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MATH 204: PRINCIPLES OF STATISTICS 2

WINTER 2009
Instructor : David A. Stephens (Burnside 1235)
Email : d.stephens@math.mcgill.ca
Office Hours : Monday 15:00-17:00
Tutorial : TBA
Teaching Assistant: Ashkan Ertefaie
Textbook : Statistics (10th or 11th Edition) by J. T. McClave and T. Sincich.
Web Site : http:/ /www.math.mcgill.ca/~dstephens /204 /

TARGET SYLLABUS

1 ANALYSIS OF VARIANCE: COMPARING MORE THAN TWO MEANS

1.1 Designed Experiments

1.2 Randomized Designs

1.3 Multiple Comparison of Means
1.4 Randomized Block Designs

1.5 Factorial Experiments

2 LINEAR REGRESSION MODELLING

2.1 Simple Linear Regression

2.1.1 Probability Models

2.1.2 Least-Squares Fitting

2.1.3 Model Assumptions

2.1.4 Parameter Estimation and Testing
2.1.5 The Correlation Coefficient

2.1.6 Prediction

2.1.7 Polynomial Regression

2.2 Multiple Linear Regression

2.2.1 Multiple Regression Models
2.2.2 Model Building and Checking
2.2.3 Stepwise Model Selection

2.2.4 Residual Analysis

2.2.5 Pitfalls of Regression Modelling

3 NON-PARAMETRIC STATISTICS

3.1 Distribution-Free Tests

3.2 Single Population Tests

3.3 Comparing Two Populations: Independent Samples
3.4 Comparing Two Populations: Dependent Samples
3.5 Comparing Three or More Populations

3.6 Rank Correlation

3.7 Simulation-based Testing: Permutation Tests



EVALUATION

Please note that the method of evaluation for this class will be on the following basis only':

Coursework Assignments From Friday 16th January 2009

Mid-Term Week of 2nd February - 9th February 2009
Take Home
Final Closed book (with formula sheet)

Final mark for course: the larger of
15 % Coursework + 25 % Mid-Term + 60 % Final

and
15 % Coursework + 85 % Final

NOTES:

T There will no opportunity for a make-up Mid-Term if this examination is missed, and no make-

up work in place of any aspect of the course assessment.

McGill University values academic integrity. Therefore all students must understand the
meaning and consequences of cheating, plagiarism and other academic offences under

the Code of Student Conduct and Disciplinary Procedures (see
http://www.mcgill.ca/integrity/

for more information).

David A. Stephens.
December 11, 2008



UNDERSTANDING THE ANOVA F-STATISTIC

Suppose that we have k£ = 3 treatment groups in a Completely Randomized Design, with sample sizes
n1 = ng = n3 = 6. Suppose first that the treatment means are all equal to zero, that is

p1 = p2=p3 =0

and that the treatment group variance parameter o is equal to 1. A typical data set is displayed below:

= 2
xZ; S;

T™™T1|-088 024 -046 0.78 -047 -0.38|-0.195 0.358
™T2 | -075 011 064 198 -1.03 1.84 | 0465 1.611
T™T3 | 138 120 042 0.05 -1.29 -0.04 | 0.287 0.939

yielding 7 = 0.186, and

k
1

> (ni — 1)s? = 0.969.
n—=k P

&2 =

For these data, we have using the definitions from lectures

k k  n;
SST =) " ni(m; — 7)* = 1.399 SSE =) ) (wi; —;)® = 14.539
i=1

i=1 j=1
and .
SS= " (i —7)* =15.938
i=1 j=1
so that the equation SS = SST + SSE holds. For the F-statistic, we have

MST  SST/(k—1)  1.399/2

F= — _
MSE ~ SSE/(n—k)  14.539/15

=0.722

To complete the test, we compare this with the 1 — a probability point of the Fisher-F distribution with
(k—1,n— k) = (2,15) degrees of freedom. With o = 0.05, from the tables on page 901 in McClave and
Sincich, we see that

Fa(2,15) = 3.68

and we do not reject the ANOVA F-test null hypothesis
Hy @ = pe = ps.

This is the correct conclusion, as in fact all the true treatment means are zero. Thus a small value of the
test statistic F' supports Hy.



Now suppose that, in fact,
p1 =20 p2 =10 us = 20.

The equivalent data set to the one above but with the treatment means changed in this way takes the
form

= 2
xZ; S;

™T1 | -088 024 -046 078 -047 -038| -0.195 0.358
™T2 | 925 1011 10.64 1198 897 11.84 | 10465 1.611
TMT3 | 21.38 21.20 20.42 20.05 1871 19.96 | 20.287 0.939

yielding 7 = 10.186, and

k
1

> (ni — 1)s? = 0.969.
n—k —

53 =

Note that the sample means have changed accordingly, but that the sample variances have not changed
at all. On further calculation, we have

SST = 1259.199 SSE = 14.539 SS = 1273.738
so that 1259.199 14.539
MST = === = 629.600 MSE = —-= = 0.969
o F =259 _ 649 570
0.969 A

We again compare this with F,(2,15) = 3.68 (the critical value, Cz), and notice that the F' statistic is
much larger than this critical value. The test statistic thus lies within the rejection region, and hence we
reject Hy.

This example illustrates that SST measures the variability between means across the treatment groups,
whereas SSE measures the variability within treatment groups, allowing for the possibility that the treat-
ment means may be different. The quantity SS measures the total amount of variability; in the first
example SS = SST + SSE gives

15.938 = 1.399 + 14.539

so most of the variability is contributed by SSE, whereas in the second example, we have
1273.738 = 1259.199 + 14.539

and most of the variability is contributed by SST.



USING THE FISHER-F TABLES

Tables in McClave and Sincich contain information on the 1 — a probability points for the Fisher-F dis-
tribution for o = 0.1,0.05,0.025 and 0.01 respectively, and for different values of the degrees of freedom
parameters. The values in the body of the table are the numbers = which solve the equation

Pr[FF >zl =«
when the statistic F' has a Fisher-F distribution with v; and v, degrees of freedom, written
F ~ Fisher-F(v1, 1)

where v and v, are whole numbers greater than zero.

The table on the reverse of this sheet is the Fisher-F table for o = 0.05, equivalent to the table of McClave
and Sincich. We read v from the column and v, from the row. For example,

e if 1 = 10 and v = 4, we know from the table that

Pr[F > 5.96 ] = 0.05
e if 1 = 6 and v, = 18, we know from the table that

Pr[F > 2.66] = 0.05
e if 1 = 20 and 5 = 20, we know from the table that

Pr[ F > 2.12] = 0.05

The Fisher-F distribution is a non-symmetric probability distribution with a specific property that allows
the tables in McClave and Sincich to tabulate only the right-hand tail of the distribution. If we need to
look up the left-hand tail, we can use the fact that if /' ~ Fisher-F(v;, 1), and 0 < p < 1

PrlF>z]=p = Pr[1/F <1/x]=0p

so that
Pr[1/F >1/z]=1—p.

But it transpires that
. 1 :
F ~ Fisher-F(v1, 1) = 2l Fisher-F(va,v1).

Therefore to look up the left-tail « probability point for the F' ~ Fisher-F(v, 1) distribution, we look up
the right-tail 1 — o probability point for the Fisher-F(v2, v1) distribution, and then take the reciprocal. For
example,

e if F' ~ Fisher-F(10,4), we use tables to discover that as
Fpo5(4,10) = 3.48

it follows that
Pr[F <1/348] =Pr[F <0.29] =0.05

giving the a = 0.05 (left-tail) probability point of the Fisher-F(10,4) distribution as 0.29.
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Diet

Protein Level (%)

ANOVA F-TEST : EXAMPLES
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T T T
barley barley+lupins lupins
Diet
Oneway
Descriptives
Protein Level (%)
95% Confidence Interval for
Mean
N Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum Maximum
barley 425 3.5319 .31921 .01548 3.5015 3.5624 2.64 4.47
barley+lupins 459 3.4297 .30234 01411 3.4020 3.4574 2.70 4.59
lupins 453 3.3124 .33709 .01584 3.2813 3.3435 2.45 4.32
Total 1337 3.4224 .33175 .00907 3.4046 3.4402 2.45 4.59




Test of Homogeneity of Variances

Protein Level (%)

Levene
Statistic df1 df2 Sig.
1.838 2 1334 .160
ANOVA
Protein Level (%)
Sum of
Squares df Mean Square F Sig.
Between Groups 10.606 2 5.303 51.851 .000
Within Groups 136.432 1334 102
Total 147.038 1336
Means Plots
3.55-
3.50
S
©
o
9 3454
£
[T}
e
o
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o
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O 3.40
c
©
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Dose Level

Pull strength

30.00—
< _—
e -
e
g 1
(V)]
S 25.00
o
—
1
20.00— J_ l
I I I I
0 Units 1 Units 2 Units 3 Units
Dose Level
Oneway
Descriptives
Pull strength
95% Confidence Interval for
Mean
Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum Maximum
0 Units 5 28.8600 2.83161 1.26633 25.3441 32.3759 26.2 335
1 Units 5 25.0400 2.42343 1.08379 22.0309 28.0491 22.8 27.7
2 Units 5 22.5000 3.36378 1.50433 18.3233 26.6767 19.3 27.8
3 Units 5 22.3000 1.96850 .88034 19.8558 24.7442 19.6 23.9
Total 20 24.6750 3.67364 .82145 22.9557 26.3943 19.3 335




Test of Homogeneity of Variances

Pull strength

Levene
Statistic

df1

df2

Sig.

.295

16

.829

Pull strength

ANOVA

Sum of
Squares

df

Mean Square

Sig.

Between Groups

Within Groups
Total

140.094
116.324
256.418

16
19

46.698
7.270

6.423

.005

Means Plots
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27.00

26.00

Mean of Pull strength
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Diagnosis

Mannitol gut permeability
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| | | |
AIDS ARC HIV+ HIV-
Diagnosis
Oneway
Descriptives
Mannitol gut permeability
95% Confidence Interval for
Mean
N Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum Maximum
AIDS 26 11.3312 5.17639 1.01517 9.2404 13.4220 2.07 21.80
ARC 7 8.8419 6.87762 2.59950 2.4811 15.2026 .81 22.03
HIV+ 7 9.7104 6.18770 2.33873 3.9878 15.4331 3.18 18.37
HIV- 19 11.3970 4.25972 97725 9.3439 13.4501 2.72 19.60
Total 59 10.8647 5.18458 67498 9.5136 12.2159 .81 22.03




Test of Homogeneity of Variances

Mannitol gut permeability

Levene
Statistic df1 df2 Sig.
.866 3 55 464
ANOVA
Mannitol gut permeability
Sum of
Squares df Mean Square F Sig.
Between Groups 49.011 3 16.337 595 .621
Within Groups 1510.024 55 27.455
Total 1559.035 58
Means Plots
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o> 11.00
=
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[
o
=)
=]
o
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Diagnosis
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Batch number

Bacteria level (count per million)

35.0

30.0

25.0

20.0

15.0

10.0

Bacter level (count per million)

5.0

0.0

Oneway

Bacter level (count per million)

T
3

Batch number

Descriptives

95% Confidence Interval for

Mean

Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum Maximum
1 6 23.833 6.0139 2.4552 17.522 30.145 15 33
2 6 13.333 3.5590 1.4530 9.598 17.068 7 17
3 6 11.667 3.7771 1.5420 7.703 15.631 7 18
4 6 9.167 5.0365 2.0562 3.881 14.452 4 18
S 6 17.833 4.7924 1.9565 12.804 22.863 10 24
Total 30 15.167 6.8485 1.2504 12.609 17.724 4 33

11




Test of Homogeneity of Variances

Bacter level (count per million)

Levene
Statistic df1 df2 Sig.
.384 4 25 .818
ANOVA
Bacter level (count per million)
Sum of
Squares df Mean Square F Sig.
Between Groups 803.000 4 200.750 9.008 .000
Within Groups 557.167 25 22.287
Total 1360.167 29
Means Plots
22.5
3
o)
S 20.0
=
[
o
)
c
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§, 17.5—
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Treatment Group

PTSD Score
40.0
m T
S
o
O
(/2]
a 20.0-
(72]
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o
1
0.0
T T T T
SIT RE SC WL
Treatment Group
Oneway
Descriptives
SystBlood
95% Confidence Interval for
Mean
Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum Maximum
1 19 22.789 13.1596 3.0190 16.447 29.132 -2 44
2 19 18.211 13.5547 3.1097 11.677 24.744 -6 36
3 20 15.800 11.3025 2.5273 10.510 21.090 -3 32
Total 58 18.879 12.8009 1.6808 15.513 22.245 -6 44
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Test of Homogeneity of Variances

SystBlood
Levene
Statistic df1 df2 Sig.
.317 2 55 .730
ANOVA
SystBlood
Sum of
Squares df Mean Square F Sig.
Between Groups 488.639 2 244.320 1.518 .228
Within Groups 8851.516 55 160.937
Total 9340.155 57
Means Plots
22.0
o
o
9 20.0
m
prer)
7]
>
n
Y
o
c
@©
é’ 18.0
16.0
T T T
1 2 3
Disease
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PTSD Analysis
Data Source: Foa, E. B., Rothbaum, B. O., Riggs, D. S., & Murdock, T. B. (1991) Treatment of post
traumatic stress disorder in rape victims: A comparison between cognitive-behavioral procedures and
counseling. Journal of Consulting and Clinical Psychology, 59, 715-723.

