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Abstract. I give a proof of the existence and uniqueness theorems of unramified class field
theory that largely follows the original arguments of Hilbert and Fürtwangler.
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1. The target theorem

Let k be a number field, by which we mean a subfield of the complex numbers which has
finite degree over the rational number field. We will prove the following statement, using
largely the methods originally developed by Hilbert [1] and Fürtwangler [2].

Theorem: There’s an order-reversing bijection between
• subgroups of the ideal class group c of k, and
• everywhere unramified (including infinite places) abelian K/k

characterized by the following property: c0 6 c corresponds to K0/k when
the prime ideals of k that split in K0/k coincide, up to a density zero set, with
the prime ideals whose ideal class lies in c0.

The proof is given in §2 – §8. The appendices sketch various paths from these to a more
modern statement: Appendix A discusses the ramified case, Appendix B examines how to
remove the zero density set and the related issue of reciprocity, and Appendix C formulates
a more modern approach to index computations using Haar measure.

1.1. The origin of this paper. This is an expansion of notes for some of my talks in the
Spring 2024 number theory learning seminar at Princeton/IAS. The purpose of the seminar
was to study original papers of Weber, Hilbert and Fürtwangler on class field theory. These
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papers exploit the tension between two phenomena controlling split primes in an cyclic
extension K/k: 1

(i) Many primes must split by counting arguments: otherwise, K would have too few
ideals of bounded norm.

(ii) Not too many primes split – they would (indirectly) give too many Galois-fixed ideal
classes of K and contradict genus theory.

This key word “indirectly” is described in more detail in §3. The core of the whole proof is
§7; read that even if you skip everything else.

The simplicity and beauty of the resulting proof strategy, and in particular its genesis
in genus theory, seems to been lost in many modern approaches. Some of the intermediate
results, of which (30) is probably the most complicated, may not seem “simple and beautiful.”
The point is that the technique in proving these results is simple and easy to remember, and
the result is whatever the technique gives.

At the level of details, notable is the use of auxiliary primes, both in the arguments of
Hilbert and Fürtwangler (see §7.3). The use of such primes has been important in many
20th century arguments; their original use is, in fact, similar in spirit to their much later use
in nonabelian class field theory. Another interesting feature of the original arguments which
prefigures later developments, although only minimally emphasized here (see §4.3), is the
study of the `-part of the class group of a cyclic `-extension as a Galois module.

This paper is an attempt to give proofs in a modern language but preserving this original
spirit, at least as it feels to me; it also contains an attempt, in the Appendix, to bridge the
gap between the original language and the idelic one. But it is not

• ... an accurate exposition of the historical arguments; it is, rather, a free rewriting.
I have freely used modern devices and terminology when I felt it would assist the
reader in forming a mental image of the argument. But I do hope that, after reading
the proofs here, the reader will be in a good position to read and appreciate the
original texts.
• ... the shortest or smoothest version of the proof. I have deliberately tried to give

each argument in a simple form before it appears in its more general version; and I
have deliberately retained some of the intermediate scaffolding that was used in the
original development of the argument.

For the proof proper I assume material at the level of a serious course in algebraic number
theory, in particular, the decomposition theory of primes in a Galois extension, some basic
theory of ζ-functions, the unit theorem, Kummer theory, Hilbert’s theorem 90, and a modest
familarity with exact sequences and diagram chasing – but no group cohomology, nor local
fields. In §C I will additionally assume more: fluency with local fields, ideles, adeles, and
Haar measure on locally compact groups.

1.2. Experiencing proofs of class field theory. The theorems of class field theory are
often considered to be among the most beautiful and central results of arithmetic. Yet I
have never met a number theorist who has any enthusiasm for the proofs. Perhaps they
slogged through them once and suppressed the memory, or skimmed them, or skipped them
altogether (as I was advised to do as a graduate student).

1These might be termed “analytic” and “algebraic,” but I think this is misleading. For example, the
bound on Galois-fixed ideal classes relies essentially on Dirichlet’s unit theorem, which comes down to
counting arguments that certainly share something in common with (i).
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The proofs of class field theory were enthusiastically and repeatedly revised from their
original form until, at least, the 1960s; Hazewinkel writes around 1990 that the subject of
class field theory“has gone through many “revolutions,” generalizations, and changes of point
of view; some 7 in my personal count...” However, if I compare the experience of studying
relatively modern expositions – for example, arguments presented by Lang [3], Tate [4] or
Weil [5] – to the experience of reading Hilbert, Fürtwangler, and Takagi [1, 2, 6], I would say
that this enormous effort has brought little improvement in the actual comprehensibility of
the proof. This puzzling state of affairs is worthy of a much deeper study; for now, just two
points:

First, the modern proofs are all-or-nothing. We either get the full and general statement of
class field theory, or none of it. The historical arguments are, unsurprisingly, much closer to
special cases which can be understood in isolation (e.g. the case of trivial c, which we treat
in §4). The importance of such minimal examples in constructing mental models cannot be
underestimated.

Secondly, comparing the arguments, one is struck immediately by the enormous increase
in the use of abstraction and what might be called “machinery” in modern versions – in the
statements, the intermediate definitions, and the actual proofs. By contrast, Hilbert does
not even use the abstract concept of a quotient, let alone any number of more sophisticated
concepts; rather, his proofs, and those of Takagi, certainly involve a significant amount of
what might be called explicit computation.

These computations appearing in the original argument are not easy but they are neither
unmotivated nor unedifying; they are, I would say, well adapted to their native mathematical
terrain. In part, they were replaced by “industrial” concepts and techniques, forged for the
purpose of creating a unified and standardized mathematics.2 The new ideas were, by design,
applicable across multiple mathematical fields, and for this very reason, when specialized to
our present context, capture less arithmetical nuance.

1.3. Notation.

• k denotes a number field, and we denote by r∞ the number of archimedean places of
k, i.e. the number of embedding k ↪! C up to complex conjugation.
• ` is a prime.
• By default an “ideal” of k means a nonzero fractional ideal.
• K/k will always denote a finite abelian extension; if K/k is cyclic, we denote by σ

a generator for the Galois group of K/k and often write m = [K : k]. We usually
denote objects associated to K with capital letters and objects associated to k with
lower case letters. In particular lower case letters c, u denote the class group and unit
group of k, and upper case letters C,U the same for K; similarly, c′ denotes the class
group of a field k′.
• A prime ideal of k is split if it factorizes in K as p1 . . . pm where m = [K : k]. It is

inert if it is unramified and remains prime in K.
• We say K/k is unramified if it is unramified at both finite and infinite places. We

similarly say it is“unramified outside S” for a set S of places; if S consists of finite
places, this is understood to imply that K/k is unramified at archimedean places.
• We use N for the norm from K to k. We apply this to different objects: the class

group norm N : C ! c, the field norm N : K ! k, etc. Sometimes we also use N

2See, for example, Bourbaki [7].
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for the “absolute” norm, e.g. for an ideal; where there is a risk of confusion we write
NK
k for the norm for K to k and N for the absolute norm.

• If G is an abelian group with an action of the finite order automorphism σ, then
Gσ denotes the σ-fixed elements and G1−σ the image of 1− σ (sorry, these notations
clash...)
• We denote with a superscripted bar the relative group:

C̄ = C/c, Ū = U/u.

• c0 denotes a subgroup of c
• For any abelian group A and integer m, A/m means the quotient of A by mth powers

and A[m] means the m-torsion.
• When we write the symbol # it means that one should replace all groups by their

order. Thus e.g. # c
C

means #c
#C

, although the quotient c/C does not make sense.

• We will repeatedly use the fact that, for f : A ! A an endomorphism of a finite
abelian group,

(1) # ker(f) = #coker(f),

just as the corank and nullity of a square matrix coincide.

1.4. Acknowledgements. I would like to thank all the participants of the seminar, most
particularly Marco Sangiovanni Vincentelli, Kenz Kallal, Fernando Trejos and Sean Howe
for their excellent presentations of, respectively, Weber’s work on elliptic functions, Weber’s
analysis of abelian extension of Q, Hilbert’s Zahlbericht, and Hilbert’s analysis of relative
quadratic extensions.

I would also like to give deep thanks to Brian Conrad for numerous and very helpful
comments.

2. The notion of a class field

The first step in proving the theorem is to observe an elementary link between splitting
and the norm on ideal class groups:

if p is a prime of k splitting in K, its ideal class is a norm of an ideal class
from K.

Indeed, p is the norm from K to k of any prime lying above it. A class field will be one
for which this is almost sharp, i.e. for which the general inclusion

(2) split primes ⊂ primes whose ideal class is a norm

is an equality up to density zero. By computing densities, we will see in §2.3 that (2) turns
into the following inequality: for any K/k (abelian, as always) the index of such norms,
inside all ideal classes c for k, is at most the degree of the field extension:

(3) [c : NC] ≤ [K : k].

We will adopt this as our “official” definition of class field: K/k is a class field if equality
holds in (3). We will show below that this implies that (2) is an equality up to density zero;
the converse is also true, but we do not use it.

This is an outstanding definition: the concept of class field is very rigid, and many proofs
will write themselves with it in mind, even though it does not appear in the statement of
the target theorem.
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We outline the proof of (3) verbally. To simplify notation suppose K/k is unramified. The
norm of a prime of K is always a power of a prime p in k, and the exponent is 1 if and only
if p is split. Therefore, for any integral nonzero ideal I of K, the factorization of NK

k I into
primes looks like:

(4) NK
k (I) = primes whose class belong to NC × primes occurring with multiplicity ≥ 2.

We now count such ideals I in two different ways. Firstly, by the geometry of numbers, the
number of (nonzero, integral) ideals I of K of absolute norm ≤ X grows linearly in X. On
the other hand, we can also count the number of possibilities for NK

k (I) and then count the
number of ideals I with given norm to k. Were NC very small, the restricted factorization
pattern (4) forces the second count to be too small, contradicting the geometry of numbers.
3

It is easiest to formalize this argument with ζ-functions, but it is important to emphasize
that the argument does not require any complex analysis; the only essential input is the
geometry of numbers, via linear growth of ideals of bounded norm. To me, the argument
seems on the same level as the argument used to prove the unit theorem, which might be
put verbally as “there are more elements of k× than fractional ideals, so some elements must
generate the unit ideal.”

