) or (0,00), and U, is O} or K, depending on whether v is finite or infinite.
Already the generalized ramified places of L/K divide ¢: if v ramifies in L, then it ramifies in M,
and it is clear that ¢ has to be divisible by all the generalized ramified places of M /K in order for
W, to be contained in the kernel of the Artin map on M/K. For if v ramifies in M, then the local
Artin map for M/K on O} (or K if v is real and ramified) is not the trivial map.

For v | ¢, let x € W (v). To complete the proof that ¢ is admissible, we must show that x is a
local norm at v. If we look at the idele o = (=, 1,1,...) € W, then @,k (), and hence @,k (),

is trivial. But for w | v, we have
1= (I)M/K(a) = (I)w/v('r)

where ®,,/, is the local Artin map. But the kernel of the local Artin map for L, /K, is the norm

*

», 80 z must be a norm.

group of L
O

This proposition gives a clearer picture of why admissibility is important. Earlier, we saw it
was essential to the transfer principle between ideles and ideals, and now, we see it as a tool in
classifying abelian extensions: any open subgroup of Ix contains W, for some large subgroup ¢

(prove this as an exercise), so every abelian extension of K is contained in a ray class field.
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Proposition 2. Let ¢ be a cycle of K. There are isomorphisms
I/ K*W. =2 H./(K*NH)W,. =2 1d(¢)/ P,
Proof. For the first map, we have a surjective homomorphism
H. — I /K*W,

by the identity I = K*H.. The kernel of this map is H. N K*W,, which clearly contains (K* N
H)W.. Conversely if xaw € H.NK*W, for x € K* and « € W, C H, then z is in H,, hence K*H..
This establishes the first isomorphism.

The second isomorphism is even easier to establish. O

The next theorem gives a very important example of a ray class field. We will prove it using
a cardinality argument, the previous lemma, and the following ray class group: if m is an integer,
and ¢ is the cycle of Q which is the formal product of m and the unique infinite place of Q, then
the quotient Id(c)/ P, is isomorphic to (Z/mZ)*.

To see this, note that we can identify Id = Id(Q) with the group of nonzero rational numbers,
and under this identification, Id(c) consists of those positive rational numbers which are units at
the primes dividing m. Any positive rational number 7, for a,b € N, Then P, just consists of those
positive rational numbers ¢ (for a,b € N) with ab~* = 1 (mod m), where b~' is an inverse of b

modulo m. Thus P, is the kernel of the surjective homomorphism
1d(c) — (Z/mZ)*, % s abL

If ¢ consisted only of m, and not the infinite place, then Id(c)/ P, is isomorphic to (Z/mZ)* modulo
the subgroup {1, —1}.

Proposition 3. Let K = Q, and let m be an integer. Let ¢ be the cycle which is the formal product
of m with the unique infinite place. Then Q((n) is the ray class field of Q*W..

Proof. First suppose that m is a prime power, say p°. Since we do not yet know that ¢ is admissible,
let e; be a larger integer than e such that ¢, the formal product of p°* with the unique infinite place,
is admissible for Q((,). Let € 1+ p°Z,. If we look at the idele a = (z,1,1,...), we can fine-tune
the proof of (?) to produce a positive integer a with the property that aac =1 (mod *¢1) (and hence
ac =1 (mod *c)). In that case, we know how to compute the Artin map of aax = (az,a,a,...). It

is just the map

Cpe — Cge

Now ax and = are both = 1 (mod p¢). We can conclude that ¢ = 1 (mod p°) as well. Hence
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Cpe = Gpe, and we then have

@Q(gm)/(@(x, 1,1, ) = CI)Q(CM)/Q(QLL',CL,G7 ) = (Cpe — Cge) =1

Similarly if x is a positive real number, one can see that the Artin map on (..., 1,1, z) is the identity.
This proves that W, and hence Q*W, is contained in the kernel of the Artin map on Q({,,)/Q in
the prime power case.

Now we return to the general case. Write m = p{*---pSs, and let ¢ be as we defined it above:
the formal product of m with the infinite place. For any i, let € 1 + p;'Z,,. Interpret x as the
idele (z,1,1...). The restriction of (z,Q(¢{)/Q) to Q(iji) is (z,Q(C,e )/Q) and we just proved
this to be trivial. For j # i, the restriction of (z,Q(¢n)/Q) to Q(C, Cj) is still the identity, because
p; is unramified in Q(( < and x is a unit here at p;. If z is a posmize real number, it’s easy to see
that (z,Q(¢,)/Q) is trivial. This shows, by multiplicativity, that the Artin map for Q({,,)/Q is
trivial on W.. Thus

Q*We

is contained in the kernel of the Artin map for Q(¢n)/Q, i.e. Q*Ng(c,.)/a0(locc,,)). This shows
already that ¢ is admissible for Q({,,)/Q. But by the previous lemma, combined with the remark

(somewhere),
g : Q"We] = [1d(¢) : Pe] = (m)

At the same time,
[Io : No(enm)/oTae.))] = [Q(Gn) : Q] = ¢(m)

so Q*W, is equal to the kernel.
O

Corollary 4. If m is an integer, then the formal product of m with the unique infinite place of Q
is an admissible cycle for Q(¢,)/Q.

Proof. This was proved near the end of Proposition 3, as it follows from Proposition 1 and the fact
that Q*W, is contained in the kernel of the Artin map. We mention this result by itself, since it
implies that the elements of 1 + p{'Z,, are local norms from Q,,(¢), which isn’t obvious without
class field theory. O

Theorem 5. (Kronecker-Weber Theorem) Every abelian extension of Q is contained in a cyclotomic

extension.

Proof. Every abelian extension of a given number field is contained in some ray class field, and

Proposition 3 says that ray class fields of Q are cyclotomic extensions. O
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7.2 The Artin map for infinite abelian extensions

We have noted that the Artin map on ideles is continuous, but we have not really explored the
consequences. Continuity becomes important in the study of infinite abelian extensions. This
section assumes some familiarity with inverse limits and profinite groups, and in particular the
topology of infinite Galois groups. To review: a profinite group is an inverse limit of discrete
topological groups. A profinite group is Hausdorff, compact, and totally disconnected.