RESPONSE: PTSD Score FACTOR: Treatment Group (k=4 levels)

40.0

PTSD
Score

20.0

—

T T T T
SIT RE sC WL

0.0

Treatment Group

Summary Statistics

95% Confidence Interval for
Mean
N Mean Std. Deviation | Std. Error | |ower Bound | Upper Bound Minimum Maximum
SIT 14 11.071 3.9509 1.0559 8.790 13.353 3 18
RE 10 15.400 11.1176 3.5157 7.447 23.353 2 34
SC 11 18.091 7.1338 2.1509 13.298 22.883 5 27
WL 10 19.500 7.1063 2.2472 14.416 24.584 12 30
Total 45 15.622 7.9581 1.1863 13.231 18.013 2 34
Test of Homogeneity of Variances
PTSD Score
Levene P-value = 0.001 < 0.05, so the Levene test of equality of variances between the
Stalole = 2 20 treatment gr REJECTS the hypothesis of equal vari
reatment groups e othesis of equal variances.
6.633 3 41 | 001 r/ orotp P d
N——/
ANOVA TABLE
PTSD Score
Sum of _
Squares df Mean Square = Sig—— P-value = 0.039 < 0.05 so th.e ANOVA-F

Between Groups | 507.840 3 169.280 3.046 039 )‘/ test REJECTS the hypothesis of equal

ey treatment means.
Within Groups 2278.738 41 55.579
Total 2786.578 44

IS THE CONCLUSION OF THE ANOVA F-TEST CORRECT IF THE EQUAL VARIANCE ASSUMPTION IS NOT MET ?

15



ONE-WAY ANOVA WORKED EXAMPLE

A standard model of memory is that the degree to which the subject remembers verbal material is a
function of the degree to which it was processed when it was initially presented.

Reference: Craik, F. I. M. and Lockhart, R. S. (1972). Levels of Processing: a framework for memory
research. Journal of Verbal Learning and Verbal Behavior, 11, 671-684.

Experiment: Fifty subjects aged between 55 and 65 years were randomly assigned to one of five groups
which carried out different memory tasks. The five groups included

e The Counting group was asked to read through a list of words and simply count the number of
letters in each word.

The Rhyming group was asked to read each word and think of a word that rhymed with it.

The Adjective group had to process the words to the extent of giving an adjective that could rea-
sonably be used to modify each word on the list.

The Imagery group was instructed to try to form vivid images of each word.

e The Intentional group was told to read through the list and to memorize the words for later recall.

After subjects had gone through the list of 27 items three times, they were given a sheet of paper and
asked to write down all the words they could remember. The response data were the number of words
recalled by each individual in each group, and are presented below:

Counting | Rhyming | Adjective | Imagery | Intentional
9 7 11 12 10
8 9 13 11 19
6 6 8 16 14
8 6 6 11 5

10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11

These data may be downloaded

e in plain text format from
http:/ /www.math.mcgill.ca/~dstephens /204 /Data/MemoryTask.txt
e in SPSS format from

http:/ /www.math.mcgill.ca/~dstephens/204/Data/MemoryTask.sav

Research question: Does the level of processing required when material is processed affect how much
material is remembered ?

Test a hypothesis to answer this question using an ANOVA F-test. Specifically

(a) Form the ANOVA table, and report the result of the ANOVA F-test.
(b) Discuss whether the assumptions of behind the ANOVA F-test hold for this example.

16
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Alzheimer’s Study: Dose Level v Pull strength

30.0

c
)
4
25.0
Lo
n T
S
a L
20.0 l
0 |
T T T T
0 1 2 3
Units Units Units Units
Dose Level
Levene ANOVA F-test suggests the REJECTION of
Statistic df1 df2 Sig. the null hypothesis
.295 3 16 .829
HO: No significant difference between means
ANOVA
Pull strength
Sum of
Squares df Mean Square F Sig.
Between Groups 140.094 3 46.698 6.423 .005
Within Groups 116.324 16 7.270
Total 256.418 19
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Alzheimer’s Study: Dose Level v Pull strength

Post Hoc Tests

Dependent Variable: Pull strength

Multiple Comparisons

* The mean difference is significant at the .05 level.

Starred results indicate significantly different means:
in this analysis, we conclude that

-"0 Units" yields a significantly different mean from
"2 Units" and "3 Units"

19

Mean 95% Confidence Interval
Difference

(I) Dose Level  (J) Dose Level (I-J) Std. Error Sig. Lower Bound Upper Bound
Tukey HSD 0 Units 1 Units 3.82000 1.70532 155 -1.0589 8.6989
2 Units 6.36000(*) 1.70532 .009 1.4811 11.2389

3 Units 6.56000(*) 1.70532 .007 1.6811 11.4389

1 Units 0 Units -3.82000 1.70532 155 -8.6989 1.0589
2 Units 2.54000 1.70532 466 -2.3389 7.4189

3 Units 2.74000 1.70532 403 -2.1389 7.6189

2 Units 0 Units -6.36000(*) 1.70532 .009 -11.2389 -1.4811
1 Units -2.54000 1.70532 466 -7.4189 2.3389

3 Units .20000 1.70532 .999 -4.6789 5.0789

3 Units 0 Units -6.56000(*) 1.70532 .007 -11.4389 -1.6811
1 Units -2.74000 1.70532 403 -7.6189 2.1389

2 Units -.20000 1.70532 .999 -5.0789 4.6789

Scheffe 0 Units 1 Units 3.82000 1.70532 213 -1.4957 9.1357
2 Units 6.36000(*) 1.70532 016 1.0443 11.6757

3 Units 6.56000(*) 1.70532 013 1.2443 11.8757

1 Units 0 Units -3.82000 1.70532 213 -9.1357 1.4957
2 Units 2.54000 1.70532 544 -2.7757 7.8557

3 Units 2.74000 1.70532 482 -2.5757 8.0557

2 Units 0 Units -6.36000(*) 1.70532 016 -11.6757 -1.0443
1 Units -2.54000 1.70532 544 -7.8557 2.7757

3 Units .20000 1.70532 1.000 -5.1157 5.5157

3 Units 0 Units -6.56000(*) 1.70532 013 -11.8757 -1.2443
1 Units -2.74000 1.70532 482 -8.0557 2.5757

2 Units -.20000 1.70532 1.000 -5.5157 5.1157

Bonferroni 0 Units 1 Units 3.82000 1.70532 238 -1.3102 8.9502
2 Units 6.36000(*) 1.70532 011 1.2298 11.4902

3 Units 6.56000(*) 1.70532 .009 1.4298 11.6902

1 Units 0 Units -3.82000 1.70532 238 -8.9502 1.3102
2 Units 2.54000 1.70532 935 -2.5902 7.6702

3 Units 2.74000 1.70532 766 -2.3902 7.8702

2 Units 0 Units -6.36000(*) 1.70532 011 -11.4902 -1.2298
1 Units -2.54000 1.70532 935 -7.6702 2.5902

3 Units .20000 1.70532 1.000 -4.9302 5.3302

3 Units 0 Units -6.56000(?\ 1.70532 .009 -11.6902 -1.4298
1 Units -2.74000 1.70532 .766 -7.8702 2.3902

2 Units -.20000 1.70532 1.000 -5.3302 4.9302




RANDOMIZED BLOCK DESIGNS AND THE ANOVA F-TEST

Consider a randomized block design (RBD) with k treatments and b blocks. Assume that each block has
k experimental units, and that one unit is assigned to each treatment. Let z;; be the measured response
for the experimental unit from block j in treatment ¢ and

e sample mean for treatment ;

e sample mean for block j

overall sample mean

Sum of Squares for Treatments (SST)

Sum of Squares for Blocks (SSB)

b
SSB=> k() — 1)
j=1

Overall Sum of Squares (SS)
kb
SS = E Z(.%'” — f)g
i=1 j=1

The following decomposition holds

SS = SST + SSB + SSE SSE =SS — SST — SSB
For testing
Hy @ pp=-=p
H, : Atleasttwo treatment means different

in an RBD, the test statistic is

MST
F= MSE
where
SST SSE
lVIST—k—l MSE*n—b—k+1

If Hy is true, then F' ~ Fisher-F(k —1,n — b — k + 1), and the rejection region for the test with significance
level o is
F>Foulk—1,n—b—k+1)

where F,(v1,11) is the 1 — a percentage point of the Fisher-F distribution with v, and v, degrees of
freedom.
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EXAMPLE

Data: Measurements were made on the amount of sulphur (in parts per million) in soil samples using
four different solvents. The soil samples were collected from five different geographical locations in
Florida, USA, and represented different soil types.

The response variable sulphur level. The single factor is the solvent and there are k = 4 factor levels:

1. Calcium Chloride (CaCl,)

2. Ammonium Acetate (NH;OACc)

3. Mono-Calcium Phosphate (Ca(H2P Oy)3)
4. Water (H20)

The soil types determine the b = 5 blocks

1. Troup, Jackson Co. (Paleudults soil)

2. Lakeland, Walton Co. (Quartzipsamments soil)
3. Leon, Duval Co. (Haplaquads soil)

4. Chipley, Jackson Co. (Quartzipsamments soil)
5. Norfolk, Alachua Co. (Paleudults soil)

The data observed in the study were as follows:

Block
Treatment Troup Lakeland Leon Chipley Norfolk
CaCly 5.07 3.31 2.54 2.34 471
NH,OAc 4.43 2.74 2.09 2.07 5.29
Ca(H2P O4)3 | 7.09 2.32 1.09 4.38 5.70
H>O 4.48 2.35 2.70 3.85 4.98

Using SPSS, the following ANOVA table was obtained; see the related SPSS screens at
www.math.mcgill.ca/~dstephens/204/Handouts/Math204-SPSS-RBDANOVA-Screens. pdf

Tests of Between-Subjects Effects

Dependent Variable: Sulphur content (ppm)

Type 1l Sum
Source of Squares df Mean Square F Sig.
Corrected Model 35.586(a) 7 5.084 6.327 .003
Intercept 270.333 1 270.333 336.460 .000
solvent 1.621 3 .540 673 .585
soil 33.965 4 8.491 10.568 .001
Error 9.642 12 .803
Total 315.561 20
Corrected Total 45.228 19

a R Squared = .787 (Adjusted R Squared = .662)

This table contains a much information not needed for the ANOVA F-test; the rows headed

e Corrected Model (row 1)

e Intercept (row 2)

e Total (row 6)
can be ignored. The remaining rows are the standard ANOVA table for the randomized block design.
As expected, there is a significant difference between blocks (row 4, F' = 10.568, p-value=0.001), but no
significant difference between treatments (row 3, F' = 0.673, p-value=0.585).
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The Need for Blocking in an RBD Analysis

Consider the following response data: five measurements collected in three treatment groups:

1 2 3 4 5
Group 1 -20.88 -4.76 -0.46 10.78 -10.47
Group 2 -15.75 0.11 5.64 16.98 -6.03
Group 3 -8.62 6.20 10.42 20.05 -1.29
Y 000+
Boxplot and pointplot display raw data; it
T T T appears that the assumptions of normality and
™T equal variances are valid here.
| o
o
o o
o o
Y o4 o o °
o
° o
o
o
1 15 T“2’IT 25 3
Y .
Levene's Test indicates that the equal
Levene variances assumption is met.
Statistic df1 df2 Sig.
012 2 12 (988
N—
ANOVA for a CRD: Y
Sum of
Squares df Mean Square F Sig.
Between Groups 276.179 2 138.090 1.012
Within Groups 1637.801 12 136.483
Total 1913.980 14

Thus the CRD analysis and ANOVA-F test imply that there is NO DIFFERENCE between TREATMENTS.
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Analysis using RBD with columns taken as blocks:

Dependent Variable: Y

Type lll Sum
Source of Squares df Mean Square F Sig. Significant difference
Corrected Model 1907.802 6 317.967 |  411.720 .000 / between treatments !
Intercept .246 1 .246 318 .588
T™T 276.179 2 138.090 |  178.805 (000)
BLK 1631.623 4 407.906 528.177 (000)
Error 6.178 8 772
Total 1914.226 15
Corrected Total 1913.980 14
Significant difference
between blocks defined by
columns of data table.
BLK
x 1
42
+3
o4
25.00 =] 5
<
<
(o +
+ a
Y o000 + a o
. \ Pointplot reveals hidden structure due to blocking
o ) . .
x factor; there is systematic variation due to block
o which is not recognized by the CRD analysis.
x
X
-25.00
) ) ) ) )
1 1.5 2 25 3
TMT

In fact, there is hidden structure in the data. If this structure is taken into account, evidence that the
treatment means are significantly different is uncovered. The reason that the CRD and one-way
ANOVA do not discover this is that they assume that the variability can be decomposed as

SS =SST + SSE
whereas in fact
SS =SST + SSB + SSE

that is, the CRD assumes that the random variability that is observed is MUCH LARGER than it

actually is. Once the variation due to BLOCKS is taken into account, the ANOVA-F test result for
TREATMENTS becomes significant.
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RANDOMIZED COMPLETE BLOCK DESIGNS WITH BALANCED REPLICATION

Consider a randomized block design (RBD) with £ treatments and b blocks, and r replications, giving
n = rbk observations in total. Let z;j; be the tth replicated observation in the (i, j)th treatment/block
combination.

e sample mean for treatment :

e sample mean for block j
ko r
__ 1 ‘
—1 t=1

e sample mean for replicates in (7, j)th treatment/block combination

B . .
xij:;Zazm i=1,....k j=1,...,b
t=1

e overall sample mean
.