2.1. Abelian extensions are characterized by splitting primes. Let K/k be abelian4;
then

(5) density of primes of k that split in K/k =
1

[K : k]
.

Here and throughout we understand density in the sense of Dirichlet. For example, the
density of a set M of integers is 0.3 exactly when

∑
m∈M m−s = 0.3 log(s− 1)−1 + bounded

as s! 1+; the density of a set of ideals is the density of its (multi-)set of norms.

Proof. Write ζK(s) for the Dedekind ζ-function; we will use the fact that ζK(s) ∼ A
s−1

as

s! 1+ for some nonzero A. The formula

(6)
∑
P

(NP)−s +
∑
m≥2

(NP)−ms

m︸ ︷︷ ︸
bounded as s! 1+

= log ζK(s),

where the sums are taken over prime ideals P of K, shows that the Dirichlet density of
the multiset NP equals 1. Since the absolute norms of P and NK

k P coincide, this multiset
consists of absolute norms of prime ideals of k that split in K, each with multiplicity [K : k],
together with a set that consists of prime powers pm with m ≥ 2, each with multiplicity at
most [K : Q]; the latter are readily seen to have density zero, whence (5). �

From this we see that an abelian extension K of a fixed number field k is characterized
by its set of splitting primes, considered up to density zero sets; indeed, if K1, K2 had the
same set of splitting primes, then so too would the compositum K1K2, and so its degree
must coincide with that of K1 and K2.

3As an exercise, prove that there are primes congruent to 1 modulo 4 by thinking about the number of
Gaussian integers of norm ≤ X.

4All we use in the argument is that it is Galois.
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2.2. Class group `-functions. For c0 6 c a subgroup, we have the inequality

(7) (upper) density of primes of k whose class lies in c0 6
1

[c : c0]
.

“Upper” means that we take a limit supremum rather than a limit. The inequality reflects
the same issue as Dirichlet’s theorem: it is easier to prove that there are primes ≡ 3 modulo
4 than to prove there are primes ≡ 1 modulo 4. 5

Proof. Write as usual L(s, χ) =
∑

I
χ(I)
NIσ

for χ a character c ! C×; the sum is taken over
nonzero integral ideals, where NI is the absolute norm. Summing the analogue of (6) over
characters χ of c/co we get∑

p∈c0

Np−s +
∑

m≥2,pm∈c0

(Np)−ms

m︸ ︷︷ ︸
bounded as s! 1+

=
1

[c : c0]

∑
χ

logL(s, χi),

where the sum is over primes p of k. For χ = 1 we have L(s, χ) = ζk(s) whose logarithm
behaves like log 1

s−1
as s! 1+ up to a bounded error. For χ 6= 1, what we know from the

theory of class group L-functions (which requires the same inputs as for ζk above, nothing
more) is that |L(s, χ)| remains bounded as s! 1+ (although it might approach zero, or not
have a limit), and from this we deduce (7). �

2.3. Class fields. From this we deduce that the promised inequality:

(*) The index [c : NC] of the corresponding map N : C ! c on ideal class
groups is at most [K : k], and if equality holds then the split primes agree
(up to a zero density set) with those whose ideal class lies in NC.

Indeed, we already noted that ideal classes of split primes belong to NC. The split primes
have density 1

[K:k]
, and those whose ideal class belong to NC have upper density at most

1
[c:NC]

. So 1
[K:k]

≤ 1
[c:NC]

and so [c : NC] ≤ [K : k]. We say that an abelian extension K/k is

a class field if equality holds here, equivalently

[c : NC] ≥ [K : k].

If equality holds then we find that the “upper density” of (7) is actually a density, and that
the sets of split primes and primes whose ideal class belongs to NC differ by a set of density
zero. The reverse implication is also valid – if these sets differ by a set of density zero, then
[c : NC] = [K : k]. This follows from a more precise version of our discussion, where we add
in some complex analysis, but we will not use it.

2.4. Basic properties of class fields. By §2.1, a class field K/k is uniquely characterized
by the norm subgroup NC 6 c; we denote a class field with NC = c0 by K(c0) if it exists.

For example: Suppose that K/k is a class field; then for any intermediate field k ⊂ k′ ⊂ K,
both K/k′ and k′/k are class fields. Indeed, the norm of the class group from K to k′ has
index at most [K : k′]. Taking norms to k, the inclusion NK

k C ⊂ Nk′

k c
′ must also have index

at most [K : k′], and this shows that Nk′

k c
′ has index at least [k′ : k] inside c .

5With a little complex analysis, it is easy to prove that equality holds if c/c0 has odd order. But we do
not need this.
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3. The basic strategy

To reformulate our theorem, we must prove that

class fields exist for every c0 6 c and give exactly the unramified abelian
extensions of k.

Class fields are very rigid, as we already saw. The difficulty then is making them at all; the
difficulty in constructing a class field is to control NC from above, for analysis bounds it
from below. How are we going to do this?

The “basic strategy” is as follows. Suppose K/k is cyclic, with σ generating the Galois
group.

Basic strategy: To control NC from above, it is enough show that C1−σ is
large (because N is automatically trivial on it). And to show that C1−σ is
large, it is enough show that Cσ is small (because C/Cσ ' C1−σ).

In quantitative form, this argument shows that #Cσ ≥ #NC; and the only way in which
it fails to be tight is if C1−σ is strictly smaller than the kernel of N .

The input to this strategy is control on Cσ from above. The control of σ-fixed elements
is the subject of genus theory, which in turn originates in Gauss’ study of quadratic forms.
Roughly speaking, we will analyze Cσ and several variants just by unwinding the definition
in a direct way, as in e.g. the discussion before (25); and the shape of the answer is always:

(8)
#c′ ×

∏
ramification indices

[K : k]
= #(Cσ)′ × index of norms in u′.

Here c′, (Cσ)′, u′ are variants on c, Cσ, u that vary from instance to instance. The ultimate
form of this we use is (30), but we give a few precursors (15), (20), (26) all of which have
the same pattern. The reader should bear in mind that the technique to prove these results
is simple, even if the results do not look so. It is reasonable that c should be related to
Cσ (there is a map c ! Cσ) and it is reasonable that ramification indices should show up
(ramified primes tend to generate σ-fixed classes). The less intuitive parts of the formula
are the unit norm index and the factor [K : k], and they both depress #(Cσ)′.

Note that (8) implies that #(Cσ)′ ≤ #c′

[K:k]
so long as the index of norms in u′ exceeds the

ramification index. So (8) shifts the burden of proving that K is a class field from showing
that not too many ideal classes are norms, to showing that not too many elements are norms
– a more concrete proposition which can be accomplished by imposing local conditions.

A technically smoother approach is Chevalley’s idelic argument. We replace C with the
larger group C of idèle classes, where it is almost trivial to understand Cσ. The strategy
then applies very easily, see §C. In a literal sense, the above reasoning does not apply either
to C because it is not a finite group but it can be readily adapted by using volume in place
of size.

4. Warm-up: trivial c, or, why Hilbert proved Theorem 90

In Satz 94 of his Zahlbericht, Hilbert proves that if c is trivial, then k has no unramified
abelian extensions. This is a special case of what we want to prove, and is not strictly required
for the proof; but it contains many valuable ideas that inspire the general argument, so we
give it separately.
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It is enough to show that, if there exists K/k a cyclic unramified `-extension, then c is
nontrivial. We assume K/k is cyclic and unramified throughout this section; recall that
“unramified” includes archimedean primes by convention.

I have followed the presentation in the Zahlbericht, except in using modern notions of
rings and modules in the proof of §4.3.

4.1. Satz 94. The key idea is to produce not just classes in c, but classes in the kernel of
c ! C. In other words, we must find an ideal i of k such that its extension iK to K is
principal, say, iK = (Y ) for some Y ∈ K×; then

(Y )σ = (Y )

as iK was extended from k. Therefore, (Y )(Y σ)−1 is the unit ideal, so Y 1−σ is a unit of
K, clearly of norm 1. We can reverse this process, by Hilbert’s Theorem 90, which he
introduced precisely for this purpose: any unit Θ of K of norm 1 arises as Θ = Y 1−σ for
some Y ∈ K×, and in this case the ideal (Y ) is necessarily extended from k. Indeed by
inspection of factorization

(9) every σ-fixed ideal is extended from k.

because K/k is unramified. Moreover, (Y ) is the extension of a principal ideal if and only
if this unit Θ is “the (1 − σ)th power of a unit of K” (i.e. the image of such a unit under
1 − σ.) Therefore, to show that the kernel of c ! C is nontrivial, it is sufficient to exhibit
a single unit of K that has norm 1 but is not a (1 − σ)th power; said differently, we must
show that Hilbert 90 fails for units:

there are units in K of norm 1 not equal to W 1−σ for another unit W of K.

Actually, our discussion so far exhibits an isomorphism

(10) ker(c! C) ' norm 1 units of U

U1−σ .

We will prove in the following subsections that the right side of (10) is nontrivial, assuming
that ζ` /∈ k; note this excludes ` = 2. It is quite easy to remove this condition on roots of
unity, but allowing [K : k] to be composite requires a different technique, see §5.

4.2. Reduction to the relative unit group. Note that U is a module under Z[σ] and the
relative unit group

Ū = U/u

is too; the norm N : U ! u induces a norm N̄ : Ū ! u/`. We will first reduce to a similar
question for Ū , which will be, as we will see, easier.

The map U ! Ū induces

(11)
norm 1 units of U

{θ1−σ : θ ∈ U}
!

norm 1 elements of Ū

Ū1−σ .

This map is evidently surjective, and our assumption that ζ` /∈ k forces it also to be injective.
On the other hand, the norm 1 elements of Ū comprise the kernel of N̄ , so their index within
Ū is just the size of the image of N̄ . That size equals

#(u/`)

[u/` : NŪ ]
=

#(u/`)

[u : NU ]
.
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Thus, both sides of (11) have size

(12)
[Ū : Ū1−σ]

#image N̄
=

[Ū : Ū1−σ][u : NU ]

#(u/`)

Now, the unit theorem, and our assumption ζ` /∈ k, means that the size of u/` equals
`r∞−1. (Recall r∞ is the number of archimedean places.) So to show that Hilbert 90 fails for
U , it is enough to show that [Ū : Ū1−σ] is strictly larger; and we will in fact show

(13) [Ū : Ū1−σ]
?
= `r∞ .