Given a number field K, let K*® be the maximal abelian extension of K, which is the com-
positum of all abelian extensions of K. For abelian extensions L C L’ of K, let 7z, : Gal(L'/K) —
Gal(L/K) be the restriction homomorphism. Then the groups Gal(L/K) form an inverse system,
and Gal(K?®P/K), together with the restriction maps to each L, is the inverse limit of the groups
Gal(L/K). In fact, if we restict the inverse system to only contain Gal(L/K) for L finite abelian
over K, then Gal(L*"/K) is still an inverse limit of the system. Thus Gal(L*"/K) is profinite.

The mapping L + Gal(K?*/L) is a bijection between closed subgroups of Gal(K*"/K) and
intermediate fields of K2"/K, i.e. abelian extensions of K. Under this mapping, finite abelian
extensions of K correspond to open subgroups, since [Gal(K?"/K) : Gal(K?*"/L)] = | Gal(L/K)| <

00, and closed subgroups of finite index are open.

Proposition 1. There is a unique surjective open homomorphism
®: T — Gal(K/K)

called the Artin map, with the property that for any finite abelian extension L of K, m0® = &y /f,
where 7y, : Gal(K*/K) — Gal(L/K) is the restriction map. This map induces other surjective
open homomorphisms Cy, Ch — Gal(K*?/K).

Proof. For L/K finite abelian, we have the Artin map

which is a surjective open continuous mapping whose kernel is K* Ny, /x (I.). By the universal map-
ping property of inverse limits, these Artin maps induce a unique topological group homomorphism
® : I — Gal(K®/K) with the given commutativity property. By a general result about profinite
groups, the fact that each @/ is surjective means that the image of ® is dense in Gal(K*/K).

The kernel of ® is the intersections of all the kernels of ® /, so Ker ® contains K*. Thus ®
induces a similar unique homomorphism with dense image ® : Cx — Gal(K?*’/K), also called the

Artin map. Now, we may identify as topological groups

Ck = C;l( X (0,00)
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where we can identify C} with (z/K*,1). Under this identification, we have
P(zK*,1) = ®(zK*) = &(x)

Actually, we have ®(zK*, p) = ®(x) for any zK* € C}, because ®(1 - K*, p) = 1. This is because
p can be written as ({/p)" for every n. This shows that the image of the Artin map of Cf is the
same as the image of its restriction to C.

It follows that the image under the Artin map of Ck, and hence under Cx and I, is all of
Gal(K®*/K). This is because Ck and hence its image is compact, and the image, being dense,
must then be everything. Since each &1,k is an open map, it follows that ® and hence ® are also

open maps. O

Being a direct summand, C'} can be treated as both a subgroup and a quotient, in the way we
have identified it. The ’projection’ map Cx — C, given by (x,p) + (z,1) is an open map, and
the induced topological group structure from this quotient map (that is, from its isomorphism with
Ck modulo the kernel {1} x (0,00)) is the same as its topological group structure as a subgroup
of Ck. The induced Artin map on C} from the first isomorphism theorem, is the same as the

restriction to C of the Artin map ® which we mentioned in the lemma.

Proposition 2. Let M be an abelian extension of K, not necessarily finite. The restriction of the
Artin map @ to Gal(M/K) has kernel

Hy = Ker®p/x
L

where L runs over all finite abelian extensions of K which are contained in M.

Proof. This just follows from the properties of inverse limits: Gal(M/K) is the inverse limit of
the topological groups Gal(L/K), where L/K is finite abelian and L. C M. The Artin maps
®r/k : Ik — Gal(L/K) induce a unique homomorphism ® s/ : [x — Gal(M/K) by the universal
mapping property for inverse limits. The kernel of this map is clearly Hy;. It is easy to see that
this map is just the restriction of ® to M. O

Theorem 3. The Artin map ® : [x — Gal(K?*/K) induces an order reversing bijection between
abelian extensions of K and closed subgroups of lx containing Hgav, given by M +— Hpy;. Under
this mapping, finite extensions of K correspond to open subgroups. If W is a given closed subgroup

of I containing H v, then it corresponds to the fized field of ®(W).

Proof. The kernel of the Artin map ® : Ix — Gal(K?®P/K) is Hpas, so the Artin map, being sur-
jective and open, induces an isomorphism of topological groups I /H ga» = Gal(K*?/K). (Finite)

abelian extensions of K correspond to closed (open) subgroups of Gal(K?"/K), which correspond
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to closed (open) subgroups of I containing H 4. The statement about W is similar to the proof of
(7). O

7.3 Maximal Unramified Extensions

Let L/K be an abelian extension of number fields with class group H. If M/K is another abelian
extension with class group H’, we know that a finite place of v of K is unramified in M if and only
if OF C H'. Tt follows that O} H is the smallest open subgroup of I containing H and O}. Hence
the class field M of O} H is the largest intermediate field of L/K which is abelian over K and in
which v is unramified. For v infinite, replace every O} with K to get an analogous statement for
infinite places.

Similarly, a place v of K splits completely in M if and only if K} C H'. Thus the class group
of K}H is the largest intermediate field of L/K which is abelian over K and in which v splits
completely.

Now, if we look at the open subgroup

I =T &; ] o:

v|oo v<00

then H := K*Hfgc is an open subgroup containing K* as well as O} (resp K if v | co0) for every
place v. It follows that every place of K is unramified in the class field to H, and this class field is
the maximal abelian extension of K with respect to this property.

The class field M to H is called the Hilbert class field of K. We discuss some of its immediate

properties:

Proposition 6. Let K be a number field, and M its Hilbert class field.

(i) The Artin map on Id(K) induces an isomorphism of Gal(M/K) with the ideal class group
of K.

(i) K is its own Hilbert class field if and only if Ok is a principal ideal domain.

(iwi) If p is a prime ideal of K, then p splits in M as a product of h/f primes, where h is the

class number of K, and f is the smallest number such that p/ is principal.

Proof. Since every place of K is unramified in M, we already have a well defined Artin map
Id — Gal(M/K). Since K*I3 is the kernel of the Artin map on I, we see that the 'empty cycle’
¢ =1 is admissible for M /K, and here P, is just the group of principal ideals P.

Therefore, we know that P is contained in the kernel of the Artin map. But it is easy to see

that we have an isomorphism Ir /K*T3> 22 Id /P, whence

M : K] = [Ig : K*T32] = [1d : P]
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Therefore the kernel of the Artin map on Id is the group of principal ideals, and we get an iso-
mophism Id /P = Gal(M/K). This proves (i), and (ii) and (iii) easily follow.