%izwm

i=1 j=1 t=1

3

e Sum of Squares for Treatments (SST)

k
SST =) br(T: —
=1

e Sum of Squares for Blocks (SSB)

e Sum of Squares for Interaction (SSI)

k
SSI=> "> r(@iy— % — 2 +T)°

e Overall Sum of Squares (SS)

The following decomposition holds

S5 —SST +SSB+SSI+SSE - SSE =SS — SST — SSB — SSI
Define SST SSB SST
MST= 25 MSB= R MSI= o
and — SSE
= bk
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HYPOTHESIS TESTING

e For testing for a TREATMENT effect, use

~ MST
~ MSE

Under the assumption of NO TREATMENT EFFECT, then

F

F ~ Fisher-F(k — 1,n — bk)
which defines the rejection region and p-value in the usual way.

e For testing for a BLOCK effect, use
MSB

=22
MSE
Under the assumption of NO BLOCK EFFECT, then

F ~ Fisher-F(b — 1,n — bk)

e For testing for an INTERACTION, use
MSI

~ MSE
Under the assumption of NO INTERACTION, then

F ~ Fisher-F((k —1)(b—1),n — bk)

25



RANDOMIZED COMPLETE BLOCK DESIGNS WITH BALANCED REPLICATION:
EXAMPLE

Data: Measurements were made on the lifetimes of batteries (in hours) for three battery types constructed
from different materials, to investigate the effect of operating temperature on lifetime. It was believed
before the experiment that the battery types were likely to behave differently in the experiment.

The response variable is lifetime. The single factor is the temperature and there are k = 3 factor levels:

1. 15 Celsius
2. 70 Celsius
3. 125 Celsius

The material types determine the b = 3 blocks

1. Lead
2. Acetate
3. Nickel Cadmium

r = 4 replicate measurements were made, so that
n=3x3x4=236

data were obtained in total.

The data observed in the study were as follows:

Block
Treatment Lead Acetate Nickel Cadmium
15 130,155,74,180 150,188,159,126  138,119,168,160
70 34,40,80,75 126,122,106,115 174,120,150,139
120 20,70,82,58 25,70,58,45 96,104,82,60

Using SPSS, the following ANOVA table was obtained; see the related SPSS screens at
www.math.mcgill.ca/~dstephens/204/Handouts/Math204-SPSS-RBDANOVAREP-Screens. pdf

Tests of Between-Subjects Effects

Dependent Variable: Battery Life (hr)

Type Ill Sum
Source of Squares df Mean Square F Sig.
Corrected Model 59154.0002 8 7394.250 11.103 .000
Intercept 398792.250 1 398792.250 598.829 .000
temp 39083.167 2 19541.583 29.344 .000
material 10633.167 2 5316.583 7.983 .002
temp * material 9437.667 4 2359.417 3.543 .019
Error 17980.750 27 665.954
Total 475927.000 36
Corrected Total 77134.750 35

a. R Squared = .767 (Adjusted R Squared = .698)

There is a significant difference between blocks (row 4, material, F' = 7.983, p-value=0.002), a signif-
icant difference between treatments (row 3, temp, F' = 29.344, p-value< 0.001), and also a significant
interaction (row 5, temp*material, F' = 3.543, p-value=0.019),
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Levene’s test reveals that there is no evidence to suspect that the population variances are different:

Levene's Test of Equality of Error Variance$

Dependent Variable: Battery Life (hr)
F df1 df2 Sig.
1.059 8 27 420

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

a. Design: Intercept+temp+material+temp * material

The means plots also indicate some significant interaction.

Estimated Marginal Means of Battery Life (hr)

material
& — Lead
150 Acetate
Mickel Cadmium

1254

100

Estimated Marginal Means
]
1

504

15 70 125

Estimated Marginal Means of Battery Life (hr)

temp

——15
150 \ 70
€ 125

=}
th
1

Estimated Marginal Means
] E
1 1

50

T T
Lead Acetate Mickel Cadmium

material
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BALANCED COMPLETE FACTORIAL DESIGNS

Consider a factorial design (FD) with two factors A and B, with levels 1,...,a and 1,...,b respectively,
yielding a total of k£ = ab factor combinations (treatments), and suppose that there are r replications in
each treatment, giving n = rab observations in total. Let x;;; be the tth replicated observation in the
(i, 7)th factor-level combination.

e sample mean for Factor A level
1 b r
xi,:lwz:l;xijt 1=1,...,a
j: =

e sample mean for Factor B level j

x_j:alrzzwijt j7=1,...,b

e sample mean for replicates in (4, j)th factor combination

,

_ 1 . .

:Cij:;g Tijt 1=1,...,a, j=1,...,b
t=1

e overall sample mean
b r

I

i=1 j=1 t=1

e Sum of Squares for Treatments due to factor A (SSTa)
SSTa =Y br(zi. —Z.)°
i=1

e Sum of Squares for Treatments due to factor B (SSTp)

b
SSTp =Y ar(z; —7.)°
7j=1

e Sum of Squares for Interaction (SSIag)

a b
SSlap=> Y r(@y— T —T;+7.)

i=1 j=1

e Overall Sum of Squares (SS)

a b r

SS = Z Z Z(:L‘Z'jt — T“)2

i=1 j=1 t=1

The following decomposition holds

SS =SST4 +SST +SSIup+SSE . SSE =SS —SST4 — SSTp — SSlap
Define
MST4 = is_T‘l‘ MSTj = iS_Tf MSI g = (a_‘c’f)lg‘[il)
and
MSE — —oF
n — ab
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HYPOTHESIS TESTING

e For testing for a FACTOR A effect, use
~ MST4

MSE
Under the assumption of NO FACTOR A EFFECT, then

F ~ Fisher-F(a — 1,n — ab)
which defines the rejection region and p-value in the usual way.

e For testing for a FACTOR B effect, use
_ MSTp

MSE
Under the assumption of NO FACTOR B EFFECT, then

F ~ Fisher-F(b — 1,n — ab)

e For testing for an INTERACTION, use

_ MSlp
~ MSE

Under the assumption of NO INTERACTION, then

F ~ Fisher-F((a — 1)(b—1),n — ab)

Note: The only difference between a randomized block design and a factorial design is that in the
block design, one of the factors is known or strongly believed to have a significant effect on the
response. The method of analysis for interaction and no interaction models are identical.

29



BALANCED COMPLETE FACTORIAL DESIGNS: EXAMPLES

EXAMPLE 1: Butterfat data (Sokal, R. R. and Rohlf F. J. (1981). Biometry, 2nd edition)

The data give the average butterfat content (percentages) for random samples of twenty cows (ten two-
year old and ten mature (greater than four years old)) from each of five breeds. The data are from
Canadian records of pure-bred dairy cattle. There are 100 observations on two age groups (two years
and mature) and five breeds.

The response variable is butterfat level. Factor A is the age and there are a = 2 factor levels:

1. Mature
2. Two years

Factor B is the breed and there are b = 5 factor levels:

. Ayrshire

. Canadian

. Guernsey

. Holstein-Fresian
. Jersey

Gl W IN -

r = 2 replicate measurements were made, so that n = 2 x 5 x 2 = 20 data were obtained in total. The
data are available from the course website as Butterfat.sav

Results:

1. Interaction model: First note that the Levene test REJECTS the null hypothesis of equal group
variances (p = 0.008), so the following ANOVA results are questionable. However, the p-value is
not too small, so we proceed but with caution.

There is a significant difference due to Factor B (breed, F' = 49.565, p-value < 0.001), but there is
no effect of Factor A (age, F=1.580, p = 0.212), and no significant interaction (age*breed, F' = 0.742,
p = 0.566.

2. Factor B only: If we omit the Factor A and interaction term, and refit the model, we confirm the
strong effect of Factor B (F' = 49.802,p < 0.000), and then can estimate the Factor B treatment
means. Note how the error degrees of freedom changes when terms in the model are omitted.

EXAMPLE 2: Lyrics data (McClave and Sincich, Statistics)

The effect of violent song lyrics on the aggression level of listeners is to be investigated. Two songs
(classified as Violent and Non-Violent) were played to two groups (or “pools”) of students, one volunteer
group and one group drawn from a psychology class. The students then rated the songs lyrical content,
and from this (by means of a word-association test), the aggression level of the students was computed.

The response variable is aggression level. Factor A is the song and there are a = 2 factor levels:

1. Violent
2. Non-violent

Factor B is the pool and there are b = 2 factor levels:

1. Volunteer
2. Psychology class

r = 15 replicate measurements were made, so that n = 2 x 2 x 15 = 60 data were obtained in total. The
data are available from the course website as Lyrics.sav
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Results:

1. Interaction model: First note that the Levene test DOES NOT REJECT the null hypothesis of equal
group variances (p = 0.804)

There is a significant difference due to Factor A (song, F' = 26.114, p-value < 0.001), but there is no
effect of Factor B (pool, F=0.579, p = 0.450), and no significant interaction (song*pool, F' = 1.563,
p = 0.216.

2. Fits of the main-effects model (Factor A and Factor B but no interaction), and the Factor A only
model confirm the results.

EXAMPLE 3: Gravel data

A company produces gravel from a number of quarries and in each quarry there are morning and after-
noon shifts of workers. The company wishes to know whether there are differences in the quantity of
gravel produced from these quarries and gathers the following data on the amount of gravel produced
by each shift in one week (in tonnes). It can be assumed that the week being studied was a typical week,
and that there was no systematic differences due to different workers etc.

The response variable is amount of gravel produced. Factor A is the shift and there are a = 2 factor
levels:

1. AM
2. PM

Factor B is the quarry and there are b = 4 factor levels:

L N
ognw x>

r = 5 replicate measurements were made, so that n = 2 x 4 x 5 = 40 data were obtained in total.
The data are available from the course website as Gravel.sav

Results:

1. Interaction model: First note that the Levene test DOES NOT REJECT the null hypothesis of equal
group variances (p = 0.969).

There is a significant difference due to Factor A (shift, F' = 13.667, p = 0.001), and due to Factor B
(quarry, F=19.996, p < 0.001), but no significant interaction (shift*quarry, F' = 1.099, p = 0.364.

2. Factor A and B only: If we omit the interaction term, and refit the model, we confirm the strong
effect of both factors (shift F' = 13.552,p = 0.001, quarry F' = 19.829,p < 0.001. The conclusion is
that there is a difference between the two levels of factor shift and the four levels of factor quarry,
but that there is no interaction, that is, the difference between morning and afternoon shift is the
same in each block; this is depicted in the Marginal Means plot.

Note again how the error degrees of freedom changes when terms in the model are omitted.
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BUTTERFAT DATA: INTERACTION MODEL

Levene's Test of Equality of Error Variance$

Dependent Variable: Butterfat (%)

| F

df1

df2

Sig.

| 2711

9

90

.008

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+age+breed+age * breed

BUTTERFAT DATA : INTERACTION MODEL

Tests of Between-Subjects Effects

Dependent Variable: Butterfat (%)

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 35.1092 9 3.901 22.534 .000
Intercept 2008.922 1 2008.922 |11604.716 .000
age 274 1 274 1.580 212
breed 34.321 4 8.580 49.565 .000
age * breed 514 4 128 742 .566
Error 15.580 90 A73
Total 2059.611 100
Corrected Total 50.689 99

a. R Squared = .693 (Adjusted R Squared = .662)
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BUTTERFAT DATA: INTERACTION MODEL
Estimated Marginal Means of Butterfat (%)

Age Group
5 40 — Mature
— Two year old
w 510
=
o
[
= 450
[
=
2
m 4.50
=
-
O
420
E
ol
(1)
W 397
360+
T T T T T
Ayreshire Canadian Guernsey Holstein Jersey
Breed
BUTTERFAT DATA: INTERACTION MODEL
Estimated Marginal Means of Butterfat (%)
Breed
s a0 = Ayreshire
Canadian
Guernsey
w 510 —— Haolstein
E Jersey
L]
= 480
[
4]
e
& 450 el
= R
-
O
H 4204
e
b )
W 390
. 3
360+
T T
Mature Two year old

Age Group
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BUTTERFAT DATA: NO INTERACTION, NO AGE MODEL

Levene's Test of Equality of Error Variance®

Dependent Variable: Butterfat (%)

F

df1

df2

Sig.

3.766

4

95

.007

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+breed

BUTTERFAT DATA: NO INTERACTION, NO AGE MODEL

Tests of Between-Subjects Effects

Dependent Variable: Butterfat (%)

Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 34.3212 4 8.580 49.802 .000
Intercept 2008.922 1 2008.922 (11660.138 .000
breed 34.321 4 8.580 49.802 .000
Error 16.368 95 A72
Total 2059.611 100
Corrected Total 50.689 99

a. R Squared = .677 (Adjusted R Squared = .664)

34




BUTTERFAT DATA: NO INTERACTION, NO AGE MODEL

Breed
Dependent Variable: Butterfat (%)

95% Confidence Interval
Breed Mean Std. Error | Lower Bound | Upper Bound
Ayreshire 4.060 .093 3.876 4.244
Canadian 4.439 .093 4.254 4.623
Guernsey 4.950 .093 4.766 5.134
Holstein 3.670 .093 3.485 3.854
Jersey 5.293 .093 5.108 5477

BUTTERFAT DATA

Age Group
M Wature
[ Two year old

6.00+

Butterfat (%)

29
8]
63
(=]
- 21
4.00 1 o l

T T T T T
Ayreshire Canacian Guernsey Holstein Jersey

Breed
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LYRICS DATA: INTERACTION MODEL

Levene's Test of Equality of Error Variance$

Dependent Variable: SCORE

| F

df1

df2

Sig.

329

3

56

.804

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

a. Design: Intercept+SONG+POOL+SONG * POOL

LYRICS DATA: INTERACTION MODEL

Tests of Between-Subjects Effects

Dependent Variable: SCORE

Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 6.3742 3 2.125 9.419 .000
Intercept 625.974 1 625.974 | 2775.059 .000
SONG 5.891 1 5.891 26.114 .000
POOL 131 1 131 579 450
SONG * POOL .353 1 .353 1.563 216
Error 12.632 56 .226
Total 644.980 60
Corrected Total 19.006 59

a. R Squared = .335 (Adjusted R Squared = .300)
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LYRICS DATA: INTERACTION MODEL

Estimated Marginal Means

Estimated Marginal Means of SCORE

36
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LYRICS DATA: INTERACTION MODEL

Estimated Marginal Means

Estimated Marginal Means of SCORE

36+

344

324
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T T
PSYCHOL WOLUNTEE

POOL
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LYRICS DATA: INTERACTION MODEL

Levene's Test of Equality of Error Variance®

Dependent Variable: SCORE

F

df1

df2

Sig.