4.3. Structure of relative units. The point of passing to Ū is that studying the action of
σ on Ū is easier than the same question for U , because Ū is killed by the “norm”

(14) 1 + σ + · · ·+ σ`−1 ∈ Z[σ]

so it is a module under the very nicely-behaved quotient ring o = Z[σ]/(1 + σ + · · ·+ σ`−1).
The map σ 7! e2πi/` identifies o with the cyclotomic integer ring for Q(ζ`). It is, in particular,
a Dedekind domain, and within o the element 1−σ generates the unique prime ideal l above
`; that prime has index ` in o. By the structure theorem for finitely generated modules over
Dedekind domains, Ū = U/u is a sum of modules of the following type:

Ū ' a1 ⊕ . . . ar ⊕ o/b1 ⊕ · · · ⊕ o/bs

where ai and bj are nonzero ideals of o. (We can get away with less here: only the localization
at ` matters and so we can even work with the principal ideal domain o(`) and use just the
similar statement for modules over a PID; or, in different words, we can always find a
subgroup Ū ′ ⊂ Ū of prime-to-` index which behaves very nicely under Z[σ]. We will take up
this idea again in §5.1.)

It is easy to compute the number r of ideals a above: each ai is a free abelian group of
rank `− 1. But u has rank r∞ − 1, by the unit theorem, and U has rank [K : k]r∞ = ` · r∞,
because K/k is unramified at archimedean places, so U = U/u has rank (` − 1)r∞ and we
deduce that

r = r∞.

Now our assumption ζ` /∈ k implies that Ū is free of `-torsion; indeed, if Y ∈ U outside u
has the property that Y ` ∈ k, then K, being Galois over k, would contain a nontrivial `th
root of unity ζ`, but [k(ζ`) : k] is prime to ` and not 1, by assumption. Therefore each bj
appearing above is prime to l. When we take the quotient Ū/Ū1−σ we then get

Ū/Ū1−σ =
r⊕
i=1

ai/ail '
r⊕
i=1

o/l ' Fr
` .

Therefore #Ū/Ū1−σ = `r = `r∞ and combining with (12) concludes the proof. The above
argument also works if ζ` ∈ k, but then there are additional terms at several points which
end up cancelling. This is a very nice exercise. �

In fact, we have shown (combing (10) with the above computations) that

(15)
(# ker(c! C))

`
= [u : NU ],

i.e. “the fewer units which are norms, the more ideal classes capitulate.” This is our first
very simple formula of the type (8), but with no terms related to ramification or to Cσ.
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5. Some mild generalizations of §4

We are going to give a (fairly mild) generalization of the previous section. Namely, we
will prove a formula (20) that generalizes (15) to the case of composite degree and allows
ramification. The reader might like to skip this section on a first pass and simply accept the
results as slight improvements of §4; in particular, the results of §5.1 here will not be used
for the key existence statement of §7.

The original approach of Takagi to composite degree was based on a reduction to prime
index by an inductive argument. The argument that follows, however, is substantively due
to Chevalley and Herbrand; the idea of using finite index subgroups of U whose structure
as a Galois module is simple is already in the Zahlbericht. For other approaches see the
comments in §5.1.1.

5.1. Unit computations. Recall that our previous reasoning relied essentially on the failure
of Hilbert 90 for units. We must first generalize this to the composite degree case. What we
will prove is

For K/k a cyclic extension, unramified at archimedean places,

(16)
[norm 1 units of U : U1−σ]

[u : NU ]
= [K : k].

In the previous section, we proved this in the case when [K : k] is the odd prime ` and
ζ` /∈ k; this follows from combining (11), (12) and (13). Our previous argument was based
on the fact that we could understand U/u explicitly as a Z[σ]-module, because Z[σ]/(1 +
σ + · · · + σ`−1) was a cyclotomic ring. This doesn’t happen in the composite degree case.
But we can always find a finite index subgroup U ′ 6 U whose behavior as a Z[σ]-module is
very simple, and for which we can compute explicitly. This is enough because:

Claim: The validity of equality (16) for U is equivalent to its validity for
any finite index subgroup U ′ 6 U stable by σ, where we understand u to be
replaced by u′ := (U ′)σ = u ∩ U .

This insensitivity is plausible if one look at the proof in §4.3.

Proof. Let a = [U1−σ : U ′1−σ] and b = [UN=1 : (U ′)N=1]. We claim that numerator and
denominator of (16) change, upon passage from U to U ′, by the factor a/b. This is immediate
for the numerator. That is so for the denominator follows from the pair of equalities

(17) [NU : NU ′] =
[U : U ′]

b
and [u : u′] =

[U : U ′]

a
.

Both are proved the same way. The first equality expresses how the image of the norm
changes as we pass from U to U ′: the numerator arises because the source of N shrinks, and

the denominator because the kernel of N shrinks. The second (in the form a = [U :U ′]
[u:u′]

) is the

same reasoning replacing the role of N by 1− σ. �
We prove now (16). Write [K : k] = m and r∞ for the number of archimedean places of

k; then, as first proved by Herbrand,

There are units u1, . . . , ur∞ in U such that the r∞ ·m elements {σiuj}, where
1 ≤ j ≤ r∞ and 1 ≤ i ≤ m, are multiplicatively independent subject only to
a single relation.



NOTES ON GLOBAL CLASS FIELD THEORY 11

Indeed a “generic” choice of u1, . . . , ur∞ have the desired property. To prove this, we recall
that the unit theorem shows that a finite index subgroup of U is isomorphic to a lattice Λ
inside

(18) {(x1, . . . , xr∞m ∈ Rr∞m :
∑

xi = 0}

where the σ-action on U cyclically permutes the xi in orbits of size m. In what follows, then,
we regard ui as belonging to Λ, and in particular to Rr∞m. Our assertion is then that we can
find u1, . . . , ur∞ ∈ Λ such that the vectors σiuj (0 ≤ i ≤ m− 1) when considered as forming
a r∞m× r∞m array, give a matrix of rank r∞m− 1. It is enough to find such ui inside Q.L
(because then we can rescale them to lie in Λ) and then, by density, it is enough to find ui
inside the R-span of Λ. But that is just the real vector space (18) and we leave this easy
piece of linear algebra to the reader.

We will take U ′ be then the multiplicative span of these units, i.e.

(19) U ′ = {
∏
i,j

(σiuj)
aij : aij ∈ Z}.

We now just compute by hand: The single relation between σiuj necessarily has the form∏
i,j(σ

iuj)
mj = 1 the exponents depending only on j and not on i - for otherwise, one would

obtain additional relations by applying σ. Thus the aij in (19) are well defined up to the
translation aij  aij + mj. Elements of U ′ of norm 1 amount to all expressions (19) where∑

i aij = λmj for some λ ∈ Z and all j; modifying aij  aij + mj modifies λ by m. Now
considering the class of λ modulo m defines an isomorphism

norm one classes in U ′ modulo (1− σ)th powers ' Z/mZ.

(for this we just check that if
∑

i aij = 0 then (19) is a (1− σ)th power.)
On the other hand U ′σ amounts to all combinations

∏
i,j(σ

iuj)
aij where aij does not depend

on i (why?) This element is then the norm of
∏

j u
a0j
j , so (U ′)σ = NU ′.

So, replacing U by U ′, the numerator of (16) is m, and its denominator is trivial; the ratio
is m as desired.

5.1.1. Other proofs. Here is a more intuitive, but uglier to write, argument: Note that (16)
looks a lot like the discussion in §3: it asserts that the discrepancy between Uσ and NU is
almost the same as the discrepancy between ker(N) and U1−σ, except now there is an extra
factor [K : k]. So it is reasonable to try to prove (16) following the basic strategy of §3. This
can indeed be done; but because the unit group is infinite, we need to replace size by “the
number of units in a large ball.” We leave the reader to implement this. A cleaner-to-write
version of the same strategy will be given in §C.4.5 based on the following idea: Rather than
measure the size of a lattice by counting the number of points in a large ball, we can instead
compute its covolume.

5.2. Consequences for the class group; prohibition of even slightly ramified ex-
tensions. By the same reasoning as the last section, we now get a general version of (15)
for any cyclic extension of degree [K : k] = m, permitted to ramified at finite primes with
ramification indices e1, e2, . . . (but still unramified at archimedean places):

(20)
# ker(c! C)

∏
ei

m
= #X · [u : NU ]
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where X is the subgroup of the relative class group C̄ = C/c spanned by the various σ-fixed
classes ℘̃1, . . . , ℘̃s arising from ramified primes; here the ℘i are all primes of k that ramify,
and

(21) ℘̃ := product of prime ideals of K dividing ℘.

Formula (20) again has the general type of (8) – note that X is in fact σ-fixed.

Proof. Repeat the same steps as the previous section but replace (9) by the assertion that
any σ-fixed ideal is extended from k, modulo a class in X. More formally, the map (10) is
now only injective; the obstruction to surjectivity is the failure of (9), and instead we note
that a σ-fixed ideal is extended from k if and only if its valuation at primes above ℘i are
divisible by ei. This gives an exact sequence:

(22) 0! ker(c! C)
α
! U1/U1−σ β

!
∏

Z/ei
γ
! X ! 0.

where the first map α is as in (10), the map β takes u ∈ U1, writes u = x1−σ and assigns
to it the valuation of x at any prime above ℘i (all these valuations are equal), and the map
γ :

∏
(Z/ei) ! X sends ai modulo ei to ℘̃aii . The only point that has not already been

discussed is that the kernel of γ coincides with the image of β: if (ai) lies in that kernel,
then

∏
℘̃aii is the product of a principal ideal (Y ) and an ideal extended from k; then Y 1−σ

is a unit and maps to (ai) under β.
Computing orders in (22) and using (16) gives (20). �
Observe (20) shows that triviality of c rules out not only unramified extensions but also

certain ramified extensions. To see how, suppose e.g. that K/k has ramification index e at a
single prime p and is unramified elsewhere, where we suppose that the absolute norm Np ≡ 1
modulo e.6 The norm of any element in U is an eth power modulo p (why?) Therefore, if
the reduction map

(23) u! k(p)× modulo eth powers

is surjective, it follows that NU must have index at least e inside u; the right side of (20) is
then ≥ e. We conclude that K cannot actually ramify in this way if (23) is surjective. We
will redeploy this argument in a crucial way later.