O
We will mention one more theorem about the Hilbert class field, but we will not prove it.
Theorem 7. Every fractional ideal of K becomes principal in the Hilbert class field.
Proof. See Class Field Theory by Artin and Tate. O
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8 Reciprocity Laws

One of the goals of class field theory is to describe how prime ideals of a number field K split
in a given abelian extension L of K. The Law of Artin Reciprocity implies, for every abelian
extension of number fields L/K, the existence of an algorithm determining the splitting behavior
of all unramified primes of K. It does not tell us what this algorithm is exactly. We will explain:

Let ¢ be a cycle of K. Recall the definitions Id(c), P.. The quotient Id(c)/ P, is called the group
of c-ideal classes. Proposition 2, Chapter 8 shows that this group is finite, for it is isomorphic to
I /K*W,, and K*W, is an open subgroup of the ideles containing K*. For a detailed treatment
of the structure of Id(c)/ P, see Lang.

Let L be an abelian extension of K, and let ¢ be a cycle for L/K, divisible by all the ramified
primes, with the property that P, is contained in the kernel of the Artin map on Id(c). This
happens, for example, when c¢ is admissible for L/K, in which case the whole kernel is P.91(c).

Given such a cycle ¢, it follows that we have a well defined surjective homomorphism:
Id(¢)/P. — Gal(L/K)

aP; s (a,L/K)

Hence the splitting of any prime ideal of K, relatively prime to ¢, is completely determined by its
representative class modulo P,.

To be more specific, let aj,...,a; be a complete set of representatives for P, in Id(c). Let
n = [L : K]. Let m; be the order of (a;,L/K) in Gal(L/K). A prime ideal p of K, relatively
prime to ¢, splits as a product of n/f primes in L, where f is the order of (p, L/K). If we want to
determine this number f, we need only deduce the class of p modulo P,. For example, if pP, = a; P,
then (p, L/K) = (a1, L/K), so p splits into n/m; primes in L.

8.1 The Hilbert Symbol

The rest of this chapter is primarily based on the notes of Peter Stevenhagen [citation].

Let F be a local field of characteristic 0 (R, C, or a p-adic field) which contains the nth roots of
unity. Kummer theory tells us that there is a bijection between the subgroups F** C D C F* for
which [D : F*"] is finite, and finite abelian extensions F of F' having exponent n. Given D, the field
E is obtained by adjoining to F all the nth roots of elements in D, and moreover [D : F*"] = [E : F].

Since F is a local field, [F™* : F*"] is finite (for example when F is p-adic, we gave an explicit
formula for this index). This tells us that there is a unique maximal abelian extension of F' of
exponent n, and it is of finite degree over F' (on the other hand, the maximal abelian extension of

F, without regard to exponent, is of infinite degree over F' when F' is p-adic).
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Let E be this maximal abelian extension of exponent n. So E = F({/z : x € F*). Recall we
have a pairing:
Gal(E/F) x F*/F*™" — C*

into the group of nth roots of unity, given by (o,Z) — U,\:/L‘/g. Now if " € F*", the fact that
Gal(E/F) has exponent n tells us that

Cp/p(") = Qg p(z)" =1

where ® g/ p is the local Artin map. Thus F*" is contained in Ng,p(E*), the kernel of the Artin
map. But by Kummer theory and local class field theory,

[F* 2 F*") = (B F| = [F* : Npp(E°)]

soin fact F*" = Ng,p(E*). The local Artin map gives an isomorphism Gal(E/F) = F* /Ng/p(E*) =

F*/F*" and we obtain a pairing:
(=, =) : F* x F* = F*/Ng/p(E*) x F*/F*" = Gal(E/F) x F*/F*" = C"

which we call the Hilbert symbol at F'.

Lemma 1. Let F be a field of characteristic 0 containing the nth roots of unity, and let B € F*.
Then F({/B)/F is cyclic, and every element in F of the form x™ — 3 is a norm from F(3/B).

Proof. Fix a specific nth root {/B, and let G = Gal(F({/B/F). The map o ”&‘/5 is a homomor-
phism from G to the group of nth roots of unity. Since an element of GG is completely determined
by its effect on {/3, this map is an injection. Hence G and its image are cyclic, with order say, d.
Fix a generator ¢ of G. Then the image of ¢ has order d, so there exists a primitive nth root of
unity ¢ such that o {/B = ¢"/¢{/B. By induction and the fact that o fixes nth roots of unity (for
they lie in F') we have that o (/B) = (¥ /B.

Now for 0 < j < 2 — 1, the norm of z — {7 {/[3 is

d—1 d—1
[[o5@ - ¥/8) = [[@-ccit /8
k=0 k=0

n_q

So the norm of EH (x — I Y/PB) is

7=0
G—1ld—1 ‘ n—1 ‘
[[@-c* B = [[@-cvh =a"-5
=0 k=0 i=0
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O

Lemma 2. Let K be a number field, v a place of K, and Ev the mazimal abelian extension of K,

of exponent n. For o, € K7, let

_ Pk, (a)(V/b)
<a7ﬂ>v - T

be the Hilbert symbol at K,. Then the following properties hold for any o, 8 € K, :
(i) {co, B) = 1 if and only if v is a norm from K,(/B).
(i) If v is finite, and o, B,n are units in O,, then (o, B), = 1.
(iii) (o, —a), = 1, and (a,1 — ), = 1 for a # 1.
(iv) (a, B)v = (B, )v.

Proof. The restriction of the Artin map for EV/K, to K,({/8) is the same as the Artin map for
K,(/B)/K,. Fixing 8 and varying «, we see that we can just work with this latter Artin map.
So {(a, B), = 1 if and only if (o, K, ({/B)/K,) fixes {/B, if and only if (a, K, (/B)/K,) fixes all of
K,(%/B), if and only if « is in the kernel of the Artin map for K,(/8)/K,, if and only if « is a
norm from K, ({/f3). This proves (i).

For (ii), we can argue as we did in the proof of (?) that K,({/B)/K, is unramified when n, 3
are units at v, in which case the norm map on the unit groups is surjective. Hence « is a norm, so
(@, By = 1 by (i),

By Lemma 1, 0" — (—a) = « is a norm from K,({/—a), so (a,—a), = 1 by (i). Similarly,
1" —a=1-—ais anorm from K,({/«a), so (1 — «a,a), = 1. This proves (iii).