236

3

56

871

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+SONG+POOL

LYRICS DATA: NO INTERACTION MODEL

Tests of Between-Subjects Effects

Dependent Variable: SCORE

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 6.0212 2 3.011 13.216 .000
Intercept 625.974 1 625.974 | 2747.896 .000
SONG 5.891 1 5.891 25.859 .000
POOL 131 1 131 574 452
Error 12.985 57 .228
Total 644.980 60
Corrected Total 19.006 59

a. R Squared = .317 (Adjusted R Squared = .293)
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LYRICS DATA: NO INTERACTION MODEL

Estimated Marginal Means of SCORE

35

325

Estimated Marginal Means

304

T
MON-YIC

LYRICS DATA: NO INTERACTION, NO POOL MODEL

T
WIOLENT

SONG

POCL
— PSYCHOL
— VOLUNTEE

Levene's Test of Equality of Error Variance$&

Dependent Variable: SCORE

F df1

df2

Sig.

.017

1

58

897

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+SONG
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LYRICS DATA: NO INTERACTION, NO POOL MODEL

Tests of Between-Subjects Effects

Dependent Variable: SCORE

Type 1ll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 5.8912 1 5.891 26.050 .000
Intercept 625.974 1 625.974 | 2768.248 .000
SONG 5.891 1 5.891 26.050 .000
Error 13.115 58 .226
Total 644.980 60
Corrected Total 19.006 59

a. R Squared = .310 (Adjusted R Squared = .298)

GRAVEL DATA: INTERACTION MODEL

Levene's Test of Equality of Error Variance®

Dependent Variable: amount

F df1 df2 Sig.
248 7 32 969

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+shift+quarry+shift * quarry
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GRAVEL DATA: INTERACTION MODEL

Tests of Between-Subjects Effects

Dependent Variable: amount

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 764.5762 7 109.225 10.993 .000
Intercept 15956.030 1 15956.030 | 1605.921 .000
shift 135.792 1 135.792 13.667 .001
quarry 596.037 3 198.679 19.996 .000
shift * quarry 32.747 3 10.916 1.099 .364
Error 317.944 32 9.936
Total 17038.550 40
Corrected Total 1082.520 39

a. R Squared = .706 (Adjusted R Squared = .642)

GRAVEL DATA: INTERACTION MODEL

Estimated Marginal Means of amount

shif
— AM
- PM

25.00

20.00H

Estimated Marginal Means

15.00+

T T T T
A B C B

Quarry Label
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GRAVEL DATA: NO INTERACTION MODEL

Levene's Test of Equality of Error Variance®

Dependent Variable: amount

F

df1

df2

Sig.

199

7

32

.983

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

a. Design: Intercept+shift+quarry

GRAVEL DATA: NO INTERACTION MODEL

Tests of Between-Subjects Effects

Dependent Variable: amount

Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 731.8292 4 182.957 18.260 .000
Intercept 15956.030 1 15956.030 | 1592.460 .000
shift 135.792 1 135.792 13.552 .001
quarry 596.037 3 198.679 19.829 .000
Error 350.691 35 10.020
Total 17038.550 40
Corrected Total 1082.520 39

a. R Squared = .676 (Adjusted R Squared = .639)
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GRAVEL DATA: NO INTERACTION MODEL

Estimated Marginal Means of amount
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GRAVEL DATA: NO INTERACTION MODEL
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In SPSS, the baseline group is the one where Factor A has level a
and Factor B has level b, but this choice is arbitrary; changing
this assumption should have no effect on the results we obtain.

Thus we adopt the following modelling strategy:

Explaining Interaction between Factor Predictors

What the models and the parameters mean

vy v.vY

Establish a baseline

Look for changes from baseline introduced by Factor A

Look for changes from baseline introduced by Factor B

Look for changes from baseline introduced by Factor A and
Factor B additively, so that the effect of changing the level of
Factor A is identical in each level of Factor B, and vice versa).
Look for changes from baseline introduced by Factor A and
Factor B additively with interaction, so that the effect of
changing the level of Factor A is different in each level of

Factor B, and vice versa).

Null Model : Baseline Mean Only

Null Model: cell entries are means for data for each treatment.

Factor A

Factor B

2

Bo

Bo

2 | B Bo Bo
31 A Bo Bo
4| B Bo

Bo

For example: a=4,b = 3.

» Factor A: levels 1,2,...,a

» Factor B: levels 1,2,...,b

Most complicated model: Main Effects plus Interaction

A+B+AB

that is, we have

> a baseline mean: [

» an effect for each level of Factor A: ﬁ(A)

i

» an effect for each level of Factor B: 1‘}5)

» an interaction that modifies the effect of changing levels of
Factor A at each level of Factor B: q/iS.AB)

Two-way table: 4 x 3

Factor B
1 2 3
1
2
<
P
FE
(8]
(]
w4
Effect of Factor A only
Main Effect Only: A
Factor B
1 2 3
1| B+ 8" o + B Bo + BN
2| o+ Y Bo + B Bo + B
<
P
Sl3|m+aY Bo + Y Bo + BYY
(8]
(o]
| 4| 3 Bo Bo




Effect of Factor B only Effect of Factor A plus Effect of Factor B

Main Effect Only: B Main Effects Only: A + B
Factor B Factor B
1 2 3 1 2 3
1] B + 8 Bo 3B Bo 1| B+ 8" 4 %) Bo + BN + ) o + BN
p (B) p (B) p A(A) (B) p (A (B) . A(A)
2| Bo 3 Bo 3, Bo 2| Bo+ B + B Bo + B 3, Bo +
< 1 2 < 2 1 2 2 2
= (B) P = . . (B) P p 2) p
S |3 M f 'l/ Bo fél Bo S |3 b+ ﬂgA) | q/ Bo + ﬂgA) fél Bo + s’3§A)
(8] (8]
© (B (B © (B (B)
W |4 B + B 30 35 Bo |4 B + 6 3o + 5, Bo

~

Main effects plus Interaction between A and B

Q. Why are the following models

Main Effects Plus Interaction: A + B + A.B » AB
» A+ AB
Factor B »BLAB
! 2 3 not considered ?
1| Bo+ ﬂ%A) + f}w + ";ifB) Bo + ﬂw + 68 4+ "/SB) Bo + 335*‘)

2 | Bo 4 AP 1 5B 4 4B | gy 1 g 4 5B) 4 (AB) | g pA) A. Because they make specific and perhaps unrealistic
assumptions about the data, and they imply that the levels of the
factors are not arbitrarily labelled.

3| s +ﬂ§A) | ,,l/;x +7§,143) 6o +ﬂ§A) g/«:; +7§;\5) o +{3§A)

Factor A

(B)

4 | By + A

Q. Why are the following models Recall the definition of interaction:

» AB » Variation in the effect of changing levels of one factor at the
» A+ AB different levels of the other factor.
» B+ AB » For example, the effect on the response mean of moving from
. level 1 to level 2 for Factor B is different at different levels of
not considered ?

Factor A.

A. Because they make specific and perhaps unrealistic
assumptions about the data, and they imply that the levels of the
factors are not arbitrarily labelled.

Consider the model
AB

this model implies that all parameters apart from the baseline and
SPSS will not fit such models, although it appears that it does ! the interaction parameters are zero.
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Interaction between A and B only

Interaction only: A.B

In this set-up,
Factor B » for Factor A, Level 4: the effect of moving from Level 3 to
: 5 . Level 2 of factor B is zero
» for Factor A, Level 3: the effect of moving from Level 3 to
1| Bo+0+0++45 | go+0+0+19% | B +0 ' (AB) &

Level 2 of factor B is 73,
2 Bo+0+ 0+~ | Bo+0+0+445 | go+0

Therefore, there is a fundamental difference between the way
Bo+0+0+5% | fo+o0 that we regard the levels of Factor A.

4| B Lo Bo 0 Bo

Bo + 0 + 0 + A5

Factor A
w

Main Effect of A plus Interaction between A and B only

Interaction only: A + A.B

In this set-up,
Factor B » for Factor A, Level 4: the effect of moving from Level 3 to
1 2 3 Level 2 of factor B is zero
1| fo+ ﬂiA) +0+ w{fm Bo + ﬂ§A) +0+ w{?m Bo + ﬂ§A) » for Factor A, Level 3: the effect of moving from Level 3 to
A AB A AB A Level 2 of factor B is ”’(AB)
<|? Bo+ B + 0+ 45| Bo+ B + 0+ 45 | o+ B 32
S 3|+ + 0449 | g0+ + 04457 | o+ Y
&
W45 +0 Bo +0 Bo
15 16
How does SPSS Handle Such Models ?
It is possible to fit the models
Therefore, there is a fundamental difference between the way A+ AB B+ AB AB
that we regard the levels of Factor A. If we rearrange the labels of
the levels of Factor A in SPSS. For example, for the model A+A.B

» Analyze — General Linear Model — Univariate

» Select the Dependent Variable and Fixed Factor(s)

» Click Model to bring up the Univariate: Model dialog box.
>

Select Factor A as a Main Effect using the Build pull-down
list, click the selection arrow,

we may get a different result.

Therefore, although it is possible in general to fit such models, it
is no longer possible to talk of the effect of “Factor A”.

» highlight Factor A and Factor B simultaneously, and select
Interaction from the Build pull-down list, and click the
selection arrow.

» Click Continue, and then OK.



How does SPSS Handle Such Models ?

This produces the usual ANOVA table, with terms including
Factor A
and

Factor A * Factor B

However, in fact the model
A+B+ AB

has been fitted !

» The results are just reported differently

» The terms B and A.B are reported together !

19

Example: Batteries Data

A - Material

B - Temperature

Model A + A.B
Dependent Variable: Battery Life
Source Sum of Squares | df | Mean Square F Sig.
Corrected Model 59154.000 8 7394.250 11.103 | 0.000
Intercept 398792.250 | 1 398792.250 | 598.829 | 0.000
material 10633.167 | 2 5316.583 7.983 | 0.002
material * temp 48520.833 | 6 8086.806 | 12.143 | 0.000
Error 17980.750 | 27 665.954
Total 475927.000 | 36
Corrected Total 77134.750 | 35
R Squared = .767 (Adjusted R Squared = .698)

SS =SSTa + SSlg.ag + SSE

where

SSlg.ag = SSTg + SSlag

21
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A - Material
B - Temperature

Example: Batteries Data

Model A + B + A.B

Dependent Variable: Battery Life

Source Sum of Squares | df | Mean Square F Sig.
Corrected Model 59154.000 | 8 7394.250 | 11.103 | 0.000
Intercept 308792.250 | 1 398792.250 | 598.829 | 0.000
material 10633.167 | 2 5316.583 7.983 | 0.002
temp 39083.167 | 2 19541.583 | 29.344 | 0.000
material * temp 9437.667 | 4 2359.417 3.543 | 0.019
Error 17980.750 | 27 665.954

Total 475927.000 | 36

Corrected Total 77134.750 | 35

R Squared = .767 (Adjusted R Squared = .698)

SS =S5ST4 + SSTg + SSlag + SSE

20



SIMPLE LINEAR REGRESSION

We consider the model for response variable, Y, as a function of the predictor, X, observed to take the
value z. Specifically we consider the model

Y =00+ iz +e

where 3y and 3, are the intercept and slope parameters respectively, and € is a random variable with
expectation zero and variance ¢2. In this model

EY[X = a] = fo + bz

To estimate the parameters 3y and /; from data (z;,y;),7 = 1,...,n, we use the least-squares criterion,
and choose the values 3y and /3, to minimize the sum of squared errors

SSE(Bo, B1) = Y _eF = > (yi — (fo + i)
=1 =1

It can be shown that the parameter estimates depend on the following sample summary statistics:

e Sample mean of x values:
e Sample mean of y values:
e Sum of Squares SS;;:

e Sum of Squares SS,:

The least-squares estimates are:

5SSy - -
SSz

B =

yielding fitted-values
Yi = fo + Bz
and residual errors (or residuals)

€ =Y —Yi

An estimate of the residual error variance is given by

6_\2 _ SSE(BO; Bl)

n—2
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EXAMPLE: BLOOD VISCOSITY AND PACKED CELL VOLUME

The following data are measurements of packed cell volume (PCV) and blood viscosity in samples taken
from 32 hospital patients. We wish to model viscosity (y) as a function of PCV (z).

Reference: Begg, C. B. and Hearns, J. B. (1966) Components of Blood Viscosity. The relative contributions
of haematocrit, plasma fibrinogen and other proteins, Clinical Science, 31, 87-92.