6. Unramified cyclic extensions are class fields

We prove that unramified cyclic extensions are class fields. In effect, we just proved this
in the case when c is trivial; but we will also give the proof in the second simplest case in
§6.1 – when c is cyclic of order `; the general case is not much harder.

6.1. Second simplest nontrivial case: when c and [K : k] has order `. Suppose that
c has order ` and K/k is an unramified cyclic `-extension. We will show K is a class field,
which here simply means that NC is trivial.

We follow the basic strategy (§3). If we could show that Cσ were trivial, then 1−σ : C ! C
is injective and so also surjective; but since the class group norm N kills any (1−σ)th power,
it would follow that N is trivial, as desired.

Take then I an ideal of K whose class is σ-fixed; thus I1−σ = (θ) for some θ ∈ K×; note
that (Nθ) generates the trivial ideal of k, so is a unit, and Nθ is determined by the ideal

6This is in fact automatic if p is relatively prime to the index [K : k]; this uses a little more theory about
ramification. We will not however use this in what follows.
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class of I up to norms of units. In the reverse direction, given a unit x ∈ u which is a norm,
say x = Nθ, then the ideal (θ) of K has trivial norm and therefore

(24) (θ) = J1−σ for some fractional ideal J of K,

an analogue of Hilbert’s theorem 90 for ideals, elementary to check by looking at prime
factorization. This J is specified up to σ-fixed ideals, which are all extensions from k by
(9) (using unramifiedness of K/k at all finite places); so the rule sending x to the class of J
defines an isomorphism

(25)
units of k that are norms from K

units of k that are norms from U
!

Cσ

image of c in C

But (10) shows that the order of ker(c ! C) equals ` · [u : NU ] and, since the order of c
was exactly `, this forces both NU = u and that the image of c in C is trivial. Substituting
these conclusions into (25), we deduce that Cσ is trivial. Done! �

6.2. Unramified cyclic extensions are class fields; the ambiguous class number
formula. In general, taking K/k cyclic and unramified at archimdean places, we can proceed
as above; but now the σ-fixed ideals are extensions from k together with the classes of ℘̃i for
℘i ramified. Therefore, repeating the above reasoning, the left hand side u∩NK×

u∩NU of (25) is
now isomorphic to the quotient of Cσ both by the image of c and all the ℘̃i. The quotient of
Cσ by the image of c has size #Cσ

c
ker(c ! C), and the further quotient by the ℘̃i has size

#Cσ ·ker(c!C)
c·X , where as before X is the subgroup of C̄ spanned by the ℘̃i.

Multiplying the resulting modification of (25) by (20), and cancelling common terms gives
the ambiguous class number formula:7

(26)
#c ·

∏
ei

m
= #Cσ · [u : u ∩NK×]

where m = [K : k] (cf. (8)). This shows, in the everywhere unramified case, that #Cσ is
at most 1

m
#c; but then, as above, [c : NC] ≥ m. So every unramified cyclic K/k is a class

field; done! 8

6.3. The relative ambiguous class number. The argument above is not yet sharp enough
to prove existence. For that, we need (as in §5.2) to handle some potential ramification, and
here (26) proves inadequate. Now, Takagi’s approach to this involves class groups with
modulus, see §A; but Fürtwangler’s method is more direct, using, instead, a relative class
group.

Our argument did not take advantage of the fact that the norm N : C ! c contains in
its image mth powers. Using that, it is enough to bound the size of the image of the norm
modulo m, which factors through C̄ = C/c:

(27) N̄ : C̄ ! c/m

Now as usual N̄ is trivial on (1− σ)C̄, and this has size at most [C̄ : C̄σ]; so if we can show
that C̄σ has size at most 1

m
#(c/m) we will again certify that K/k is a class field. By doing

7The name goes back to Hilbert’s terminology “ambig” for S-fixed ideals and ideal classes. See Lemmer-
meyer’s exposition [8] for another proof of this formula.

8Moreover, we find the interesting consequence that every unit in k is a norm (not necessarily of a unit)
from K.
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this, we will achieve a sharper version of the previous results. So we now turn to analyzing
C̄σ instead of Cσ.

Let K/k be a cyclic extension of degree m, which we assume unramified at archimedean
places. To express the relevant formula, define groups ν ⊃ νnorm, νunit

(28) ν = classes in k×/(k×)m whose valuation is everywhere 0 mod m,

νnorm = subset represented by norms from K×,νunit = subset represented by units in k.

We might think of ν, νnorm as variants of “units” and “units that are norms” – a unit is an
element whose valuation is everywhere 0, and now we impose that condition only modulo
m. In fact, there is a short exact sequence

(29) 0! u/m! ν ! c[m]! 0,

arising from the fact that any m-torsion ideal class I uniquely determines a class in ν modulo
the image of units, namely, any generator for Im. Notice, in particular, that ν is finite.

6.3.1. The formula and its consequence. In this situation, we claim that

(30)
#c[m]

∏
ei

m
= #C̄σ · [ν : νnorm]

(cf. (8)). In particular, K/k cyclic and unramified at archimedean places is a class field if

(31) [ν : νnorm] ≥
∏

ei

Proof. It is easier to get here directly from (20) rather than go through (26). To get from (20)
to (30), we must compute the difference between X (= span of the ℘̃i) and C̄σ (= all invariant
classes). The difference expressed by the following short exact sequence generalizing (25):

(32) 0! ker(c! C)
δ
!

νnorm

NU
!

(C̄)σ

X
! 0

First we define δ. An ideal i in k whose class is trivial in K has the property that its
extension iK is of the form (Y ), where Y ∈ K× is determined by the ideal class of i up to
units of K and k×. The class of NY lies inside νnorm and is well defined up to NU · (k×)m.
Thus δ assigns (the class of) NY to (the class of) i; we leave the reader to check injectivity.

To motivate how to define the second map in (32), take an ideal J representing a class in
C̄σ/X. Then J1−σ has the form θiK for some θ ∈ K× and i an ideal of k; we write iK for
the extension of i to K, to avoid any confusion. The class of J in C̄σ/X is determined by
J1−σ. Then (Nθ) = i−m so that Nθ defines a class of νnorm. Reversing this reasoning gives
the second map of (32): given θ ∈ K× such that Nθ ∈ νnorm we may write (Nθ) = i−m

for some k-ideal i, the norm of the ideal θ · iK equals (1), and so (θ) · iK = J1−σ; this J is
uniquely specified up to extensions of ideals from k times various ℘̃i, and changing the choice
of θ with a given norm in νnorm modifies J through principal ideals. Finally, the class of J is
trivial in C̄/X if and only if (θ) · iK = (Z)1−σ for some Z ∈ K×. But then iK = (Z1−σθ−1),
and so δ(i)−1 equals the class of Nθ, proving exactness at the middle.

We now put together the the formula (20) for the size of X, and the sequence (32) that
expresses the difference between X and (C̄)σ, to prove (30). Indeed the order of [νnorm : NU ]
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is, by (32), the product of the order of ker(c ! C), and the order of (C̄)σ

X
; we multiply this

by the equality #m−1 ker(c! C) = #X · [u:NU ]∏
ei

of (20) to get

m−1[νnorm : NU ] = #(C̄)σ
[u : NU ]∏

ei
,

Note that the short exact sequence u/m! ν ! c[m] permits us to rewrite

[νnorm : NU ] =
[u : NU ] ·#c[m]

[ν : νnorm]
,

and substituting this into the prior equation yields (30) upon rearrangement. �

7. Proof of existence for cyclic `-extensions when ζ` ∈ k

We now come to what I regard as the core of the whole matter: the existence of a class
field for c0 6 c when ζ` ∈ k and c/c0 has order `.

Our presentation broadly follows Fürtwangler [2], in particular, the essential ideas of
using the relative class group and using auxiliary primes. Both ideas are in fact deployed
in Hilbert’s paper [1] on relative quadratic extensions, although the relative class group, for
Hilbert, plays a rather minor role. Takagi’s treatment, when specialized to the unramified
case, also uses auxiliary primes, but as noted avoids the use of the relative class group,
working instead with class groups with modulus.

7.1. Why existence is hard. It is important to understand why this is difficult. Cyclic
`-extensions K/k, have, by “Kummer theory”, the form k(x1/`) for x ∈ k×, where x only
matters modulo `th powers.9

For k(x1/`)/k to be unramified the valuation of x must be divisible at ` for every prime,
i.e. x defines a class in the F`-vector space ν defined in (28) (taking m = `). However,
unramifiedness is a yet stronger condition at primes dividing `; it imposes constraints whose
number exceed, in general, the dimension of ν. From this point of view it is a miracle that
unramified extensions exist.

For example take k = Q(
√
−5), with ring of integers o = Z[

√
−5], and class number

2. It must have an unramified quadratic extension, necessarily of the form k(
√
x); if x is

prime-to-2, the condition that this be unramified at 2 will amount to imposing two two linear
constraints on the reduction

x̄ ∈ (o/8o)×

squares
' F3

2.

Now, ν is two-dimensional here, represented by the set {±1,±2}. That k admits an unram-
ified extension, then, arises from the a priori surprising fact that the two linear constraints
mentioned above become linearly dependent when pulled back to ν.

The key point of the argument may be expressed as

seek to construct class fields not unramified extensions.

We saw in the previous section that unramified cyclic extensions are class fields; but – just
as we saw in the case of c trivial – the same argument gives information in the ramified
case too, so long as (31) holds – in words, if ramification is accompanied by a failure of all
elements of ν to be norms.

9To say it explicitly we simply construct x as the `th power of any nonvanishing Lagrange resolvent∑`−1
i=0(σζ)iα for α ∈ K.
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In what follows, we will first (§7.2) study more carefully the constraints imposed by being
unramified at primes above `. We will then, in §7.3, introduce a specific type of ramification
that forces (31), generalizing what we sketched in §5.2 in the unramified case. Allowing
such ramification reduces the number of constraints in the above argument exactly to the
point that such extensions always exist (§7.4); the rigidity of the notion of class field then
miraculously shows, after the fact, that the resulting extensions are unramified.