Finally, (iv) follows from (iii). We have

1= <O‘ﬂa 7O‘ﬁ>v = <a7 *05>u<04; 6>U</67 O‘>v<ﬂa 75>v = <O‘76>v<ﬂa a>v
U

For each place v of K, the Hilbert symbol at v depends on the Artin map of the local field E*.
Globally, there is no reason to expect that the fields £V have anything to do with one another for
different places v. However, if we fix a 8 € K*, then L = K({/B) is a global field which we can use
to compute (—, ), for any v.

Specifically: as we mentioned in the last proof, the restriction of the Artin map ®gv /g, to Ly,

for any place w | v, is @1, /x, = Py /v, and therefore

(I)w/v(a)( W)
/B

Hilbert Reciprocity expresses the relationship between the different Hilbert symbols:

<Oé, B>v -
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Theorem 3. (Law of Hilbert Reciprocity) For any o, € K*,

H<aa5>v =1

v

Proof. Our first claim is that

[[ 2w (@) =1

where L = K({/8) and w is a place of L lying over v. Let S be the set of places containing all
the archimedean places, all those which ramify in L, and all those for which « is not a unit. Then
@ /v(a) = 1 whenever v ¢ S, as a, being a unit in the unramified extension L., /K, is a norm.
This shows that the product of the ®,,/, () is already a finite product. Let x be the idele of K
which is a at all v € S, and 1 otherwise. Let y be the idele which is 1 at all v € S, and « for v € S.
Then zy = «, where « is embedded diagonally in Ix. Now (y, L/K) is easily seen to be 1, for y is
in the largest admissible subgroup and a unit everywhere. Then

1= (O(,L/K) = (va/K)(y?L/K) = (va/K) = H (I)w/v(a) = H(I)w/v(a)
veS v

Hilbert Reciprocity is then just a consequence of bimultiplicativity.
So we see that all the really hard work was already done when we proved Artin reciprocity.
O

One way of interpreting Artin reciprocity is the following: for an admissible cycle m of an
abelian extension of K, the splitting of a prime ideal of K, relatively prime to m is determined by
its class modulo Py,. In this way, Artin reciprocity states the existence of an algorithm for deducing
how prime ideals split in a given extension. This is a wonderful result, yet in some ways it is still
unsatisfactory. First of all, it is highly nonconstructive. Second, Artin reciprocity is so general that
it looks nothing like reciprocity, in the classical sense.

A 7nice” reciprocity law should give a much more clear indication of the relationship distinct
primes have with one another. Preferably, it should be expressible with a symbol involving two
or more primes, and describe in an elegant way what happens when the roles of the primes are
interchanged.

In proving the main results of class field theory, the principal difficulty, after proving the funda-
mental inequalities, is showing, for an admissible cycle ¢, that the idelic Artin map on H, is trivial
on K* N H, (equivalently, the Artin map on Id(c) is trivial on P.). This allows us to give a well
defined Artin map on Ix, which is necessarily also trivial on K*. Notice that this fact is exactly

what we needed to prove the law of Hilbert reciprocity.
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8.2 Computations of some Hilbert symbols

The general idea to give a formula for a Hilbert symbol is the following: F' will be a local field with
group of units U (let U = F* if F' is archimedean). We will analyze the restricted Hilbert symbol:

(—,—):UxU—=C"

by finding a finite index subgroup N of U such that (x,y) = 1 whenever z or y is in U. This
induces a well defined pairing
U/N xU/N — C*

Thus for any (z,y) € U x U, the symbol (z,y) is completely determined by the representative
classes of x and y in U/N.

For our first example, we take F' = R.

Proposition 4. Taking n = 2, the Hilbert symbol:
R* x R* — {-1,1}

s given by the formula
z—1 y—1

(.9 = (-1)F 5

where x s the sign function.

Proof. Let N = (0,00). We claim that (z,y) is trivial whenever z or y is in N. If y is in N, then
R(,/y) = R, so the Artin map is trivial.

If x is in N, then whether or not y is in N (i.e. whether or not R(y) is equal to R or C), z is a
norm from R(y), so x is in the Artin map R(y)/R.

By the discussion at the beginning of this section, we only have to compute the Hilbert symbol
at different coset representatives. The only thing we haven’t already computed is (—1,—1). But
this is clearly —1, since R(—1) = C, and —1 is not a norm from C.

O

Proposition 5. Let n =2. If FF = Qq, and U its group of units, then the Hilbert symbol U x U —
{-1,1} is given by

z—1 y—1

() = (-1) 5T

Proof. Clearly U is equal to Uy =1+ 2Z5. And

Ups=14+4Zy={x €Zy:x=1 (mod 4)}
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Furthermore Uy \ Uy = {x € Zo : ¥ = 3 (mod 4)}. It is easy to see that U? C Us,, which implies
U? = U,, since U has the same degree over both of these subgroups (check this).

Now suppose = or y is in Up. If y is in Uy, then y is a square, so Q2(y/y) = Q2, which
immediately implies (x,y) = 1. If = is in Us, then x is a square, and hence a norm, from Qs (,/¥).
So also (z,y) = 1.

Thus we have a well defined pairing U/Us x U/Usy — {—1,1}, and all we have left to compute is
(x,y) when neither z nor y is in Us, i.e. when x =y = 3 (mod 4). Reducing to coset representatives,
we only have to compute ) — 1,—1). In this case, Qa(v/—1) = Q2(i) is a proper extension of Qs
(e.g. 2 ramifies in Q(4)). Verify that the norm group, i.e. the kernel of the Artin map Q2(7)/Q2 is
U? = U,. Since —1 ¢ Us, clearly (—1,—1) = 1.

What we have shown is that (x,y) is 1 if x or y is = 1 (mod 4), and it is —1 otherwise. The

formula given in the statement of the proposition says exactly this. O

Lemma 6. Let K be a number field containing the nth roots of unity. Let v be finite, p = p,,
U=0;:, and Uy, =1+ p*. IfU;y; CU™, then a € U;,b € U; implies (a,b), = 1.

8.3 The power residue symbol

In this section we let A = Og. Let p be a prime of K which does not divide n. Recall that the nth
roots of unity are distinct modulo p. This can be argued as follows: if not, then ¢ =1 (mod p)

for some 1 < j < n — 1. Evaluate both sides of the expression

n—1
L4 X+ xm =22 Trx ¢
+X et =57 =1I&x -
i=1

at 1, then reduce modulo p. This implies

n—1

n= H(l—(i) =0 (mod p)
i=1
which is a contradiction. Note also that n divides N(p) — 1. This is clear, because (Ok /p)* has
N (p) — 1 elements, and ¢ modulo p generates a subgroup of order n.