Unit | PCV | Viscosity | Unit | PCV | Viscosity | Unit | PCV | Viscosity | Unit | PCV | Viscosity
€ Y € Y € Y € Y
40.00 3.71 9 |46.75 4.14 17 | 51.25 4.68 25 | 49.50 512
40.00 3.78 10 | 48.00 4.20 18 | 50.25 4.73 26 | 56.00 5.15
42.50 3.85 11 | 46.00 4.20 19 | 49.00 4.87 27 | 50.00 5.17
42.00 3.88 12 | 47.00 4.27 20 | 50.00 4.94 28 | 47.00 5.18
45.00 3.98 13 | 43.25 4.27 21 | 50.00 4.95 29 | 53.25 5.38
42.00 4.03 14 | 45.00 4.37 22 | 49.00 4.96 30 | 57.00 5.77
42.50 4.05 15 | 50.00 4.41 23 | 50.50 5.02 31 | 54.00 5.90
47.00 4.14 16 | 45.00 4.64 24 | 51.25 5.02 32 | 54.00 5.90

ONANUI LN -

e Sample mean of x values: T = 47.938; sample mean of y values: 7 = 4.646
e Sums of Squares

n n

SSuz = » (i — T)* = 615.75 SSay = (zi —T)(y; — §) = 75.386
=1 =1
Thus
~ SS,, o s
b= g5 =0.122 Bo=7— BT =-1223

The estimate of the residual error variance is

=5 _ SSE(Bo. 1) _ 2.721
n—2 30

= 0.091

Blood Viscosity vs PCV: Least-squares fit

55
1

5.0

Viscosity

4.5

4.0
|

PCV
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VISCOSITY vs PCV Regression Analysis

6.00—
5.50-
o
L
2 5.00]
7]
o
3]
2
>
3
o 4.50
(11]
4.00
R Sq Linear = 0.772
3.50-
T T T T T
40.00 45.00 50.00 55.00 60.00
Packed Cell Volume (%)
Descriptive Statistics
Mean Std. Deviation R-squared statistic = 0.772
Blood Viscosity (cP) 4.6456 62088 32
Packed Cell Volume (%) 47.9375 4.45678 32
Correlations
Blood Viscosity | Packed Cell
(cP) Volume (%)
Pearson Correlation Blood Viscosity (cP) 1.000 879

Sig. (1-tailed)

N

Packed Cell Volume (%)
Blood Viscosity (cP)
Packed Cell Volume (%)
Blood Viscosity (cP)
Packed Cell Volume (%)

.000
32
32

<

1.000

. TCorrelation coefficient r=0.879

32
32
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Model Summary

Adjusted R | Std. Error of
Model R R Square Square the Estimate Je————|Summary of Model Fit

1 .879 772 .765 .30116

ANOVA table testing

4_/— HO: No influence of x on y
ANOVA

Ha: x systematically influences y

Sum of /
Model Squares df Mean Square F Sig. /]
1 Regression 9.230 1 9.230 101.764 .000
Residual 2.721 30 .091
Total 11.950 31

Coefficients

Standardized 95% Confidence
Model Unstandardized Coefficients Coefficients t Sig. Interval for B
Lower Upper
B Std. Error Beta Bound Bound
1 (Constant) -1.223 584 -2.094 .045 -2.416 -.030
PCV (%) 122 012 879 10.088 .000 .098 147

e P-values in the test of
Test statistics:

Parameter estimates and standard errors: t = beta/s.e.(beta) HOf beta is 0

(Constant) corresponds to the estimate of intercept betaO Ha: beta is not zero

PCV (%) corresponds to the slope beta1 for estimated beta0 for both betad (row 1) and betal (row
and beta1

2).

The ANOVA test is a global test of the regression model; specifically it tests whether the covariate x is an influential
variable that is associated with a systematic change in response y.

The F statistic is still of the form

F=MSR/MSE

but now MSR is the Mean Square for Regression. If x not is associated with changing y, then
F ~ Fisher(1,n-2)

which is of precisely the same form as the null distribution in ANOVA - Fisher(k-1,n-k) - where

k = number of parameters estimated = 2
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SIMPLE LINEAR REGRESSION: EXAMPLES

EXAMPLE 1: Coleman Report Data
Data were collected at 20 US schools, and used to examine the relationship between performance of
students in the school in a verbal reasoning test and the socioeconomic status of the catchment area.

School | Status Score || School | Status Score
T Y T Y
1 720 37.01 | 11 -12.86  23.30
2 -11.71  26.51 || 12 0.92 35.20
3 12.32 36.51 || 13 477 34.90
4 14.28 40.70 || 14 -096 33.10
5 6.31 37.10 || 15 -16.04 22.70
6 6.16 3390 || 16 10.62 39.70
7 12.70 41.80 || 17 2.66 31.80
8 -0.17 33.40 || 18 -10.99 31.70
9 9.85 41.01 || 19 15.03 43.10
10 -0.05 37.20 || 20 12.77 41.01

Reference: Mosteller and Tukey (1977) Data Analysis and Regression

SPSS Results:
Coefficients
Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) -50.682 5.193 -9.760 .000 -61.591 -39.772
status 1.534 146 .927 10.499 .000 1.227 1.841
a. Dependent Variable: testscore
Model Summary

Adjusted Std. Error of

Model R R Square | R Square | the Estimate

1 .9278 .860 .852 3.70509

a. Predictors: (Constant), status
ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 1513.213 1 1513.213 110.230 .0002
Residual 247.099 18 13.728
Total 1760.312 19
a. Predictors: (Constant), status
b. Dependent Variable: testscore
Here, to test for significant correlation, we use the test statistic
r 0.927

VA =r)/(n-2) /(1-09272)/(20 —2)

which we must compare against the Student(n — 2) = Student(18) distribution. For a two-tailed test at
the significance level o = 0.05, the critical values are Cr = +2.101 (McClave and Sincich ¢-tables), so the
hypothesis Hj that the true correlation is zero is rejected.
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EXAMPLE 2: Hooker’s Temperature and Pressure Data
The following data record the boiling point temperature (in degrees Celsius) of water under different
atmospheric pressures. The data were collected in a Himalayan expedition by botanist Joseph Hooker.

z Y z Y z Y z Y
210.8 29.211 || 196.4 21928 || 189.5 18.869 | 184.1 16.817
210.2 28.559 || 196.3 21.654 || 188.8 18.356 || 183.2 16.385
208.4 27972 | 195.6 21.605 | 188.5 18.507 || 182.4 16.235
2025 24.697 | 193.4 20.480 | 185.7 17.267 || 181.9 16.106
200.6 23.726 || 193.6 20.212 || 186.0 17.221 || 181.9 15.928
200.1 23.369 || 1914 19.758 || 185.6 17.062 || 181.0 15.919
199.5 23.030 || 191.1 19.490 || 184.1 16.959 | 180.6 15.376
197.0 21.892 || 190.6 19.386 || 184.6 16.881

Reference: Forbes, J. (1957). Further experiments and remarks on the measurement of heights by boiling
point of water. Transactions of the Royal Society of Edinburgh, 21, 235-243.

SPSS Results:
Coefficients?
Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 146.673 776 188.911 .000 145.085 148.261
Pressure 2.253 .038 .996 59.143 .000 2.175 2.330
a. Dependent Variable: Boiling point of Water (C)
Model Summary
Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .9962 .992 991 .8060
a. Predictors: (Constant), Pressure
ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 2272.474 1 2272.474 | 3497.902 .0002
Residual 18.840 29 .650
Total 2291.315 30
a. Predictors: (Constant), Pressure
b. Dependent Variable: Boiling point of Water (C)
Here, to test for significant correlation, we use the test statistic
r 0.996
= = = 60.027

VI =r2)/(n—=2) /(1-0.9962)/(31 - 2)
which we must compare against the Student(31 — 2) = Student(29) distribution. For a two-tailed test at

the significance level o = 0.05, the critical values are Cr = +2.045 (McClave and Sincich ¢-tables), so the
hypothesis Hj that the true correlation is zero is rejected.
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MATRICES
(MATERIAL NOT EXAMINABLE)

An r x ¢ matrix A is a rectangular arrangement of numbers with » rows and ¢ columns;

aip ai2 -+ Glc

a1 azz2 - 42c
A= ;

Qr1  Ap2 - Qe

Some rules for manipulating matrices are given below:

e Transpose: the transpose operator " means “flipping” a r x ¢ matrix into a ¢ x  matrix. That is

ailp a2 - aic aip a1 - arl

azy a2 - azc T ai a2 - ar2
A= . . . . = A =

Ary Ar2 - Qe Q1lc A2¢ -+  Qpe

For example, if r =2 and ¢ =4

5 3
_[5 4 01 S -
A—[za 5—20] = A= 2

10

A square matrix A is termed symmetricif A = A'.

e Matrix Multiplication: If A and B are two matrices, where A is a 7 X ¢ matrix and B isa ¢ X ry
matrix, then the product A.B (also written AB) is an r; x ro matrix, with (7, j)th element

C
Zaikbkj i:1,...,r1,j:1,...,r2.
k=1
For example,
3 3 =3
[5—4 01] -1 2 =2 _[14 5 —6]
3 5 —2 0 0 -2 0| 4 23 —-19
-5 =2 1

That is, for the first entry in the result matrix, we multiply the first row of the first matrix by the
first column of the second matrix:

5x3)+(-4x-1)+(0x0)+(1x—-b)=15+4—-5=14

Note that for matrix multiplication to work, we need the first matrix to have the same number
of columns as the number of rows in the second matrix. If this holds, the matrices are termed
conformable. In general, for rectangular matrices

AB+#BA and AB.C=A(BC)=(AB).C

e Matrix Identity : A square k£ x k with ones along the main diagonal, and zeros elsewhere, is termed
the identity matrix, and denoted I},

10 --- 0
01 --- 0

Io=1. . . so that I, A=A for any £ x k matrix A
00 - 1
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e Matrix Inversion : A square k x k matrix A has an inverse, denoted A~ if

AA ' =A"1 A=,

MATRICES IN LINEAR REGRESSION

e nxlvectory = [y1,...,yn]"
e 1 x 2 matrix X given by

X:[l 1 ... 1

—~ o~ ~ 7T
e 2 x 1 Parameter estimate vector § = [ﬁo, ﬂ1]

It can be shown that N

g — (XTX)—lXTy
The other quantities of interest in statistical inference for the simple linear regression are also available
in matrix form.

e SSE:

o~ ~

SSE=S(3)=(y—XB)"(y— XP)

e Residual error variance estimate, 52 :

n—2 n—2= ~7 = ~
e Variance/Standard Errors of the Parameter estimates:
Var[ 3] =6*(X"X)™!

This is a 2 x 2 matrix, with diagonal entries equal to the squared estimated standard errors for Bo

d B3y, s2
an ﬂl,sﬁo

e Fitted-values :

and s% respectively.
1

say, where H = X (X X)X
e Residuals:

e Prediction: if ¢, = [1, z,], then the prediction is at the value ), is
yp =, 0
and the prediction error variances are

Expected Value : &°z)(X"X) 'z,
Individual Value : &°(1+ (X" X) 'z))
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MULTIPLE LINEAR REGRESSION
EXAMPLE: BLOOD VISCOSITY AND PACKED CELL VOLUME

The following blood viscosity data studied earlier are a good example of where multiple regression could
be used. Recall that the data blood viscosity in samples taken from 32 hospital patients. We wish to model
viscosity (y) as a function three covariates

e Packed Cell Volume (PCV), z;.
e Plasma Fibrinogen, z».

e Plasma Protein, 3.

Unit | Viscosity PCV Plasma Fib. | Plasma Pro.
Yy T T2 3

1 3.71 40.00 344 6.27

2 3.78 40.00 330 4.86

3 3.85 42.50 280 5.09

4 3.88 42.00 418 6.79

5 3.98 45.00 774 6.40

6 4.03 42.00 388 5.48

7 4.05 42.50 336 6.27

8 414 47.00 431 6.89

9 4.14 46.75 276 5.18
10 4.20 48.00 422 5.73
11 4.20 46.00 280 5.89
12 427 47.00 460 6.58
13 427 43.25 412 5.67
14 4.37 45.00 320 6.23
15 4.41 50.00 502 4.99
16 4.64 45.00 550 6.37
17 4.68 51.25 414 6.40
18 4.73 50.25 304 6.00
19 4.87 49.00 472 5.94
20 4.94 50.00 728 5.16
21 4.95 50.00 716 6.29
22 4.96 49.00 400 5.96
23 5.02 50.50 576 5.90
24 5.02 51.25 354 5.81
25 512 49.50 392 5.49
26 5.15 56.00 352 5.41
27 5.17 50.00 572 6.24
28 5.18 47.00 634 6.50
29 5.38 53.25 458 6.60
30 5.77 57.00 1070 4.82
31 5.90 54.00 488 5.70
32 5.90 54.00 488 5.70

We consider four analyses:

Multiple regression: y = [y + fi71 + Box2 + [f373 + €
Regressiononxy: y = [y+ fiw1+€
Regressiononxa: y = [+ Powa+ €
Regressiononxs: y = [+ B3xs+e€
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FACTOR PREDICTOR REGRESSION USING DUMMY VARIABLES

We can fit a factor predictor using the Linear Regression pulldown in SPSS by using dummy variables.

Suppose that a factor predictor, X, takes L levels, indexed by I = 1,2, ..., L. We proceed as follows:

1. Define L new "dummy” variables X1,..., X, where, forl =1,...,L,
1 if X =1
X =
0 if X #£1

2. Fit the multiple regression model with L — 1 of the dummy variables as continuous covariates, that
is,
Yi = Bo+ Bz + Bowa + -+ Brorzro1 + &
Note that we cannot include all of X1, X5, ..., Xif we have an intercept 3 in the model; we omit
X1, and regard L as the baseline group.

The estimates, standard errors etc. from this model are identical to those obtained using the General
Linear Model analysis.

EXAMPLE : Diabetes Data Set

The data set DIABETES.SAV has three subgroups defined by different patient characteristics. Thus
L = 3. A subset of the data are displayed below, with the new variables X, X and X3 defined as above.
They can be computed using the

Compute

pulldown menu, or entered by hand.