7.2. Ramification above `. Let us examine the condition that k(x1/`) be unramified at a
prime divisor λ of `, where x is prime to λ. In what follows, “valuation” means ‘valuation
at λ,” i.e. the highest power of λ dividing a given element. It will be denoted by vλ.

Let e, f be the (absolute) ramification index and residue field index of λ and let

e0 =
e

`− 1
;N = e0`+ 1.

Equivalently, e0 is the valuation of 1− ζ at λ, or equivalently the ramification index of λ in
the extension k/Q(ζ`).

We prove the following three assertions which say that k(x1/`) can be forced to be unram-
ified at λ by imposing ef constraints modulo `.

(a) The quotient Gλ of Gλ := (o/λN)× by `th powers has order `ef+1.
(b) The map λN−1/λN ! Gλ sending y to 1 + y has image of order `.
(c) If x ∈ k× is prime to λ, and its reduction x̄ ∈ Gλ is nontrivial and belongs

to the image described in (b), then k(x1/`) is unramified at λ.

Actually, all we need from (b) and (c) is that k admits some unramified-above-` extension.
A modern argument for (b) and (c) might start by producing an unramified extension of
the completion kλ of k at λ, writing it as kλ(y

1/`), and then approximating y by an element
x ∈ k×; a modern argument for (a) using Haar measure can be found in §C.1.

Proof. For (a): as usual (see (1)) this quotient has the same size as the number of `-torsion
elements in Gλ. We claim that this `-torsion are just those classes congruent to some
(necessarily unique) power of ζ modulo λN−e, from where elementary counting gives (a).
To prove the claim, observe the factorization

t` − 1 =
∏

(t− ζ i).

Let x be an integer of k representing an `-torsion class in Gλ, let m be the largest valuation of
any x− ζ i, and suppose it is achieved when i = i0. Then the valuation of x`− 1 =

∏
(x− ζ i)

is, on the one hand, at most ` ·m, and so m ≥ N
`
> e0. But, on the other hand, the valuation

of ζ i − ζj for i 6= j is precisely equal to e0, so the valuation of x− ζ i for i 6= i0 is also equal
to e0, and so

m+ (`− 1)e0 > N,

which gives m > N − e.
Now we pass to (b). If, for some y ∈ λN−1 = λ`e0 , the element 1 + y is an `th power inside

Gλ, some pleasant moments spent with the binomial formula shows that it must actually be
of the form (1 + y′)` with y′ ∈ λe0 , and more specifically it lies in the image of the composite
map

λe0

λe0+1
−!

λN−1

λN
t7!1+t
↪−! (o/λN)×,
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where the first map is z 7! `z+ z`. The first and second groups above are o/λ-vector spaces
of dimension 1, and with respect to the basis (1− ζ) for the first group and `(1− ζ) for the
second, the first map becomes v 7! v − v`. This map, on any finite field of characteristic `,
always has kernel the prime field, so its image always has index of size `. This proves (b).

Finally, to prove (c), note that x is congruent to 1 modulo λN−1, i.e. modulo λ`·e0 . We
claim that

x′ :=
x1/` − 1

1− ζ
is in fact an element of k(x1/`) that is integral at all primes above λ. To see this, we compute,
again with the binomial formula, that x1/` is congruent to 1 modulo λe0 , but the valuation
of 1− ζ at λ is also equal to e0.

We may therefore choose a prime-to-λ element η ∈ o such that x′′ := ηx′ is actually an
algebraic integer. Now we just observe that the conjugates of x′′ over k are pairwise distinct

modulo any prime above λ: their differences have the form ηx1/` ζa−ζb
1−ζ . It follows from this

that the discriminant over o of the k′-order o[x′′] is not divisible by any prime above λ, as
required. �

7.3. Auxiliary primes. Here is our tool to control the image of the norm (cf. discussion
around (23)):

Fact: if K/k is a cyclic `-extension and p is a ramified prime, then the norm
of any prime-to-p integer of K must in fact be an `th power modulo p.

Motivated by this, let us say that a set of primes P , none of which lie above `, is auxiliary
if the map

(33) ν −!
∏
p∈P

k(p)×/` ' (Z/`)P

arising from reduction modulo p is an isomorphism. Here ν is as in (28), and we wrote k(p)
for the residue field; its order is divisible by ` since p doesn’t divide ` and ζ` ∈ k. Also
note that the reduction of an element of ν mod p makes sense modulo `th powers, just by
choosing a representative that is a unit at p. Clearly a set of auxiliary primes has size equal
to the dimension q of ν as a Z/`-vector space.

(i) auxiliary sets of primes P exist, and can be chosen disjoint to any given finite set of
primes, and

(ii) A cyclic degree-` extension unramified outside P is then a class field.

Assertion (ii) follows from the sufficiency criterion (31) to be a class field: if K/k ramifies
at precisely the auxiliary primes p1, . . . , pt then the map ν ! (Z/`)t from reducing modulo
these primes is trivial on νnorm but also surjective, so [ν : νnorm] ≥ `t.

For (i) fix a basis ε1, . . . , εq for ν over F`, and skillfully apply (5) to various subfields of

k(ε
1/`
1 , . . . , ε

1/`
q ): first take p1 nonsplit in k1 := k(ε

1/`
1 ), then take p2 below any degree one

prime of k1 that is nonsplit in k1(ε
1/`
2 ), and so on. These will have the property that, for

i ≤ j

(34) εi is not an `th power mod pj ⇐⇒ i = j.

which means the map (33) is represented by an upper triangular matrix with nonzero diagonal
entries, and so has nonzero determinant.
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7.4. Proof of existence of an unramified class field when ζ` ∈ k, for c0 of index `.
Fix an auxiliary set of primes P . We will construct many cyclic `-extensions K/k unramified
outside of P . We carry out the proof for ` odd, which forces k totally imaginary, and then
indicate the modifications when ` = 2.

Let h be the rank of c[`]. From (29) we deduce that the rank of ν equals h + r∞, so that
the size of P also equals h+ r∞. Then, by the unit theorem, the group [P ] of P -units modulo
`th powers is a Fl-vector space of rank h + 2r∞ = h + [k : Q]. (The free part of this group
has rank h+ 2r∞ − 1, but the `th roots of unity contribute an extra +1.)

The desired extensions will be taken to be of the form K = k(x1/`) for x a P -unit; these
are automatically ramified only at primes in P or over `. It follows from §7.2 that, for λ
dividing `, the condition of being unramified at λ can be guaranteed by enforcing eλfλ linear
constraints on the class of a nontrivial x ∈ [P ]. These constraints arise by imposing that the
image of x under the natural map [P ]! Gλ (notation of §7.2) lies within the one-dimensional
F`-subspace specified in (b) of §7.2.

Being unramified at all primes above ` is ensured by a system of∑
λ|`

eλfλ = [k : Q]

constraints on a class x ∈ [P ]. The subspace satisfying all these constraints is thereby
h′-dimensional, where h′ ≥ h, and this gives rise to exactly M different cyclic extensions

K1, . . . , KM unramified outside P , where M = `h
′−1
`−1

is the number of lines inside an h′-
dimensional vector space over Z/`. Each such Ki is automatically a class field, as we have
seen, and so corresponds to an index-` subgroup of norms inside c, and since these subgroups
are all distinct we see that see that h′ ≤ h, so h′ = h and moreover the map

Ki 7! subgroup of c of norms of ideal classes from Ki

is a bijection onto the set of index-` subgroups of c. In particular, for any c0 6 c we have
produced a class field attached to c0 and unramified outside P ; choosing a disjoint P shows
that K(c0) is unramified; done (!!)

7.5. Modifications for ` = 2. We leave the reader to check the details, but the numerology
is modified as follows. Let r be the number of real places; the rank of P -units is now
h + 2r∞ = h + [k : Q] + r; however, in addition to the [k : Q] constraints arising from
primes v|2 exactly as in the above argument, we have a further r constraints arising from
the necessity of x being totally positive, so that k(

√
x) is also unramified at the archimdean

places.

8. Mopping up; conclusion of the proof

We conclude the proof of the target theorem. The hard work is done; the arguments are
now quite routine, building general abelian extensions from cyclic ones using the remarkable
rigidity of the concept of class field.

8.1. Proof of existence of unramified class fields for general k, when c0 has index
`, by “descent.” This has already been proved when k contains ζ`; so we can suppose ` is
odd. Let k′ = k(ζ`), so k′/k is cyclic of degree less than `, and consider a subgroup c0 6 c
of index `. Let c′0 6 c′ be its preimage under the norm map from k′ to k. This norm map is
surjective on `-primary parts, because its pre-composition with the inclusion c ! c′ equals
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multiplication by [k′ : k], which is prime to `. In particular, c′0 also has index ` inside c′. By
what we have already proved, there is a class field K ′/k′ for c′0.

Now, K ′ is Galois over k, because it is uniquely specified by c′0, and c′0 is invariant by the
Galois group of k′/k (since the norm c′ ! c is invariant by that Galois group). One might
worry that K ′/k is not abelian; but we show its Galois group is cyclic, by exhibiting a prime

p of k that remains inert in K ′; the Frobenius element
(
K′/k
p

)
for such p then generates

Gal(K ′/k).
Choose p in such a way that:

(a) its Frobenius class generates Gal(k′/k) and
(b) its ideal class doesn’t lie in c0.

This is possible: by §2.2, the complement to (b) has upper density at most `−1, but that is
less than the density of primes satisfying (a) (by §2.1, it is ≥ 1

[k′:k]
). But the first property

means that p remains inert in k′, and the second means that the unique prime ideal p′ above
p doesn’t lie inside c′0; if it did, its norm p[k′:k] lies in c0, and so also p ∈ c0 since [k′ : k] is
prime to ` = [c : c0], contradicting (b). Thus, since split primes must always have ideal class
that is a norm (see (2)), p′ remains inert in K ′.