Let A, be the localization of A at p. The inclusion A C A, induces an isomorphism of the
residue fields A,/pA, and A/p, so the nth roots of unity are also distinct modulo pA,. Now if
a € K* is a unit at p, then it lies in Ay, and it remains nonzero when reduced modulo pA,. We
then set

@
( " In

. . . N -1, Np-1
to be the unique nth root of unity to which « s congruent modulo pA,. Clearly o s
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indeed an nth root of unity in this residue field. We call (%)n the nth power residue symbol of
o at p.
We have only defined this symbol for p relatively prime to both n and «. If p does divide n or

«, then we set (%)n = 1. In this way we can extend the denominator of the power residue symbol

=TI

to arbitrary fractional ideals:

a
Obviously this is a finite product. Given 8 € K*, by (§)n we mean (55 )n-

Proposition 7. The following properties hold for o, 3 € K*:

(i) The symbol (£),, is a homomorphism in the argument of the denominator from the group of
fractional ideals of K to the group of nth roots of unity.

(i) If a is a fractional ideal of K, and a1, a0 € K* are both relatively prime to a, then

Q10 aq Q2

(
(#3) If a is relatively prime to «, then

a, (0, K(Y/a)/K) (V)
a e

(iv) X
(5o =T1tB.0,

where v runs through all the finite places which do not divide o or n.

v

(v) For p prime not dividing o or n, (3)n =1 if and only if p splits completely in K(3/a).

Proof. (i) and (ii) follow easily from the definition of power residue symbol. For (iii), it suffices by
(i) to prove the case where a is equal to a prime ideal p, relatively prime to « and n. In this case,
p is unramified in K ( {/a) by the usual argument (?), so o := (p, K({/a)/K) has the effect

ca=a’ (modpA,)

for any o € Ay (normally, this is stated as taking place in the larger ring of integers Oy (wg, but
we are only concerned with A = Ok right now; also, it is a trivial matter to check that this also

holds in the localization A,). Now modulo pA,,

O’{L/a {‘/ap n/—p—1 p—1 «
= = (8 = Q n —)n
va -~ Vo (p)

so the right and left hand sides, both being roots of unity, must be equal.
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(iv) follows from (iii). For (v), (§)» =1 if and only if o := (p, K({/a)/K) fixes {/c, if and only
if o fixes all of K(/a), if and only if o is the identity in Gal(K ({/a)/K). But the order of o is
the inertial degree of p.

O

As a consequence of (iii), we see that the homomorphism (£),, is well defined on the quotient

Id(c)/P;, where ¢ is an admissible cycle for K({/«)/K divisible by the places dividing n and «.

That is, if py,po are prime ideals which are relatively prime to ¢, then (;%)P = (%)p. For by

admissibility, P, is contained in the kernel of the Artin map on Id(c).

Theorem 8. (Power reciprocity law) For a € K*, let S(«) denote the set of places which either

divide n or occur in the factorization of a. For any o, 5 € K*,

a, By N
(B)n(a)n - H < aﬁ>1)

veS(a)NS(B)

Proof. (iv), Proposition 6 says that

which we can write as

II Ge. JI Gaw

veS(B\S(a) vES(B)US(ex)
For the v which are neither in S(8) nor S(«), v is unramified in K ({/a), and g is a unit at v. The

local Artin map on an unramified extension being trivial on the units, we conclude that (8, ), = 1.

Therefore

Sa= I Bk

vES(B)\S()
On the other hand, (iv), Proposition 6 also tells us that

vES(B) vES(B)

where the second equality follows from Hilbert reciprocity. And (iv), Lemma 2, tells us that
(B, a)y{a, B), =1 for each v, so

Enit= T wah [ @s= I @o

“ veS(B)\S() vES(B) vES()NS(8)
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8.4 Eisenstein reciprocity

In this section we prove a very general reciprocity law for K = Q(¢), where ( is a primitive pth
root of unity, and p is an odd prime number. Recall that any prime number ¢, distinct from p, is
unramified in K, and its inertial degree is its multiplicative order modulo p. As for p itself, it is
totally ramified, with A := 1 — { the unique prime element in O lying over it, up to associates.
We call an a € O primary if it is not a global unit, it is relately prime to p, and it is congruent
modulo ¢? to a rational integer. Although K is a complex field, the notion of being primary allows
us to introduce an analagous notion of sign. Indeed, for any o € Ok, there is a unique pth root of

unity (¢ for which a(® is primary:

Proof. The inertial degree of p is 1, so the inclusion Z/pZ — Ok /AOk is an isomorphism. Hence

a—a

there exists an a € Z for which o = a (mod )). Then “3¢ € Of, so again there exists a b € Z

for which 25 = b (mod A), hence a = a + bA (mod M. Since a is relatively prime to A, a is not
divisible by p, so there is a unique solution ¢ € {0, 1,...,p — 1} to the congruence a = bX (mod p).
Modulo A\? we have:

CC=(1-N=1-cA

and so
al’=(a+bN)(1—-cN)=a+(b—ac)A=a

The uniqueness of ¢ is clear, for it is the only integer which makes (b — ac)\ vanish modulo A2, and

a+ kX k € Z is never an integer unless k = 0. O

Eisenstein reciprocity says that if & € O is primary, and a € Z is relatively prime to p and «,
then

Without class field theory, this equality follows from the Stickleberger relation, which describes the
prime ideal decomposition of a certain Gauss sum. See Ireland and Rosen for a proof done in this
way. In [9], Peter Schmidt shows how Eisenstein reciprocity follows from Hilbert reciprocity. We

reproduce his argument here:
Lemma 9. Let q,7 be rational numbers not divisible by p. Then (%), = 1.