ID | glutest | group | Dummy 1 | Dummy 2 | Dummy 3

Yy x r1 x2 r3

1 356 3 0 0 1

2 289 3 0 0 1

3 319 3 0 0 1

4 356 3 0 0 1
87 503 2 0 1 0
88 540 2 0 1 0
89 469 2 0 1 0
90 486 2 0 1 0
113 | 1468 1 1 0 0
114 | 1487 1 1 0 0
115 714 1 1 0 0
116 | 1470 1 1 0 0

The analysis below indicates that the estimated coefficients and the ANOVA results are identical whether
we use the General Linear Model or Regression pulldown menus.
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HOOKER’S DATA: SPSS COMPARISON OF
LINEAR AND QUADRATIC MODELS

Regression with Linear Term

Adjusted R | Std. Error of
Model R R Square Square the Estimate
1
.996(a) .992 .991 .8060 REDUCED MODEL FIT
a Predictors: (Constant), Pressure
Sum of MS/
Model Squares df quare F Sig.
1 Regression 2272474 / 2272.474 | 3497.902 .000(a)
Residual 18.840 29 .650
Total 2291.315 30
(a) Predictors: (Constant), Pressure (b) Dependent Variable: Boiling point of Water (C)
Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 146.673 776 188.911 .000 145.085 148.261
Pressure 2.253 .038 .996 59.143 .000 2.175 2.330
a Dependent Variable: Boiling point of Water (C)
Regression with Linear and Quadratic Terms
Adjusted R | Std. Error of
Model R R Square Square the Estimate COMPLETE MODEL FIT
1 .999(a) .998 .998 .3956
a Predictors: (Constant), Pressure Squared, Pressure
Sum of
Model Squares /df/ Mean Square F Sig.
1 Regression 2286.933 2 1143.467 | 7306.975 .000(a)
Residual 4.382 28 156
Total 2291.315 30
(a) Predictors: (Constant), Pressure Squared, Pressure (b) Dependent Variable: Boiling point of Water (C)

Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 126.702 2.112 59.981 .000 122.375 131.029
Pressure 4.158 .199 1.838 20.885 .000 3.750 4.565
Pressure Squared -.044 .005 -.846 -9.612 .000 -.053 -.034
a Dependent Variable: Boiling point of Water (C)
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DIABETES DATA: STEPWISE MODEL COMPARISON

MODEL 4

Type Il Sum
Source of Squares df Mean Square F Sig.
group 104 2 .052 5.447 .005
loggluf 675 1 675 70.702 .000
group * loggluf 155 2 077 8.099 .000
Error | 1.318 138| 010
Corrected Total | 28.504 ‘ 143 ‘

a R Squared = .954 (Adjusted R Squared = .952)

MODEL 3
Type Il Sum
Source of Squares df Mean Square F Sig.
1
group 2.266 2 1.133 107.717 .000
loggluf 2.688 1 2.688 255.565 .000
Error [1.472 140 .011
Corrected Total | 28.504 ‘ 143 ‘

a R Squared = .948 (Adjusted R Squared = .947)

MODEL 1
Type Il Sum

Source of Squares df Mean Square F Sig.
v

I )
group 24.344 2 12.172 412.568 .000
Error [4.160 147] .030
Corrected Total | 28.504 ‘ 143 ‘

a R Squared = .854 (Adjusted R Squared = .852)

MODEL 2
Type Il Sum
Source of Squares df Mean Square F Sig.
1
loggluf 24.766 1 24.766 940.846 .000
Error |3.738 142| .026
Corrected Total 28.504 ‘ 143 ‘

a R Squared = .869 (Adjusted R Squared = .868)
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General Linear Model of an Unbalanced Factorial Design

Potato Damage Data

This is an unbalanced design as we have different numbers of
replicated in the 2 x 2 x 2 = 8 cells of the table.

Temperature Pre-treatment * Potato variety * Acclimatization Routine Crosstabulation

Count
Potato variety

Acclimatization Routine Variety 1 Variety 2 Total

Room Temp Temperature -4 C 5 13 18
Pre-treatment 8C 5 13 18
Total 10 26 36

Cold Room Temperature -4C 12 7 19
Pre-treatment 8C 13 7 20
Total 25 14 39

Number of parameters:

k=7
Three-way Interaction Model (COMP E MODEL)
Dependent Variable: Damage Score: lon Leakage
Type Il Sum

Source of Squares df ean Square F Sig.
Corrected Model 8842.339(a) 7 1263.191 17.033 .000
Intercept 8055.406 1 8055.406 108.619 .000
potato 1892.313 1 1892.313 25.516 .000
regime 1493.822 1 1493.822 20.143 .000
temp 803.280 1 803.280 10.831 .002
potato * regime 2087.539 1 2087.539 28.148 .000
potato * temp 48.135 1 48.135 .649 423
regime * temp 13.891 1 13.891 187 .667
potato * regime * temp 89.198 1 89.198 1.203 277
Error | 4968.876 67| 74.162
Total 27481.316 75
Corrected Total 13811.215 74

a R Squared = .640 (Adjusted R Squared = .603)

It appears that the fit is moderate (R squared = 0.640), but that there is some explanatory
power in the variables.

Note that we cannot interpret the quoted F statistics, as this is an unbalanced design, and
therefore the stated p-values are not in general exact. However, these results do give an
indication of which terms might be omitted.
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REDUCED MODEL 1

Dependent Variable: Damage Score: lon Leakage

Number of parameters:
g=4

Type lll Sum )/
Source of Squares df ean Square F Sig.
Corrected Model 8717.469(a) 2179.367 29.950 .000
Intercept 8060.776 1 8060.776 110.774 .000
potato 1890.703 1 1890.703 25.983 .000
regime 1492.360 1 1492.360 20.509 .000
temp 1225.714 1 1225.714 16.844 .000
potato * regime 2089.928 1 2089.928 28.721 .000
Error [ 5093.746 70| 72.768
Total 27481.316 75
Corrected Total 13811.215 74

a R Squared =.631 (Adjusted R Squared = .610)

REDUCED MODEL 2

Dependent Variable: Damage Score: lon Leakage

Number of parameters:
g=3

Type Il Sum /
Source of Squares df ean Square F Sig.
Corrected Model 6627.541(a) [ 3] 2209.180 21.834 .000
Intercept 13233.292 1 13233.292 130.792 .000
potato 1502.970 1 1502.970 14.855 .000
regime 1977.340 1 1977.340 19.543 .000
temp 1255.583 1 1255.583 12.410 .001
Error | 7183.674 71| 101.179
Total 27481.316 75
Corrected Total 13811.215 74

Interaction terms omitted:

Three-way interaction:
potato*regime*temp

Two-way interactions:
potato*temp
regime*temp

Remaining interaction term
potato*regime omitted

a R Squared = .480 (Adjusted R Squared = .458)

REDUCED MODEL 3

Dependent Variable: Damage Score: lon Leakage

Number of parameters:
g=3

Type Il Sum ,M/
Source of Squares df an Square F Sig.
Corrected Model 7491.755(a) | 2497.252 28.057 000 | |interaction replaced,
Intercept 8119.673 1 8119.673 91.226 .000 but temp main effect
potato 1862.829 1 1862.829 20.929 .000 removed.
regime 1467.591 1 1467.591 16.489 .000
potato * regime 2119.797 1 2119.797 23.816 .000
Error [6319.460 71] 89.006
Total 27481.316 75
Corrected Total 13811.215 74

a R Squared = .542 (Adjusted R Squared = .523)
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Balanced two-factor predictor, one covariate linear model

Task Distraction Data

Dependent Variable: Errors

This is a balanced design, with 15 replicates in each of the
3 x 3 =9 cells of the table. For a balanced design, the
quoted p-values are more reliable as indications of
significance

COMPLETE MODEL

Type lll Sum

Source of Squares df Mean Square F Sig.
Corrected Model 39671.916(a) 2333.642 48.240 .000 k=17
Intercept 309.723 1 309.723 6.402 013
Group 252.027 2 126.014 2.605 078
Task 450.584 2 225.292 4.657 011
Distract 2790.513 1 2790.513 57.684 .000
Group * Task 172.095 4 43.024 .889 473
Group * Distract 335.100 2 167.550 3.463 .035
Task * Distract 2535.238 2 1267.619 26.203 .000
Group * Task * Distract 142.924 4 35.731 739 567
Error | 5660.010 117 | 48.376
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .875 (Adjusted R Squared = .857)

REDUCED MODEL 1
Dependent Variable: Errors
Type Il Sum

Source of Squares df Mean Square F Sig.
Corrected Model | 37704.447(a) [9] 4189.383 68.656 .000 | |9=9
Intercept 537.895 1 537.895 8.815 .004
Group 228.483 2 114.242 1.872 158
Task 494.293 2 247 147 4.050 .020
Distract 3575.111 1 3575.111 58.589 .000
Group * Distract 343.795 2 171.898 2.817 .064
Task * Distract 2540.469 2 1270.235 20.817 .000
Error | 7627.479 125| 61.020
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .832 (Adjusted R Squared = .820)
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Dependent Variable: Errors

REDUCED MODEL 2

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model | 37360.652(a) L 7] 5337.236 85.034 000 | |4=7
Intercept 619.535 1 619.535 9.871 .002
Group 433.379 2 216.690 3.452 .035
Task 500.794 2 250.397 3.989 .021
Distract 3796.748 1 3796.748 60.491 .000
Task * Distract 2597.561 2 1298.780 20.692 .000
Error [7971.274 127] 62.766
Total 90341.000 135
Corrected Total 45331.926 134
a R Squared = .824 (Adjusted R Squared = .814)
REDUCED MODEL 3
Dependent Variable: Errors
Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model | 36927.272(a) 7385.454 113.357 000 | |g=5
Intercept 522.634 1 522.634 8.022 .005
Task 513.356 2 256.678 3.940 .022
Distract 3565.647 1 3565.647 54.728 .000
Task * Distract 2750.062 2 1375.031 21.105 .000
Error | 8404.654 129 65.152
Total 90341.000 135
Corrected Total 45331.926 134
a R Squared = .815 (Adjusted R Squared = .807)
REDUCED MODEL 4
Dependent Variable: Errors
Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model | 34177.211(a) 11392.404 133.791 000 | [4=3
Intercept 1192.389 1 1192.389 14.003 .000
Task 23726.782 2 11863.391 139.323 .000
Distract 5515.685 1 5515.685 64.776 .000
Error 111154.715 131| 85.150
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .754 (Adjusted R Squared = .748)
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Task Distraction Data: Follow-Up Analysis

Dependent Variable: Errors

Type Il Sum

Source of Squares df Mean Square F Sig.
Corrected Model 39671.916(a) 2333.642 48.240 .000
Intercept 309.723 1 309.723 6.402 013
Group 252.027 2 126.014 2.605 .078
Task 450.584 2 225.292 4.657 .011
Distract 2790.513 1 2790.513 57.684 .000
Group * Task 172.095 4 43.024 .889 473
Group * Distract 335.100 2 167.550 3.463 .035
Task * Distract 2535.238 2 1267.619 26.203 .000
Group * Task * Distract 142.924 4 35.731 739 567
Error [ 5660.010 117] 48.376
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .875 (Adjusted R Squared = .857)
Now we omit the three-way interaction only

Dependent Variable: Errors

Type lll Sum

Source of Squares df Mean Square F Sig.
Corrected Model | 39528.992(a) 3040.692 63.403 .000
Intercept 305.861 1 305.861 6.378 013
Group 316.691 2 158.345 3.302 .040
Task 481.392 2 240.696 5.019 .008
Distract 2802.472 1 2802.472 58.436 .000
Group * Task 1824.545 4 456.136 9.511 .000
Group * Distract 414.362 2 207.181 4.320 .015
Task * Distract 2643.278 2 1321.639 27.558 .000
Error [ 5802.934 121] 47.958
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .872 (Adjusted R Squared = .858)

Here, to compare these models,

F = (5802.934 - 5660.010)/(17-13) = 0.739

5660.010/(135-17-1)

We compare this with the Fisher-F(17-13,135-17-1) = Fisher-F(4,117) distribution:
the 0.05 tail quantile Critical Value is 2.45.

Therefore we do not reject the simpler model as an adequate simplification: we CAN drop the three-way interaction.
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Now we try to drop the least significant two-way interaction: group*distract

Dependent Variable: Errors

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model | 39114.630(a) 3555.875 70.348 .000
Intercept 332.570 1 332.570 6.579 012
Group 364.584 2 182.292 3.606 .030
Task 521.312 2 260.656 5.157 .007
Distract 2871.665 1 2871.665 56.812 .000
Group * Task 1753.978 4 438.495 8.675 .000
Task * Distract 2725.029 2 1362.514 26.955 .000
Error 16217.296 123| 50.547
Total 90341.000 135
Corrected Total 45331.926 134

a R Squared = .863 (Adjusted R Squared = .851)

Here, to compare these models,

F = (6217.296 - 5802.934)/(13-11) = 4.320

5802.934/(135-13-1)

We compare this with the Fisher-F(13-11,135-17-1) = Fisher-F(2,121) distribution:

the approximate 0.05 tail quantile Critical Value is 3.07.

Therefore we reject the simpler model as an adequate simplification.

group + task + distract + group.task + group.distract + task.distract

The conclusion is that the most appropriate model in terms of ANOVA F-test selection is

Note that there is very little difference between the R squared statistics for the models.
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Standardized Residual

1.

15 20 25 30 35

5 10

0

SUMMARY OF ISSUES IN ANOVA, REGRESSION AND GENERAL LINEAR
MODELLING

Model Assumptions : The key model assumption is that the residual (measurement) errors are
independent and identically distributed Normal random quantities. If this assumption is not met,
then none of the hypothesis tests based on the Student and Fisher-F distributions are valid.

The validity of this model assumption can be checked by the inspection of the residuals, €;, or
standardized residuals, z; where

. . ~ & Y
€ =Yi Y 2= =
S S
fori=1,...,n. Plots of the residuals can be used to check for

(i) Normality
(ii) Dependence on the covariates
(iii) Constant variance

(iv) Outliers: An outlier is an response value that gives rise to a residual which is large in magni-
tude, indicating that the fit of the model is poor for that data point.