The cyclic extension K ′/k of degree ` · [k′ : k] therefore admits a unique cyclic subex-
tension K/k of degree ` over k. This K/k is unramified: It is automatically unramified at
archimedean places, for ` is odd; and the ramification index of any prime in K/k divides `,
but it also divides the ramification index of the same prime in K ′/k, which itself is a divisor
of `− 1. Therefore, K/k is a class field, by what we proved in §6.2.

To show that K/k is the class field attached to c0, it is enough to show that c0 is contained
in the image of the norm map from the class group of K to the class group of k. That image
automatically contains all the prime-to-` torsion in c, because the composite c ! C ! c is
multiplication by `. It also contains the image of the norm C ′ ! c associated to K ′/k; this
contains, in particular, the image of c′0 by the norm, which, as already noted, includes all
`-power torsion in c0. Thus the ideal class norm from K to k contains c0 in its image, as
required.

8.2. Existence of unramified class fields for general k and c/c0 cyclic. By induction,
let us show the existence of unramified cyclic class fields for all number fields k and for all
c/c0 cyclic of size `n, when we have proved the same assertion with n replaced by any smaller
number. We have already dealt with n = 1, so let us suppose n ≥ 2. Then, for such c0, there
are unique subgroups c1, c2

c0

`
⊂ c1 ⊂ c2

`
⊂ c

where the superscripts denote indices. Let k′ = k(c1) be the class field degree `n−1 attached
to c1. Its class group surjects by the norm onto c1; so the preimage of c0 thereby defines an
index ` subgroup c′0 6 c′, to which is again attached a class field K ′/k′ of degree `; this K ′

has degree `n over k, and it is Galois by the same argument as in §8.1. Also K ′ is unramified
over k, for K ′/k′ and k′/k are both unramified. The norm of the class group of K ′ equals
exactly c0. Finally, K ′/k is actually cyclic by a variant of the argument of §8.1, as we now
explain:

If p is a prime of k whose ideal class lies outside c2 then it is necessarily inert in k′. Indeed,

it is inert in the class field for c2, and so the Frobenius class
(
k(c2)/k

p

)
is nontrivial. But k(c2)

is the unique Z/`-subextension of k′/k, by the Example of §2.3, and so we also see that
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k′/k
p

)
generates the cyclic Galois group Gal(k′/k). Therefore, the unique prime ideal p′ of

k′ above p has norm equal to p[c:c1] which does not lie inside c0; so p′ does not lie inside
c′0 and thus remains inert in K ′ ((2) again). Therefore p is inert inside K ′, and so K ′/k is
cyclic.

8.3. Existence of unramified class fields, no restrictions. For general c0, we just choose
a direct product decomposition of c/c0:

c/c0 '
∏

(Z/di)

where each di is a prime power. Let c1, . . . , cr be subgroups of c correspond to the kernels
of the various projections to the factors, and let K(ci) be the associated class fields. Then
the abelian extension

K = K(c1) . . . K(cr)

of k is a class field. Indeed, norms of ideal classes from K are certainly norms from each
K(ci), so the subgroup of norms is contained in

⋂
ci = c0, and thus for this K we have

[c : NC] ≥ [c : c0]. But the degree [K : k] is at most the product of the degrees of the K(ci),
which is precisely [c : c0]; equality must hold everywhere, and K is the class field for c0.

8.4. Every unramified abelian extension is a class field. In the converse direction, if
K∗/k is unramified abelian, we write its Galois group

Gal(K∗/k) '
∏

(Z/di)

as a product of cyclic groups of prime power order di, and fix a corresponding decomposition
of the field K∗ = K1 . . . Kr where Ki/k is cyclic of degree di. Each Ki/k is a class field, by
what we have already proved in §6.2, attached to some ci 6 c; let c′ be their intersection.
Its index [c : c′] is at most

∏
[c : ci].

The class field K ′ attached to c′ contains each Ki, because c′ 6 ci, and so it contains K∗.
But then

[K ′ : k] ≥ [K∗ : k] =
∏

di =
∏

[c : ci] ≥ [c : c′] = [K ′ : k]

and so equality holds everywhere; and K ′ = K∗ is the class field for c∗.

Appendix A. Takagi’s treatment of the ramified case

We are not going to give a full treatment of the ramified case here, primarily because
formulating the statement would take us too far afield of our main goal. However, its proof
requires very little beyond what we have already done. To emphasize this, we explain how
to extend the crucial equality [c : NC] = [K : k] to the ramified case, and give an example
to see how it is used.

We hope that, after reading this section, the motivated reader who is familiar with the
statement of ramified class field theory (that is, existence and uniqueness) will be able to fill
in the remaining details.
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A.1. Generalized class groups attached to K/k. Let K/k be a cyclic degree m exten-
sion, possibly ramified, of discriminant d. The norm map N : C ! c actually lifts to a bigger
target than c, because, if α is an integer of K, its norm satisfies certain extra congruence
constraints; we already exploited this in our earlier proofs.

To formalize this, let D = dN be a large enough power of d.10 We say that a prime-to-d
integer α ∈ oK is a local norm if:

• there is a prime-to-d integer Y of K such that α ≡ NY modulo D;
• α is a norm at each archimedean place; that is to say, α is positive at each real place

of k above which all places of K are complex.

Let c̃(K) be the following generalized class group for k:

c̃(K) =
prime-to-d fractional ideals in k

subgroup generated by all (α) for α a local norm
.

The natural map c̃(K) ! c is surjective. This c̃(K) is a “generalized class group” for k; the
subscript K reminds us that the notion of local norm depends on K. Thus, for example, if
we take K = Q(i) and k = Q, the group c̃(K) is

prime-to-2 fractional ideals of Q

subgroup generated by (m) with m ≡ 1 (4) and positive

which is a group of order 2; a fractional ideal (x) represents a nontrivial class exactly when
x ≡ 3 modulo 4.

Then one readily verifies that the norm C ! c lifts to a norm C ! c̃(K). Following Takagi,
we will prove the following crucial index equality:

(35) the index of NC in c̃(K) is precisely m.

The analytical argument of §2 generalizes almost verbatim to show that [c̃(K) : NC] ≤ m.
So it sufficies to show the reverse inequality.

A.2. Proof that [c̃K : NC] ≥ m. For simplicity, we suppose that K/k is unramified at ∞,
leaving the easy modifications to the reader. We abridge c̃(K) to c̃ since there is no possibility
of confusion. We proceed as usual: NC is at most the size of Cσ, and the ambiguous class

number formula (26) shows that this equals #c·
∏
ei

m
1

[u:u∩NK×]
. So it is enough to show that

this is at most #c̃
m

, or equivalently

(36) #
c̃

c
≥

∏
ei

[u : u ∩NK×]
.

We now need the purely local computation about the congruence behavior of norms:

Local norm index: The quotient Q of (o/D)× by norms has order
∏
ei.

Here “norms” means the subgroup generated by local norms, or, what is the same, the image
of the norm from (oK/D)× ! (o/D)× restricted to invertible elements.

This computation of the local norm index might be considered part of local class field
theory. Takagi’s proof is an entirely elementary computation which we will not reproduce;

10The definitions that follow will not depend on N so long as it is chosen large enough; it suffices to take
it so large that every element congruent to 1 modulo dN is in fact an mth power modulo dN

′
whenever

N ′ > N .
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however we will give a proof using Haar measures in §C.4.2 of the Appendix. Assuming it,
we conclude the proof of (35). We easily see that

(37) ker(c̃! c) ' Q

image of units in Q
.

We claim that the image of u inside Q has size at most [u : u ∩ NK×]; and then (36) will
follow. For this it is enough to show that the reduction map u! Q is trivial on u ∩NK×.
This is not quite trivial because Q is obtained by only killing the norms of prime-to-D
elements, so we must see that any element of u ∩ NK× arises thus. Suppose then that
Y ∈ K× has unit norm N(Y ) ∈ u. Now, as in (24), the ideal (Y ) has the form J1−σ for some
fractional ideal J ; choose an element Z ∈ K× such that (Z)J is prime-to-d. Then Y Z1−σ

also has norm N(Y ) but is now integral at D because it generates the ideal ((Z).J)1−σ. Thus
N(Y ) is the norm of a prime-to-D element of K, as desired.

A.3. Existence and uniqueness: ramified case. With (35) in hand, our entire proof
from §7 and §8 now goes through. It establishes, now, a bijective correspondence between
finite abelian extensions K/k and finite index subgroups of a generalized class group c, which
can be taken to be the inverse limit of all class groups with modulus, or, alternately, the
idele class group of k.

We simply see how to redo the existence proof in the unramified case that we gave in §7.
We leave to the reader the task of generalizing this to the ramified case; once this is done,
the argument of §8 goes over to the general case.

We suppose that ` is odd and ζ` ∈ k. We choose a set of auxiliary primes P as before and

construct, using the same argument as before, at least `h−1
`−1

fields K/k ramified only in P
(and automatically unramified at ∞). We claim that for all these K the map

(38) c̃(K)/`! c/`

is an isomorphism. Once this is so, the norm of C inside c̃(K)/`, which has index ` by (35), is
in fact pulled back from a subgroup of c/` of index `, and then the same counting arguments
as before put the various K in bijection with index ` subgroups of c.

To verify (38), it is enough to show that the map is injective. So, choose a class a prime-
to-d ideal J that represents a class in the kernel of c̃(K) ! c/`. This means that there exists
y ∈ k× such that

J.(y) = the `th power of an ideal,

and we easily see that we may suppose that y is also prime to d. But – by the definition of
a set of auxiliary primes, see (33) – there exists another z ∈ k× such that

(z) = the `th power of an ideal, and
z

y
≡ an `th power, modulo D.

Then z/y modulo D is a local norm from K, and then J and J.(y/z) represent the same
class inside c̃(K). However, by choice of z, J.(y/z) is an `th power of another ideal. That
shows that J is an `th power within c̃(K) as desired. This concludes the proof that (38) is
injective, and so it is an isomorphism as claimed.

Appendix B. That zero density set, and the reciprocity law

We will see how to remove the zero density set of exceptions in the target theorem in a
special case (following Takagi’s technique) and then, with this as motivation, go on to discuss
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Artin reciprocity (§B.2). As in Appendix §A, we do not give complete statements, let alone
complete proofs - just examples. Again, hopefully, the motivated reader who is familiar with
the statement of reciprocity will be able to fill in the proof for themselves after reading this.