Proof. Remember that we are in the field K = Q(¢). By multiplicativity, we may assume that r is a
prime number. Let J be any prime ideal of Ok lying over r. First suppose that r splits completely

in K. Then rOx = 11 oJ, so
o€Gal(K/Q)

o= II CHe= T o(5w=Nee(5

o€Gal(K/Q) o€Gal(K/Q)
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and the norm of a pth root of unity for p odd is 1. (we have to still show that you can take o in
and out of the power symbol)

Now suppose that r does not split completely in K. Then r — 1 is not divisible by p. Now the
congruence ¢ = X? (mod r) is solvable if and only if g7 =1 (mod ), where d is the greatest
common divisor of » — 1 and p. In this case d = 1, so the given congruence is solvable. So there is

a y € Z for which ¢ = y? modulo 7, hence modulo J. So

(%)p = q% =yND=1 =1 (mod J)

Since (), is a product of various (%),, for prime ideals J lying over r, we can conclude that
(Fp = 1.
O

Theorem 10. (Law of Fisenstein Reciprocity) If « € Ok is primary, and a € Z is relatively prime
to p and a, then

Proof. Let v be the place of K corresponding to A, and U the units of O,. The power reciprocity

law tells us that

a, a,
(D" = e a,
so we just have to show that («,a), = 1. Since « is primary, there is an integer k such that

o =k (mod A?). Clearly k is a unit in O,, so & € Uy = 1+ A?0,. Also a?~! =1 (mod p), so
"t e 14+p0, =1+ X0, = U,_;. It follows by lemma (?) that (¢,a?~'), = 1, provided that
Up+1 C UP. But this is immediate from Hensel’s lemma.

Now
o «

1= <E7ap_1>v = <E7a>p_1
which implies (%,a), = 1 as well, since p — 1 is relatively prime to p. But

(0%

<Ev a>U = <av a’>v<k’ a>;1
and the power reciprocity law gives
(k)= ()p(0) =1 1=1

by Lemma 9. O

Eisenstein reciprocity, along with its various specifications (cubic reciprocity, biquadratic reci-

procity) allows us to deduce how primes of K = Q(¢) = Q((,) split in extensions of the form
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Q(¢, V), for a € Ok. Without loss of generality, we may assume that « is primary, for multiply-
ing it by a pth root of unity does not change the extension. The easiest case is when a is a rational
prime number with full inertial degree in K, and « is a primary prime of O. In this case, we have
that the number of primes in K({/a) lying over @ € Ok is the same as the number of primes in
K(¥/a) lying over aOg. We see immediately many circumstances which complicate the situation

in general, for example lack of unique factorization in K.
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A Haar Measure

Most of the proof techniques involving the the Haar measure don’t show up again when we apply
the results to proofs in class field theory, and in general proofs about the Haar measure are pretty
tedious and boring. So we leave most of the proofs out here. It is our intention to write enough so
that the interested reader can work out the details themselves, or seek out the given references.
Let X be a locally compact topological space. A Borel measure p on X is a measure on the
Borel subsets of X (that is, the o-algebra generated by the open sets). If E C X, we say that p is
outer regular on E if u(FE) can be approximated from above by open sets, i.e. u(E) is the infimum
of all u(U), where U runs through the open sets containing F. We say that u is inner regular on E
if 4(E) can be approximated from below by compact sets. A Radon measure is a nonzero Borel
measure which is finite on compact sets, outer regular on Borel sets, and inner regular on open sets.
Let C.(X) denote the set of continuous functions of compact support X — C. Then C.(X) is

a complete normed vector space over C with norm
[ flloc = sup |f(z)]
reX

Let also C.F (X)) denote the set of f € C.(X) such that f(x) € [0,00) for all x € X, but f # 0.

Theorem 1. (Riesz-representation theorem) Let p be a Radon measure on X. Define a positive
linear functional T : Co(X) — C by

T(f) = ! fdu

Then u — T gives a bijection between Radon measures on X and positive linear functionals on
C.(Q).
Proof. See e.g. Rudin, or Hewitt and Ross. O

Now suppose that G is a locally compact topological group. To make life easy, we’ll always
suppose that G is abelian, since we don’t consider nonabelian topological groups in these notes. A

Radon measure p on G is called a Haar measure if for any Borel set £ C G and any = € G,

wzE) = p(E)

Theorem 2. FEvery locally compact topological group G admits a Haar measure p. The measure is

unique in the sense that if ' is another Haar measure on G, then there exists a A > 0 such that

for all Borel sets E.
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Proof. See any good book on harmonic analysis. O
If f € C.(Q), and z € G, define the left shift L,(f) € C.(G) by the formula L, (f)(g) = f(z1g).

Proposition 3. Let u be a Radon measure on G. Then p is a Haar measure if and only if for all

x € G and dall f € CH(G),
Lo (f)dp = [ fn
o]

Proof. See Fourier Analysis on Number Fields, Ramakrishnan and Valenza, Proposition 1-7. O

Let G have Haar measure u, and let H be a closed subgroup of G. Then, one can show that the
Borel sets of H are the same as the Borel sets of G which are contained in H. A natural question
is: when is the restriction of u to the Borel sets of H a Haar measure on H? Obviously this is
not always the case, for example the Haar measure on R is the Lebesgue measure, and the Haar

measure on 7 is the counting measure.

Proposition 4. Let H be a closed subgroup of G. The following are equivalent:
(i) H is open.
(i) p(H) >0

(#ii) The restriction of u to H is a Haar measure on H.

Proof. (Sketch) One can show, as a consequence of inner-regularity, that all open sets have nonzero
measure, so (i) = (ii). We leave (ii) = (iii) as an exercise. Just check the conditions of being a
Haar measure one by one. For (iii) = (i), we refer to a result of Steinhaus, which shows that a

closed subgroup has nonnegative measure if and only if it is open. O

We now discuss products. Let X, Y be locally compact Hausdorff spaces with Radon measures

u and 7. We know that X x Y is locally compact Hausdorff.

Proposition 5. Given F € Co.(X xY) and y € Y, the function F(—,y) : X — C is in Cc(X).
Similarly if x € X, the function F(z,—):Y — C is in C.(Y). We have

// (z,y)d(y)du(z //nyd,u )dr(y)

and the map F — [ [ F(z,y)dr(y)du(z) defines a positive linear functional on Co(X X Y).
Xy

Proof. See Hewitt and Ross, Theorem 13.2. Note that this is accomplished without the use of
Fubini’s theorem. In fact, the approach in the book avoids the usual construction of the product

measure. O
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As a result, the Riesz representation theorem gives us a unique Borel measure p on X x Y for

which
/de // (z,y)dr(y)du(z //nydu )dT(y)

XxXY

for all F € C.(X xY). A special version of Fubini’s theorem (Hewitt and Ross, Theorem 13.8)
gives us that the above equality holds whenever F': X x Y — C is measurable.