Outliers can significantly alter the fit of a model, and the parameter estimates. If an outlier
is suspected, then careful consideration should be given to omitting that data point from the
analysis (see below; estimates (standard errors) change in the presence of an outlier).

No outlier : estimates and standard errors Outlier : estimates and standard errors

15 20 25 30 35

10

5

0

20

Standardized Residual
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To check the normality of the residuals, a histogram or probability plot can be used. A probability plot
is a plot constructed using the observed (standardized) residuals and their theoretical counterparts
assuming a normal model. Points in such a plot should lie on a straight-line with slope one; any
deviation from this may indicate deviation from normality. These plots are available on the Linear
Regression menu, after clicking the Plots button.

The examples below are from (a)the Viscosity vs PCV data, and (b) the straight-line and (c) the
quadratic model analysis of the Hooker data. In the (a), the probability plot indicates that the
residual variance is larger in the middle compared to the of the residual range. In (b), the points in
the probability plot do not lie on the straight-line, so again a deviation from normality is indicated.
In (c), the plot indicates normality of the residuals.

Mormal P-P Plot of Reg lon Standardized Resld Mormal P-P Plot of Reg lon Standardized Resld Mormal P-P Plot of Reg lon Standardized Resldual

Dependent Variable: Blood Viscosity (cP) Dependent Variable: Boiling point of Water (C) Dependent Variable: Boiling point of Water (C)

10

o
o

o
Expected Cum Prob
o

Expected Cum Prob
o

Expected Cum Prob
o

T T T T T T T T T T T T T
an o2 04 13 0a 10 an o2 04 13 0a 10 an o2 04 13 0a 10
Observed Cum Prob Observed Cum Prob Observed Cum Prob

(a) Viscosity vs PCV (b) Hooker Data: Linear Model (c) Hooker Data:  Quadratic
Model

2. Data Transformations : The response variable and continuous covariates can be transformed (us-
ing log or square-root transformation say) to improve the fit of the model, or to make the model
assumptions more appropriate.

3. Model Selection : Model selection by means of stepwise selection and sequential ANOVA-F testing
can be an effective way of finding the important explanatory variables and interactions. However
it must be carried out with care.

In general, we aim to select the simplest model that provides an adequate fit to the data.

The goodness of fit measures R? and adjusted R? statistics can provide a final assessment of model
adequacy.

4. Multicollinearity : Multicollinearity is the term to describe dependence between the covariates used
in a regression model. If the covariates are highly correlated, then the estimated coefficients for
those covariates in a multiple regression need careful interpretation.

If two covariates are highly correlated, then if one is a useful predictor of the response, the other
will likely appear to be a useful predictor as well, that is if one estimated coefficient is significantly
different from zero, then the other will be also. However, in a multiple regression model with both
covariates included, it might be that neither coefficient is significantly different from zero.

5. Predicting outside the Range of the Covariates : In a regression model, the fitted parameters reflect
relationships and dependencies in the observed data. The model can be used for prediction, but is
only likely to be reliable if the prediction is carried out at x values within the range of the observed
s.

For example, in a simple linear regression, if x takes values on the range (0, 100), predictions at
new z values within this range will be reliable, but predictions at, say, z = 200 will be much less
reliable.
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CHI-SQUARED TESTS FOR CATEGORICAL DATA

In a multinomial experiment, the independent experimental units are classified to one of k categories de-
termined by the levels of a discrete factor. Let ny,na, ..., ny be the counts of the numbers of experimental
units in the k categories, where ny +no + -+ - +ng = n..

The probability that an experimental unit is classified to category i is p;, fori =1, ..., k, so that
pr+pet--+pp=1

e The one-way classification table can be displayed as follows:

[Category | 1 [2[---] k|
Count ny | ng | - | ng
Probability | p1 | p2 | -+ | px

We can test a hypothesis Hy that fully specifies p1, ..., pi, for example

Hy:pr :p§0),p2 :péo), AN :p,(f)

so that, for £ = 3, we might have
Hy:pr=pr=p3=1/3 or Hy:p1=1/2,ps =p3 =1/4.
We use the test statistic

o (ni—np®) N e 2
ni — Np; (Observed Count in Cell i — Expected Count in Cell )

X2 = =
(0) Expected Count in Cell ¢

i=1 np i=1

We sometimes write n; = npl(-o). If Hyis true, X? ~ Chi-squared(k — 1).
e The two-way classification table can also be constructed to represent the cross-classification for two
discrete factors A and B with r and ¢ levels respectively.

Factor B

1 5 ... p

1 |ny | nig |- | nie

f nal | M2 | - | Nac
S
-—
(@]
(¢
[

T My | Mp2 | =0 Nre

To test the hypothesis
Hj : Factor A and Factor B levels are assigned independently

we use the same test statistic that can be rewritten

X2 — Zr: zC: (nij ﬁ_jij)

i=1 j=1

2

where

(& r
L L o N N
ij = i = i J= i
=1 i=1

The terms n;, and n ; are the row and column totals for row 7 and column j respectively. If Hj is
true
X? « Chi-squared((r — 1)(c — 1))
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EXAMPLE 1: DNA Sequence Data
The counts of the numbers of nucleotides (A,C,G,T) in the DNA sequence of the cancer-related gene
BRCA 2 are presented in the table below.

Category 1 2 3 4 Total
Nucleotide | A C G T
Count 38514 | 24631 | 25685 | 38249 | 127079

so that £ = 4. To test the hypothesis
Ho : py=p2=p3=ps=1/4
We use the one-way table chi-squared test: here

12
(0) %79 — 31769.75

n;g =np; =

so the test statistic is

(38514 — 31769.75)% (24631 — 31769.75)% (25685 — 31769.75)> (38249 — 31769.75)?

X2
31769.75 * 31769.75 + 31769.75 * 31769.75

= 5522.597
We compare this with the Chi-squared(k — 1) = Chi-squared(3) distribution. From McClave and Sincich,
p. 898,
Chisq 45(3) = 7.815 < X?

so Hy is rejected.

EXAMPLE 2: Eye and Hair Colour Data
The table below contains counts of the number of people in a study with a combination of eye and hair
colour.

Hair
Black Brunette Red Blonde | n;
Brown 68 119 26 71220
" Blue 20 84 17 94 | 215
$.  Hazel 15 54 14 10 | 93
M Green 5 29 14 16 | 64
n; | 108 286 71 127 | 592

so r = ¢ = 4. To test the hypothesis

Hy : Eye and Hair colour are assigned independently

)@:iiM

i=1 j=1

we use the X2 statistic

Here, for example, fori =2 and j = 3

~ _ng.xn,3_215><71_
N9z = - =295 = 25.785.
In fact, on complete calculation, we find that
X? = 138.2898.

We compare this with the Chi-squared((r —1)(c — 1)) = Chi-squared(9) distribution. From McClave and
Sincich, p. 898,
Chisqy o5(9) = 16.919 < X?

so H is rejected
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Use

Chi-Squared test for the nucleotide count data

Analyze — Nonparametric Tests — Chi-Square

pulldown menus.

For the test of

Ho:p1=p2=ps=ps=1/4

First null hypothesis

Nucleotide
Observed N | Expected N Residual
A 38514 31769.8 6744.3
C 24631 31769.8 -7138.8
G 25685 31769.8 -6084.8
T 38249 31769.8 6479.3
Total 127079
Test Statistics
Nucleotide
st
df 3 _ —
Asymp. Sig. .000

Chi-squared Statistic = 5522.597

p-value < 0.001

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 31769.8.

For the test of

Ho:p1=ps=0.3 p2=p3=0.2

Second null hypothesis

Nucleotide
Observed N | Expected N Residual
A 38514 38123.7 390.3
C 24631 25415.8 -784.8
G 25685 25415.8 269.2
T 38249 38123.7 125.3
Total 127079
Test Statistics

Nucleotide
gghare(a)
df 3
Asymp. Sig. .000

- p-value < 0.001

Chi-squared Statistic = 31.492

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 25415.8.
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Chi-Squared test for the Hair and Eye colour count data

Use
Analyze — Descriptive Statistics — Crosstabs
pulldown menus.

For the test of
Ho : Hair and Eye colour are assigned independently

Eye Colour * Hair Colour Crosstabulation

Count
Hair Colour
Black Brown Red Blond Total

Eye Brown 68 119 26 7 220
Colour Bjye 20 84 17 94 215

Hazel 15 54 14 10 93

Green 5 29 14 16 64
Total 108 286 71 127 592

Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 138.290(a) 9 000 p-value < 0.001
Likelihood Ratio 146.444 9 .000
Linear-by-Linear 28.292 1 000
Association ’ ’
N of Valid Cases
592

a 0 cells (.0%) have expected count less than 5]The minimum expected count is 7.68.

Chi-square statistic = 138.290

Note the comment returned by SPSS: The chi-squared test is not appropriate if any of the cells in the table
have expected count less than 5 under the null hypothesis.

In this case, there is no problem as the cell counts are large enough.
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NON-PARAMETRIC STATISTICS
ONE AND TWO SAMPLE TESTS

Non-parametric tests are normally based on ranks of the data samples, and test hypotheses relating to
quantiles of the probability distribution representing the population from which the data are drawn.
Specifically, tests concern the population median, 7, where

1
Pr[ Observation < 7] = 5

The sample median, x\Ep, is the mid-point of the sorted sample; if the data 1, ..., z, are sorted into
ascending order, then
Tm nodd,n =2m +1

TMED = T + Tt

5 neven,n = 2m

1 ONE SAMPLE TEST FOR MEDIAN: THE SIGN TEST

For a single sample of size n, to test the hypothesis n = 1y for some specified value 1y we use the Sign
Test.. The test statistic S depends on the alternative hypothesis, H,,.

(a) For one-sided tests, to test

Ho : n=mno
H, : n>"no

we define test statistic S by
S = Number of observations greater than 7

whereas to test

Ho : n=mno
Ha o <no

we define S by
S = Number of observations less than 7

If Hy is true, it follows that
S ~ Binomial (n, ;)
The p-value is defined by
p=Pr[X > 5]

where X ~ Binomial(n,1/2). The rejection region for significance level « is defined implicitly by
the rule

Reject Hy if o > p.

The Binomial distribution is tabulated in McClave and Sincich.
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(b) For a two-sided test,

Hy @ n=mno
Hy, @ n#no

we define the test statistic by
S = maX{Sl, SQ}

where S and Sy are the counts of the number of observations less than, and greater than, 7, re-
spectively. The p-value is defined by
p=2Pr[X > 9]

where X ~ Binomial(n, 1/2).

Notes :

1. The only assumption behind the test is that the data are drawn independently from a continuous
distribution.

2. If any data are equal to 79, we discard them before carrying out the test.

3. Large sample approximation. If n is large (say n > 30), and X ~ Binomial(n, 1/2), then it can be
shown that
X ~ Normal(np, np(1 — p))

Thus for the sign test, where p = 1/2, we can use the test statistic
g g
7 2 2
S = n X —
n X 5 X 5 2

and note that if H is true,
Z ~ Normal(0, 1).

so that the test at = 0.05 uses the following critical values

H, : n>ny then Cgr=1.645
H, : n <no then Cgr = —1.645
H, : n#ny then Cgr= £1.960

4. For the large sample approximation, it is common to make a continuity correction, where we re-
place S by S — 1/2 in the definition of Z

Tables of the standard Normal distribution are given in McClave and Sincich.
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2 TwoO SAMPLE TESTS FOR INDEPENDENT SAMPLES:
THE MANN-WHITNEY-WILCOXON TEST

For a two independent samples of size n; and ny, to test the hypothesis of equal population medians

n ="n2

we use the Wilcoxon Rank Sum Test, or an equivalent test, the Mann-Whitney U Test; we refer to this
as the

Mann-Whitney-Wilcoxon (MWW) Test

By convention it is usual to formulate the test statistic in terms of the smaller sample size. Without loss
of generality, we label the samples such that

ny > ng.
The test is based on the sum of the ranks for the data from sample 2.
EXAMPLE :n; = 4,ny = 3 yields the following ranked data

SAMPLE1 031 048 1.02 3.11
SAMPLE2 0.6 020 1.97

SAMPLE 2 2 1 1 1 2 1
0.16 020 031 048 1.02 197 3.11
RANK 1 2 3 4 5 6 7

Thus the rank sum for sample 1 is
Ri=3+44+5+7=19

and the rank sum for sample 2 is
Ry=14+2+6=09.

Let 11 and 72 denote the medians from the two distributions from which the samples are drawn. We wish
to test

Ho :m=m
Two related test statistics can be used
e Wilcoxon Rank Sum Statistic
W = Ry
e Mann-Whitney U Statistic
U=Ry— ng(n;—i— 1)

We again consider three alternative hypotheses:

Hy @ om <
Ha Lom >
H, : m=mn

and define the rejection region separately in each case.
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Large Sample Test
If no > 10, a large sample test based on the Z statistic

nina
Uy 2
7= 2
\/nlng(nl “+ no + 1)
12

can be used. Under the hypothesis Hy : 11 = 19,
Z ~ Normal(0, 1)
so that the test at o = 0.05 uses the following critical values

H, : m >ny then Cir=—1.645
Ha <12 then CR = 1.645
H, : nm #mny then Cpr=+1.960

Small Sample Test

If n; < 10, an exact but more complicated test can be used. The test statistic is Rs (the sum of the ranks
for sample 2). The null distribution under the hypothesis Hy : 71 = 12 can be computed, but it is
complicated.