B.1. Eliminating the zero density set by means of auxiliary fields. Suppose that we
know the target theorem is valid for k, with class group c ' (Z/`)2. Let c0 be the subgroup
(?, 0) and c1 be the subgroup (0, ?) with associated class fields K0 and K1.

Let p be a prime ideal of k. We already have seen that, if p splits in K0, then the ideal
class of p belongs to c0. We will prove the converse under the auxiliary condition that the
class of p does not belong to to c1.

The field generated by K0, K1 is the class field attached to the trivial subgroup of c, and
it has Galois group (Z/`)2. Suppose p does not split in K0. By assumption it does not split
in K1, and so its Frobenius element in K0 · K1 then has the form (a, b) ∈ (Z/`)2 with a, b
both nonzero. The fixed field for this element gives the unique degree ` subextension H of
K0 ·K1 in which p splits. Then the ideal class [p] of p belongs to the associated subgroup
cH 6 c, which is distinct from c0, c1. If [p] ∈ c0, then it would belong to c0 ∩ cH and thus be
trivial, contradicting the assumption that [p] /∈ c1. Therefore [p] /∈ c0, as required.

There are two lessons we can draw from this argument:

(a) we can eliminate the zero density set for K0/k by means of an auxiliary class field
K1 with suitable properties.

(b) To study a given Z/`-extension, it is useful to enlarge it to a (Z/`)2-extension.

An auxiliary field as in (a) can be manufactured in great generality once one has access
to ramified class field theory. To put it differently: of course, the class group of k need not
be of the form (Z/`)2, but the generalized class groups that control ramified extensions have
many quotients of the form (Z/`)2, which is all we need.

And we will apply the principle of (b) in a more powerful way in the next subsection.

B.2. Reciprocity by means of auxiliary fields. In later presentations, Artin’s reciprocity
law acquired a much more central role. But the target theorem is much closer than one
might think to reciprocity in Artin’s sense. Let us illustrate why the target theorem gives
a“reciprocity law up to scalars” so long as the Galois group of K/k is complicated enough.

Suppose, then, that we know the theorem for k, and we have an unramified Galois ex-
tension K/k with Galois group G = (Z/`)m. It corresponds to some c0 6 c, and the main
theorem asserts that we have an inclusion-preserving bijection between subgroups of c/c0

and of G. But such bijections are not easy to come by if m is large! Indeed, the fundamental
theorem of projective geometry, appled over the field Z/`, says that, if m ≥ 3, any such
bijection is induced by an isomorphism

ϕ : c/c0 ' G

itself unique up to scalars.11 So we get, “for free” – by which we mean, without using specifics
of number theory – an upgrade from a bijection between subgroups, to an isomorphism of
groups. Moreover, the splitting properties of class fields yields

(39) ϕ (ideal class of p) = a(p)

(
K/k

p

)
11More precisely, the fundamental theorem of projective geometry implies this if one knows a priori that

c/c0 is isomorphic to G. That fact actually comes out in the proof of the target theorem, but it can also be
deduced from the fact that there is an inclusion-preserving bijection of subgroups.
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for some scalar a(p) ∈ F`, possibly dependent on p. Indeed, a quotient of the Galois group
kills the Frobenius element if and only if p splits in the associated extension, which forces
the class of p to be trivial in the associated quotient of c; thus any subgroup containing the
Frobenius element also contains the left side. This implies (39).

Artin’s reciprocity law is precisely the additional assertion that the scalar a(p) is indepen-
dent of p. Thus, at least in the case above, the existence and uniqueness theorem can be
seen as a “reciprocity law up to scalars.” Given the statement of ramified class field theory,
it is easy to enlarge an arbitrary K/k by composition with an auxiliary cyclotomic E/k to

a larger K̃ = K ·E for which some version of the above argument applies (cf. §A) , and pin
down the scalar ambiguity simply by checking it by hand in Gal(E/k).

For the reader familiar with the statements of ramified class field theory who is interested
in implementing this sketch in full, a suitable generalization of the fundamental theorem of
projective geometry is the following statement, due to Baer [9, (3), page 4]: if G has the
form

(Z/`a)3 × a group killed by `a

for a ≥ 2, then any automorphism of the subgroup lattice of G comes from an automorphism
of G; the same is true for any product of such groups. The resulting argument is functionally
equivalent to Artin’s original proof, but using Baer’s results separates the purely algebraic
argument from the arithmetic part.

Appendix C. Index computations via Haar measure

To conclude, I will explain an approach to index computations that, on the one hand,
uses some of the modern abstract language (local fields, idèles), but proceeds in a way that
is quite parallel to the concrete arguments we have presented. This technique is a more
analytic manifestation of the same ideas that find algebraic expression through the theory
of the Herbrand quotient.

One can then give a proof of the uniqueness and existence theorems (in the ramified case)
along the lines of the present paper by, first of all, replacing c by the idèle class group, and
then substituting the present section §C for §4, 5 and 6.

The starting point is that any locally compact topological group admits a Haar measure,
unique up to scaling.12 The basic strategy of §3 can thereby be adapted to settings when C
is replaced by various locally compact groups G, using “volume” (Haar measure) for “size.”
By applying this technique to various choices of G we will recover in a smooth way several
results of the main text. This includes, in particular, the lower bound on the norm index for
the idèle class group which we discussed in §A.

The resulting proof is in a certain sense a genuine simplification of the one we gave before,
because the complexities of the computations with units in §5.1 and the computations with
the class group in §6.3 exactly cancel each other. This point is worth emphasizing, since
frequently idèles and adèles in number theory serve solely as a linguistic device to abridge
computations that can equivalently be done at any fixed finite “modulus.”

C.1. Stretching. To warm up in using Haar measures for index computations, let us reprove
(a) of §7.2, in the following form: For E a local field, the index of `th powers of local units

12Note that for all the groups we consider are built from finite groups and the real line, and the existence
and uniqueness of Haar measure can be checked by hand, or even by mind.
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(o×E)` inside the local units o×E equals

(40) |`|−1
E · w,

where w is the number of `th roots of unity in E. Here, |`|E is the normalized absolute value,
that is, the amount by which x 7! `x scales Haar measure on the additive group (E,+).

Our proof of (40) will be informal, and we leave to the reader the task of rewriting it in
more formal terms. Firstly, the multiplicative and additive groups are locally isomorphic,
by means of the exponential map. This shows that x 7! x` locally “stretches” measure on
o×E by the same factor |`|E. On the other hand, the map x 7! x` is not injective in general;
its fibers all have size w. Therefore, the volume of `th powers of units equals the volume of
all units, multiplied by |`|E/w. This implies (40).

C.2. The basic strategy. Now let G be a locally compact abelian group, and let σ be a
continuous endomorphism of G satisfying σm = 1, for some integer m; the norm will now be
the map N : G ! Gσ defined by N = 1 + S + · · · + σm−1. What we want to argue is that,
by analogy with the finite case:

(41) vol(NG)× vol(kerN)
??
= vol(G)

??
= vol(Gσ)× vol(G1−σ)

for suitable notions of “volume.” The problem here is that, unlike the case of finite groups,
the notion of Haar measure here is only defined up to scaling, and we have to discuss how
to pin down the scalar.

To investigate this, we must examine how Haar measure interacts with quotients. Consider

π : G! Ḡ

a surjective homomorphism of locally compact groups, with kernel H. We assume that π
is an open map; then it induces a homeomorphism of G/H with Ḡ, and this is automatic
for G, Ḡ compact. Then a choice of Haar measure on any two of H,G, Ḡ determines a Haar
measure on the other one, characterized by the compatibility rule

(42)

∫
Ḡ

∫
H

f(g̃h)dg · dh =

∫
f(g)dg

for any f ∈ Cc(G); here g̃ is any preimage under π of an element g ∈ Ḡ, or, more pedantically,
we take g 7! g̃ a measurable section of the projection G! Ḡ. This equality follows readily
from the uniqueness of Haar measure: both sides define a translation-invariant functional on
continuous functions of compact support.

We shall impose the following topological conditions on the situation, which we call con-
dition (O):

(43) N is an open map G! Gσ and 1− σ is an open map G! ker(N).

Assume this is so. We fix Haar measures on Gσ, G1−σ. Since NG ⊂ Gσ is open, we get
an induced Haar measure on it; since ker(N) contains G1−σ as an open subgroup, we get
an induced Haar measure on it too. Now, applying (42) to the surjective homomorphism
1 − σ : G ! G1−σ we get a measure µσ on G “compatible” with the chosen measures on
Gσ, G1−σ; similarly, applying (42) to N : G! NG we get a measure µN on G “compatible”
with the chosen measures on ker(N), NG. But these two measures need not coincide; by
uniqueness of Haar measure up to scalar they differ by some positive scalar ν(G, σ):

µσ = ν(G, σ)µN .
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Note that ν(G, σ) does not depend on the choice of Haar measures. Note also that (O) was
needed to make sense of ν(G, σ), and whenever we write ν(G, σ), we understand that (O) is
valid.

Once we understand the constant ν(G, σ) we can proceed just as we do for finite groups.
Note that, in the compact case, [Gσ : NG] is automatically finite, and is equal to the ratio

of Haar measures vol(Gσ)
vol(NG)

when they are normalized as above, as we see simply by choosing

coset representatives and using invariance of the measure. The same remarks apply to
[ker(N) : G1−σ]. Thus we find that for G compact

(44) [Gσ : NG] = ν(G, σ) · [ker(N) : G1−σ],

To prove this, we just apply Fubini’s theorem (42) to the constant function 1G, which shows
that (41) holds just as for finite groups, but with a factor of ν(G, σ) on the left.

C.3. Evaluating ν(G, σ) by use of a local model. Both (O) and the computation of
ν(G, σ) will be handled in a similar way to the analysis after (40) – they are both local
questions. Suppose, then, that there is a“local model” (G′, σ′) for (G, σ), that is, there
exists a homomorphism

ϕ : G′ ! G

which intertwines σ′ and σ, and induces an isomorphism of a neighbourhood of the identity
in G′ with a neighbourhood of the identity in G. We will abridge this latter property by
saying that ϕ is a “local isomorphism.” We will prove that if the topological property (O)
is true for one of (G, σ) and (G′, σ′), it is also true for the other, and in that case,

(45) ν(G′, σ′) = ν(G, σ).