Corollary 6. If G1,G> are locally compact topological groups with Haar measures p, T, then there
is a unique Haar measure p on G1 X Ga, called the product measure with the property that

p(Er x E2) = p(E1)7(E2)

whenever By C X, Ey CY are Borel sets.

Proof. Proposition 5 already gives us p as a Radon measure. Now for any F' € C.(X xY), and any
(x1,22) € G1 X Go, we have

/ Loy o) (F)dp = / / Lior.an)(F) (g1, 92)d7(92)dps(01)

Gl XG2 Gl GQ

://F(xflgl,x;lgz)dT(ga)du(Qz)

G1 G2

We can interchange these integrals and use Proposition 3 to see that this is just
//Fgl,gg dr(g1)dup(ge) = / Fdp
Gl G2 Gl ><G2
so Proposition 3 tells us that p must be a Haar measure. Finally for the Borel sets Fy, Fo, we have
p(Er X Ep) = / 1 xBydp = //1E1 g, drdp
G1xXGa G1 G2
which is clearly p(E1)7(E2). O

Of course the result extends to a finite collection G1, G, ..., G; of topological groups. If pq, ..., it

are Haar measures on these groups, let 1 X --- X u; be the product measure.

Lemma 7. Let G1,G4y be locally compact groups with Haar measures 1, po. Let Hy, Hy be open
subgroups of G1, G2, so the restriction of u; to the Borel sets of H; gives a Haar measure on H; by
Proposition 3. Let \; be the restriction of u; to H;. Then the restriction of py X ps to Hy X Hs is
/\1 X )\2.
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Proof. Since Hy; x Hy is an open subgroup of G; x G4, the restriction of p; X ps to Hy X Hy gives

a Haar measure. Now just use uniqueness. O

Now we show how the Haar measure on the ideles/adeles is constructed. We return to the
construction in (?): we are given a set of indices v, and a collection of locally compact topological
groups G,. For all v except those belonging to a finite set S, ), suppose that H, is a compact
open subgroup of G,. Let u, be a Haar measure on G,. For v € S, the fact that H, is open and
compact tells us that u,(H,) has finite and nonzero measure, and that the restriction of y, to the
Borel sets of H, defines a Haar measure A, on H,. We normalize p, so that 1 = p,(Hy) = A\, (Hy).

We will always let S be a finite sets of indices containing S... Let

Hs:HHv

v S

Gs = (][] Gv) x Hs

veS
¢=Jas
S

where G is taken in the direct limit topology. Then Hg,Gg, G are all locally compact groups (in
fact Hg is compact), and Gg is open in G, so the product topology on Gg coincides with the
subspace topology from G.

Theorem 8. Since Hg is compact, let As be the Haar measure on Hg which gives it measure 1.
Define a Haar measure g on Gg as the product of the measures p, : v € S with \g. Then there
s a unique Haar measure p on G with the property that the restriction of u to any subspace Gg is

ws. In particular, if S O Se is any finite set of indices, and E, : v € S are Borel, then

N((H E,) x Hg) = H fio(Ev)

veES vES

Proof. Exercise, or alternatively Proposition 5-5 of Ramakrishnan and Valenza. The main idea is
that if S; C Sy, and, Sy \ S1 = {v1, ..., v}, then the restriction of ug, to

t
Gg, = H Gy X HHU'L x Hg,
i=1

vES]
is

H Moy X Ay X oo X Ay, X Ag,
VEST

which one can show is [] gy X Ag, = ps, - O
vES)
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Theorem 9. (i) Let f : G — C be integrable or continuous. Then
= 1.
/fdu Sglglw/fdus
G Gs

(i) Let Sy be a finite set of indices containing Seo, and suppose that for each v we have a continuous
integrable function f, on G, such that f, g, = 1g, for allv & Sy. Define

flg) = va(gv)

(note that for each g € G, f(g) is a finitely product, since almost all of the componets of g lie in

H,). Then f is continuous on G. If S is a finite set of indices containing Sy, then

G{ dus =11 [ fud,

UGSGU
and
[ =11 fodn.
G v G,
and f € L*(G), provided that the right hand product is finite.

Proof. Ramakrishnan and Valenza, Proposition 5-6. O

Theorem 10. Let G be an (abelian!) topological group with Haar measure p. Let H be a closed
subgroup of G.
(i) If ¢ : G — C is measurable, then the function ¢ : G/H — C given by

B(gH) = / o(gh)du(h)

1s also measurable.

(#i) It is possible to choose a Haar measure i on G/H such that for any measurable ¢:

/cﬁcmzc/asdu

G/H

Proof. Couldn’t find a reference for this one. O
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B Topological Tensor Product

Let A, B be commutative rings containing a field K, with A/K finite dimensional and vy, ...,v,
a basis. The tensor product A ® B is then a right B-module, in fact a B-algebra, having basis
v1 ®1,...,v, ® 1. Multiplication in the ring A ® ¢ B is defined on generators by (z @ y)(z' ® y') =
zz' Q@ yy'.

Suppose further that B is a topological ring (addition and multiplication are continuous functions
B ® B — B). The mapping

’U1®bl+-~'+vn®bn’—>(bl,...,bn>

n
gives a bijection between A ® x B and [[ B. Using this bijection, we define a topology on A @ x B
i=1

n
from the product topology on [] B.
i=1

Lemma 1. Addition and multiplication in A Qx B are continuous with respect to this topology.

Furthermore, the topology does not depend on the choice of basis for A/K.

Now we take K as a finite extension of QQ, v a place of K, and L a finite extension of K having
degree n. There exists some 8 € L for which L = K(f), with minimal polynomial p € K[X].
Usually g will not remain irreducible in the polynomial ring of the completion K,, and will factor
as a product p; - - pg of irreducibles here. In a fixed algebraic closure of K, choose a root 3; of

each factor u;.

Lemma 1. There is an isomorphism of K, algebras:
L ®K K’U — K’U(/Bl) D---D Ku(ﬁg)

Proof. Since L = K(B), we have L ®x K, = K,(8 ® 1). So every element of the tensor product
is the evaluation of a polynomial h € K,[X] at 8 ® 1. Therefore for each i we have a K,-algebra
homomorphism L @k K, — K,(5;) given by ® 1 — ;. Obviously each such homomorphism is

surjective, and we obtain our mapping
A:Log Ky — Ky (1) @ @ Ky(By)
To show A is injective, suppose that h € K,[X] is a polynomial for which
0,...,0) = A(R(B®1)) = (h(B1), .., h(Bg))

Then h is divisible in K, [X] by the irreducible polynomials p1, ..., tt,,, and hence their product p,
as they are distinct. Since u(8 ® 1) = 0, we conclude that (5 ® 1) must also be zero.
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Surjectivity follows from here, since A is a K,-linear transformation, and both sides have di-

mension n.