Indeed, everything can be expressed just in terms of what happens in a small neighbourhood
of the identity. To write out a proof is an uninspiring exercise in point-set topology, and we
postpone it to §C.5.

A particularly important local model for us is the “shift”: Take H a locally compact
abelian group, and G = Hm and σ to be the cyclic shift. Then Gσ = NG is the diagonal
copy of H, where ker(N) = G1−σ ' Gm−1 by means of projection to the first m− 1 factors.
Then (O) holds and a straightforward application of Fubini’s theorem shows that

(46) ν(Hm, cyclic shift) = 1.

C.4. Applications.

C.4.1. Since most of our applications are to noncompact groups, we first formulate a variant
of (44) that applies to our cases of interest. Suppose that G satisfies (O) and G admits a
σ-invariant homomorphism to R×>0 with compact kernel; then we shall show that

(47) [Gσ : NG] = m · ν(G, σ) · [ker(N) : G1−σ].

Note that this is almost the same formula as in the compact case but with an extra factor
of m.

Proof. There are multiple ways to proceed. One is to replace G by a compact quotient group
and apply (44) to it. 13 Let us proceed in a more analytical way.

13Choose x ∈ G whose image in R>0 is larger than 1, and put y = Nx, so y is σ-invariant. Form the
quotient Ḡ = G/yZ of G by the discrete subgroup generated by y. We leave further details to the reader.
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Consider the set of g with 1 6 |g| < X; call its characteristic function f and its volume
volX(G). Similarly define volX(Gσ) and volX(NG). We apply (42) to f , both with H = Gσ

and H = ker(N). We get the following version of (41):

ν(G, σ)volXm(NG)vol(kerN) = vol(G1−σ)volX(Gσ).

Now (47) follows from this and the following observations:

• volXm(NG) ∼ mvolX(NG) as X !∞. This is easily deduced from (42); it is exactly
true when the norm surjects onto the positive reals, but only asymptotically if its
image is discrete.

• volX(Gσ)
volX(NG)

= [Gσ : NG]; this follows again by choosing coset representatives and using

invariance of Haar measure.

�

C.4.2. Local fields. Let us take G = E×, where E/F is a degree m cyclic extension of
nonarchimedean characteristic zero local fields. Let σ generate the Galois group of E/F .

By the normal basis theorem, we may choose x ∈ oE, the ring of integers of E, such
that xi = σix give a F -basis for E. Then consider the oF -span W of the xi, which, with
addition as the group operation, defines a locally compact topological group. Clearly (W,σ)
is isomorphic to (omF , shift). Also the exponential map x 7! exp(ax) for small a defines a
local isomorphism (W,σ)! (G, σ). Therefore we have a local isomorphism from the “shift”
to (G, σ), so ν(G, σ) = 1 by §C.3. Then (47) shows

[F× : NE×] = m · [ker(N) : (E×)1−σ] = m,

where we used Hilbert’s Satz 90. This is the norm index computation from local class field
theory. Now, the valuations of elements of norms from E× are precisely those divisible by
m
e

, where e is the ramification index, so we get also

[o×F : No×E] = e,

a statement that was used in §A. In particular, if e = 1, that is, if E/F is unramified, then

(48) the norm o×E ! o×F is surjective with kernel the (1− σ)th powers.

C.4.3. Idele class group. Now we take G to be the idele class group A×K/K
×, where K/k is

a degree m cyclic extension of number fields. By Hilbert’s Satz 90, Gσ = A×k /k
× is the idele

class group for k.
For each v a place of k, put Kv = K ⊗k kv =

∏
w|vKw, and let K×v =

∏
w|vK

×
w be the

units. Let

G′v =

{
o×K,v =

∏
w|v o

×
w , v finite,

K×v , v infinite
.

Now we can write A×K =
∏′

vK
×
v , where the product is over places v of k, and the restricted

product is taken with respect to the subgroups G′v. We consider the subgroup

G′ =
∏
v

G′v,

endowed with the product topology (note that almost every factor is compact). It is a closed
subgroup of A×K . It is σ stable and the projection defines a local isomorphism G′ ! A×K/K

×.
Also (O) holds for (G′, σ′): this follows from the fact that it holds for each G′v and that, for
almost all v, the norm N maps G′v onto (G′v)

σ with kernel (G′v)
1−σ; this follows from (48).
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We now readily verify that

ν(G′, σ) =
∏
v

ν(G′v, σ).

But also ν(G′v, σ) = 1 for all v, and so in fact ν(G′, σ) = 1. To check this, proceed as in the
argument of §C.4.2: for any v, choosing a ∈ kv with |a| suitably small, the map x 7! exp(ax)
defines a local isomorphism from (Kv,+) or (oK,v,+) to G′v, thus showing that (G′v, σ) is
locally isomorphic to a shift. Then the discussion of §C.3 gives ν(G′v, σ) = 1.

Therefore ν(G, σ) is also equal to 1. Now (47) gives, in particular,

(49) [A×k : k×NA×K ] = m · H ≥ m.

where H is the index of (1− σ)th powers in A×K/K
× inside the kernel of the norm. Coupled

with the methods of §2 for the reverse inequality, we get another proof of (35): a cyclic
extension is a class field in the idèlic sense. This argument also shows H = 1. 14

C.4.4. Comparison with other arguments. As we commented, this argument has many sim-
ilarities with the use of the Herbrand quotient. Thus (45) plays the role, here, of the fact
that the Herbrand quotient is invariant under maps with finite index kernel and cokernel.
Let us compare what we just proved – namely, that the Herbrand quotient of the idele class
group A×K/K

× equals [K : k] – with the argument in [4] (which goes back to Chevalley’s
argument [11]), and which contains the following steps:

(a) By knowledge of the unramified case, replace A×K/K
× by

∏
v∈SK

×
v /U where S is a

large set of places of k, containing all archimedean places, and U is the subgroup of
K× that are units at all places not above S.

(b) Compute the Herbrand quotient of
∏

v∈SK
×
v to equal

∏
nv, where nv is the degree

of any of the field factors of Kv over kv;
(c) Compute the Herbrand quotient of U to equal 1

m
·
∏
nv, with nv as above.

The Haar measure argument also uses precise knowledge of what happens in the unramified
case. And both arguments also use comparisons, via the exponential map, to the additive
group. But the Haar measure argument shows directly that the ratio of the answers for (b)
and (c) equals m , rather than computing them separately and comparing.

C.4.5. Application to the unit torus; another proof of (16). Now take G to be the unit torus
T = (K ⊗R)×/U of a cyclic extension K/k of number fields, unramified at all archimedean
places. Apply our reasoning above to G, with G′ = K ⊗R and the exponential map as the
local model, we find

[Tσ : NT] = [K : k] · [ker(N) : T1−σ].

Now, using the following computations which we leave to the valiant reader:15

(50)
Tσ

NT
' ker(N : U ! u)

U1−σ and
ker(N)

T1−σ '
u

NU
.

14One can show the equivalence of the statement H = 1 and the statement that a cyclic algebra [L/K, a]
which is everywhere locally split is globally split. This latter statement, as noted by Zorn [10], can be proved
directly by analytic arguments similar in spirit to §2, but more delicate. Again one counts ideals, now in
a central simple algebra; however, the leading term alone is not enough to distinguish split from nonsplit
algebras. In any case, this analytic argument is a key component of Weil’s approach [5].

15For example, these are the connecting maps in cohomology of the cyclic group 〈σ〉 with coefficients in
the sequence U ! (K ⊗R)× ! T.
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we arrive at another proof of (16)

[norm 1 units of U : U1−σ]

[u : NU ]
= [K : k].

C.5. Proof of (45): invariance by local isomorphism. We readily see that a local
isomorphism ϕ : G′ ! G induces local isomorphisms

ker(N ′)! ker(N) and (G′)σ ! Gσ.

Therefore, N : G ! Gσ is an open map if and only if N ′ : G′ ! (G′)σ is an open map;
similarly 1−σ : G! ker(N) is an open map if and only if its G′-analogue is. Assuming that
(O) holds for either G or G′, both of these will be the case, and therefore if one of ν(G, σ)
and ν(G′, σ′) is defined so is the other. We assume this in what follows.

Now, ϕ also induces local isomorphisms

G′1−σ
′
! G1−σ and NG′ ! NG,

since these are open subgroups of the groups mentioned above.
We next observe that, given two locally isomorphic groups such as G and G′, we can

choose Haar measures on them compatibly, in the sense that the induced measure on small
neighbourhoods of the identity correspond to one another. To do so, we note that a local
isomorphism factors into the quotient by a discrete subgroup, and the inclusion of an open
subgroup, and check in these two cases separately.

Now fix compatible Haar measures on the locally isomorphic groups Gσ, (G′)σ, as well
as on the locally isomorphic groups G1−σ, (G′)1−σ. As before, these choices then induce
Haar measures µσ on G,G′. We claim that these are compatible. By similar reasonings the
measures µN for G,G′ are also compatible and then we get ν(G, σ) = ν(G′, σ′), as desired.

Let V ′ be a small open σ-stable neighbourhood of the identity in G′ so that ϕ gives a
homeomorphism of V ′ with its image V . Now choose U ′ so that (U ′)(U ′)−1 ⊂ V ′ and also
(U ′)1−σ ⊂ V ′. It follows that:

• ϕ induces a homeomorphism of (V ′)1−σ with V 1−σ;
• ϕ induces a homeomorphism of each slice V ′∩g′(G′)σ with V ∩gGσ, where g = ϕ(g′).

Take f ′ a continuous non-negative function of compact support on V ′, not identically zero,
and put f ′ = f ◦ϕ as a function on V ; extend both by zero to functions on G′ and G. Then
we readily see that∫

g∈G1−σ

∫
h∈Gσ

f(g̃h) =

∫
g′∈(G′)1−σ

∫
h∈(G′)σ

f(ϕ(g̃′)ϕ(h)) =

∫
g′,h′

f ′(g̃h).

Both sides are strictly positive. The desired statement follows (note that the essential
uniqueness of Haar measure allows us to verify it by checking just one case).
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