O

We use the tensor product to discuss extensions of v to places of L. If w is a place of L, we
usually regard L as a subset of its completion L,,. When dealing with more than one place at a
time, this may cause confusion if we are not careful. For example, if K = Q and L = Q(v/2),
then there are two (real) places wy and ws lying over the unique real place of Q. If we identify the
completions L,,, and L,,, with R, then it would not be right to say that L is a "subset” of both L,,,
and L,,,; rather, L would be a subset of only one of them, say L,,, and would embed algebraically
and topologically into the other by the formula a + byv/2 — a — by/2. Alternatively, one could take
ws to be the absolute value on L given by |a +bv/2|w, = |a+bv/2| and literally take the completion
of Ly,.

It is a fact that an absolute value on a complete field admits a unique extension to a given finite
separable extension. So for each i, there is a unique extension of K, to K, (f;). If we are regarding K
as a subset of its completion K, (usually, this is harmless), there is a natural topological/algebraic
injection L = K(8) — K,(8;). This is how we obtain an absolute value on L which extends the
one we began with on K (in fact, this is how all the places of L which lie over v can be obtained).
Moreover, K,(5;) is exactly the completion of L under its embedding here: we identify L with
K (5;), and it is obvious that its closure is K, (5;).

Theorem 2. The mapping
A L@K Kv — Kv(ﬁl) D--- @Kv(ﬁg)

18 a homeomorphism and isomorphism of K,-algebras, where the right hand side is taken in the

product topology.

Proof. The codomain, which is an n-dimensional K,-module, becomes a normed space over K,
with the norm ||(h1(B1), ..., he(B;))|| = Max|h;(8;)|. The topology induced by this norm is the
product topology. Since A is a K,-module isomorphism, we obtain a norm || - ||p on L ®x K, by
setting lzllo = [|A ()]

So, there is some on topology L @k K, (namely, the one induced by || - ||o) for which A is an
isometry, hence a homeomorphism. We want to show that this topology is the one we originally
had, namely the one induced from the product topology. But considering the K,-isomorphism
Leg K, — éé K, the topology from || - || is corresponds to a norm topology on the latter direct
sum. But allzznlorms on a finite dimensional space are equivalent, and they all induce the product

topology. So A is an isometry, hence a homemorphism, of the requisite topological spaces.
O
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So far we have described A by its effect on a polynomial in the variable § ® 1. This has been
useful for the proofs above, but A can actually be described more naturally. Let o1,...,04 be the
K-embeddings of L into K(f1),..., K(8,). If v1,...,v, is any basis for L/K, then A can be given
by the formula

MRc+ -+, ®cp = (cro1(v1) + -+ cno1(Vn), oy 100 (Vn) + -+ + cnon(vn))

This can be seen by writing each basis element v; as a polynomial in .

If X, Y are complete metric spaces and f : A — B is uniformly continuous for some A C X, B C
Y, then f extends uniquely to a uniformly continuous function A — B. Thus given a place w lying
over v, and a K-embedding o : L — C, the fact that o is uniformly continuous (it is an isometry
between L, ||, and oL, |- |5) implies that it extends uniquely to a K,-isomorphism Ly, — 0 Ly (y)-
In particular, suppose L/K is Galois with Galois group G = Gal(L/K). The decomposition group
Gy = {0 € G : o(w) = w} is isomorphic to the Galois group of L,,/K,, and the isomorphism
is obtained by extending a K-automorphism L — L to a K,-automorphism of the completions
L, — Ly. But even when o is not in G, we still get a K, isomorphism L,, — Ly (). The Galois
group acts transitively on the primes lying over v, so all the completions L,, : w | v are isomorphic.
When v is finite, this gives another perspective for why ramification and inertia for a given place v
do not depend on the choice of place lying over v (as these are algebraic invariants for an extension
of p-adic fields).

Let v be a place of K corresponding to the prime ideal p. Let A = Ok, B = Oy, and let wq, ..., wy,
be a basis for L/K. To simplify the argument I’'m about to make, assume w; € B (although it will
remain true without this assumption).

For a finite dimensional vector space V over a field F, a Dedekind domain A of which the
quotient field is F, and a symmetric, nondegenerate bilinear form on V (usually some variant of
the trace function), we can define the discriminant Disc of any A-module which is contained in
V' and spans the whole space. The discriminant will be a fractional ideal of A. For the complete
definitions, see Frohlich, Algebraic Number Theory. As we go along we will make use of several
results from this same section.

If we let W be the free A-module

Awy + -+ + Aw,
then W C B, hence W, C B,. Here W, is the localization at p as an A-module, i.e.

Wy =Apwi + -+ Apwy,
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Thus Disc(W,/A,) C Disc(By/A,). But
Disc(W,/A,) = Disc(W/A)A,, Disc(By/A,) = Disc(B/A) A,

and these are equal for almost all primes (at almost all primes each discriminant is a unit at p).
This implies B, = W, for almost all p.

Suppose p is a prime for which B, = W,,. Any A-module M C L which spans L, or Ay,-module
for that matter, injects into L @ x K, by the formula z — 2 ® 1. Let M be the image of M under
this mapping. Since O, (embedded in L ®x K, as y — 1 ® y) is the completion of A,, we have
that O, M = O, M,.

Consider the ring isomorphism/homeomorphism

L®KKU—>HLw

wlv

Under this mapping, O, B = O, By corresponds to [[ O,, (section 4, Lemma 2 in Frohlich). But
wlv
we assumed that B, = W, where

OW, = 0p(w1 @1) + -+ Oy (wy, ® 1)

Furthermore using the basis w;, we have an (additive) topological group isomorphism

HKU — L QK Kv
i=1

(C1yennCn) P WL ®c1+ Wy @y

—_ n
wherein the subgroup O, W, corresponds to the product [] O,. Let us state this all as a theorem:
i=1

Theorem. Fiz a basis wi,...,w, for L/K. This basis induces, for every place v, an isomorphism

of topological groups

ﬁKU - HLw
i=1

wlv

where, for almost all places v, restriction induces another topological group isomorphism

ﬁov =[] Ow
i=1

wlv
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