The table in McClave and Sincich gives the critical values (77, and T/) that determine the rejection region
for different ny and ny values up to 10.

e One-sided tests:

H, : m >mn2 Rejection Regionis Ry <1717,
H, : m <mn2 Rejection Regionis Ry > Ty

These are tests at the oo = 0.025 significance level.
e Two-sided tests:

H, : m #n2 Rejection Regionis Ry <Tp or Ry > Ty
This is a test at the o = 0.05 significance level.

Notes :

1. The only assumption is are needed for the test to be valid is that the samples are independently
drawn from two continuous distributions.

2. The sum of the ranks across both samples is

(n1 +mn2)(n1 +ng+ 1)

Ri+ Ry = 5

3. If there are ties (equal values) in the data, then the rank values are replaced by average rank values.
DATA VALUE 016 020 031 031 048 197 3.11

ACTUAL RANK 1 2 3 3 5 6 7
AVERAGE RANK 1 2 35 35 5 6 7
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EXAMPLES

EXAMPLE 1: Sign Test: Water Content Example

The following data are measurements of percentage water content of soil samples collected by two ex-
perimenters. We wish to test the hypothesis

Hy : n=9.0
for each experiment.
Experimenter 1: n =10 55 60 65 76 76 7.7 80 82 91 151
Experimenter 2: n =20 56 61 63 63 65 66 70 75 79 8.0

80 81 81 82 84 85 87 94 143 26.0

To perform the test, we need tables of the Binomial distribution with p = 1/2. The individual probabilities
are given by the formula

1 ! 1
Pr[X =z| = <Z>pw(l —p)" = <n> S - z=0,1,....n

x)2n T zl(n—x)!2n
We test at the oo = 0.05 level. For the first experiment, with n = 10:
e For a test against the alternative hypothesis
H, :n>9.0
the test statistic is
S = Number of observations greater than 9 S=2
and the p-value is
p=Pr[X >2]=1-Pr[X <2]=1-Pr[X =0] - Pr[X = 1] = 0.9893

so we do not reject Hy in favour of this H,.

e For a test against the alternative hypothesis
H, : n<9.0
the test statistic is
S = Number of observations less than 9 S =28
and the p-value is
p = Pr[X > 8] = Pr[X = 8] + Pr[X = 9] + Pr[X = 10] = 0.0547

so we do not reject Hy in favour of this H,.

e For a test against the alternative hypothesis
H, : n#9.0

the test statistic is
S = max{Si, S2} = max{2,8} =8

and the p-value is
p = 2Pr[X > 8] = 2(Pr[X = 8] + Pr[X = 9] + Pr[X = 10]) = 0.1094

so we do not reject Hy in favour of this H,.
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For the second experiment, with n = 20:

e For a test against the alternative hypothesis H, : 7 > 9.0, the test statistic is S = 3. The p-value is
therefore

p=Pr[X >3]=1—-Pr[X <3]=1-Pr[X =0] — Pr[X = 1] — Pr[X = 2] = 0.9998.
so we do not reject Hy in favour of this H,.

e For a test against the alternative hypothesis H,
therefore

: n < 9.0, the test statistic S = 17. The p-value is

p=Pr[X > 17] = Pr[X = 17] + Pr[X = 18] + Pr[X = 19] + Pr[X = 20] = 0.0013.

so we do reject Hy in favour of this H,.

e For a test against the alternative hypothesis H,
max{3,17} = 17. The p-value is therefore

: n # 9.0, the test statistic is S = max{S;, S2} =

p=2Pr[X > 17] = 2(Pr[X = 17] + Pr[X = 18] + Pr[X = 19] + Pr[X = 20]) = 0.0026.

so we do reject Hy in favour of this H,.

This test can be implemented using SPSS, using the
Analyze — Nonparametric Tests — Binomial

pulldown menus. The test can be carried out by

(a) Selecting the test variable from the variables list
(b) Set the Cut Point equal to 19 = 9.

A two-sided test is carried out at the @ = 0.05 level. The SPSS output is presented below for the two
experiments in turn:

Binomial Test

Observed Exact Sig.
Category N Prop. Test Prop. | (2-tailed)

% Water content  Group 1 | <=9 8 .80 .50 .109
Group2 | >9 2 .20
Total 10 1.00

Binomial Test

Observed Exact Sig.

Category N Prop. Test Prop. | (2-tailed)

% Water content Group 1 | <=9 17 .85 .50 .003
Group2 | >9 3 15
Total 20 1.00
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EXAMPLE 2: Mann-Whitney-Wilcoxon Test: Low Birthweight Example
The birthweights (in grammes) of babies born to two groups of mothers A and B are displayed below:
Thus ny = 9, n2 = 8. From this sample (which has ties, so we need to use average ranks), we find that

GroupA: n=9 2164 2600 2184 2080 1820 2496 2184 2080 2184
GroupB: n=8 2576 3224 2704 2912 2444 3120 2912 3848

Ri =48 Ry =105
so that the two statistics are

Wilcoxon W = Ry =105

77,2(712 + 1)

Mann-Whitney U = Ry — =105 —36 =69

e For the small sample test, from tables in McClave and Sincich, we find
Tr, =51 Ty =93
Thus W > 93, so we

Do not reject Hy against H, : n1 > 12 as W = Ry > 17,
Reject Hy against H, : m1 <2 as W =Ry >1Ty
Reject Hy against H, : m1 #m2 as W =Ry > 1Ty

Note that the one-sided tests are carried out at @« = 0.025, the two sided test is carried out at
o = 0.05.

e For the large sample test, we find

[y Mmn2
7 2 —3.175
\/nlng(nl + n9 + 1)
12

Thus we

Do not reject Hy against H, : 1 > 12 as Z > Cr = —1.645
Reject Hy against H, : m1 <12 as Z > Cr=1.645
Reject Hy against H, : m1 #1n2 as Z > Cpr, = 1.960

All tests are carried out at o = 0.05.

This test can be implemented using SPSS, using the
Analyze — Nonparametric Tests — Two Independent Samples

pulldown menus. Note, however, that SPSS uses different rules for defining the test statistics, although
it yields the same conclusions for a two-sided test.
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EXAMPLE 3: Mann-Whitney-Wilcoxon Test: Treadmill Test Example
The treadmill stress test times (in seconds) of two groups of patients (disease group and healthy controls)
are displayed below:

Disease: n =10 864 636 638 708 786 600 1320 750 594 750
Healthy: n=8 1014 684 810 990 840 978 1002 1110

Thus ny = 10, ng = 8. From this sample (which has ties, so we need to use average ranks), we find that
R, =70 Ry =101
so that the two statistics are

Wilcoxon W = Ry =101

TLQ(TLQ + 1)

Mann-Whitney U = Rs — =101 — 36 = 65

e For the small sample test, from tables in McClave and Sincich, we find
Tr, = 54 Ty =98
Thus W > 98, so we

Do not reject Hy against H, : n1 > 12 as W = Ry > T,
Reject Hyp against H, : n1 <m2 as W =Ry >1Ty
Reject Hy against H, : 71 #1m2 as W = Ry > 1Ty
Again, the one-sided tests are carried out at o = 0.025, the two sided test is carried out at & = 0.05.

e For the large sample test, we find

U_ nineg
7 2 —92.991
\/nlng(nl + n9 + 1)
12

Thus we

Do not reject Hy against H, : 1 > 12 as Z > Cr = —1.645
Reject Hy against H, : m1 <12 as Z > Cr=1.645
Reject Hy against H, : m1 #1n2 as Z > Cpr, = 1.960

All tests are carried out at o = 0.05.

92



TWO DEPENDENT SAMPLES AND MULTIPLE INDEPENDENT SAMPLES

3 TwoO DEPENDENT SAMPLES: WILCOXON SIGNED RANK TEST

Data collected from the same experimental units are in general dependent. For example, if data are
collected on two occasions (time 1 and time 2, or before and after treatment) from the same n individu-
als, then the resulting data samples (y11,...,yn1) and (y12, ..., yn2) are dependent. Such data are often
referred to as paired. We wish to test whether there is a significant change across the two measurements.

For a parametric test, we typically assume that the within-individual differences
Ti = Yi1 — Yi2 t=1,...,n
are Normally distributed, and test the hypothesis that the mean difference 1 is zero
Hy:p=20
using a one-sample Z-test (¢ known) or T-test (¢ unknown), with statistic
x x

= —— or t=

a/vn s/v/n

distributed as Normal(0, 1) or Student(n — 1) respectively.

For a non-parametric test, we can use the Wilcoxon Signed Rank test, which proceeds as follows:
1. Compute the within-individual differences
Ti = Yi1 — Yi2 t=1,...,n
If any x; = 0, then that data point is discarded and the sample size adjusted.

2. Sort the absolute values s, ..., s, of x1,z2,...,z, into ascending order, and assign ranks 1 up to
n. If there are ties, assign average ranks.

3. Form the two rank sums 7y and 7, where

T, = Sum of ranks for those z; > 0
T_ = Sum of ranks for those z; < 0

The test statistic is a function of these rank sums. Heuristically, if the statistic 7' is large and 7_ is small,
this implies that the experimental units where y;; > ;2 have a larger (in magnitude) difference than
those where y;1 < ;2. This indicates an overall decrease between the first and second measurements.
Conversely, if the statistic 7_ is large and 7' is small, this implies that the experimental units where
yi2 > y;1 have a larger (in magnitude) difference than those where y;» < ;1. This indicates an overall
increase between the first and second measurements.

We test the null hypothesis
Hy : No change between first and second measurements

against the three alternative hypotheses

(1) H, : Significant decrease between first and second measurements
(2) H, : Significant increase between first and second measurements
(3) H, : Significant change between first and second measurements
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To test Hy vs (1), we perform a one-sided test using the statistic 7°; the critical value in the test is denoted
To, and is determined by the table in McClave and Sincich:

If T <Tp, wereject Hy in favour of H, (1)

To test Hy vs (2), we perform a one-sided test using the statistic 77y ; the critical value is Ty and
If Ty <Tp, we reject Hy in favour of H, (2)

To test Hy vs (3), we perform a two-sided test using the statistic 7' = min{7_, T }; the critical value is T}
and

If T < Ty, we reject Hy in favour of H, (3)
Notes :

1. The only assumption behind the test is that the difference data x; are drawn independently from a
continuous distribution.

2. Large Sample Test: For n > 25, we can use a large sample version of the test based on 7', and the
Z statistic

) T, - n(n4+ 1)
B \/n(n +1)(2n+1)
24

If Hy is true, then Z ~ Normal(0, 1), so that the test at & = 0.05 uses the following critical values

For H, (1) wuse Cpr=1.645
For H, (2) wuse Cpr= —1.645
For H, (3) wuse Cpr = +1.960

EXAMPLE 1: Haemodialysis Data

The following data are measurements of the heparin cofactor II (HCII) to plasma protein ratios in a group
of patients at baseline and five months after haemodialysis.

Reference: Toulon, P et al. (1987) Antithrombin III and heparin cofactor II in patients with chronic renal
failure undergoing regular hemodialysis, Thrombosis and Haemostasis, 3,57(3): pp263-8.

Patient Before After
Yil Yi2 T s; Rank Ave. Rank

1 211 215 -0.04 0.04 3 3.5
2 1.85 211 -026 0.26 10 10.0
3 1.82 193 -0.11 0.11 8 8.0
4 1.75 1.83 -0.08 0.08 6 6.0
5 1.54 190 -0.36 0.36 11 11.0
6 1.52 156 -0.04 0.04 3 3.5
7 1.49 144 0.05 0.05 5 5.0
8 1.44 143 0.01 0.01 1 1.5
9 1.38 128 0.10 0.10 7 7.0
10 1.30 1.30 0.00 0.00 - - OMIT
11 1.20 121 -0.01 0.01 1 1.5
12 1.19 1.30 -0.11 0.11 9 9.0
T_ =525

From the table on p 839, for n = 12—1 = 11, we find that the o = 0.025/0.05 (one/two-sided) significance
level critical value is Ty = 11. Thus using 7';, we cannot reject either of the null hypotheses (2) and (3),
as T} > T . Note that Z = —1.734, so if the approximation was valid, we would be able to reject (2) at
a = 0.05.
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4 THREE OR MORE INDEPENDENT SAMPLES:
THE KRUSKAL-WALLIS AND FRIEDMAN TESTS

We now seek non-parametric tests that can be used for multiple independent samples, such as those
found in the Completely Randomized Design (CRD) and Randomized Block Design (RBD) described in
the ANOVA section. The non-parametric equivalents of the Fisher-F tests for these two designs are

¢ The Kruskal-Wallis H test for a Completely Randomized Design
e Friedman’s test for a Randomized Block Design
4.1 Kruskal-Wallis Test

In a CRD, we have k independent groups, corresponding to k different treatments, with sample sizes
ni,...,ng. Letn =ny +--- + ng. To compute the test statistic, H, we

1. Pool the data, sort them into ascending order, and assign ranks. If there are ties in the data, then
average ranks are used.

2. Forj =1,...,k, compute the rank sum R;

R; = Sum of ranks for data from sample j.

To test the hypothesis
Hy : No difference between the population distributions of the k groups
H, : Atleasttwo population distributions different

the test statistic is

k 2

J
= — 1)
n—|—1 Z;nj n—l—

If Hy is true, then for large n,
H ~ Chisquared(k — 1).
Notes :

1. The test assumes that the k& samples are independently drawn from continuous populations.

2. For the approximation to be valid, there should be at least five observations in each sample, and
the number of ties should be small.

EXAMPLE 2: Mucociliary efficiency data
The data are measures of mucociliary efficiency from the rate of removal of dust in normal subjects
(Group 1), subjects with obstructive airway disease (Group 2), and subjects with asbestosis (Group 3).

Reference: Myles Hollander, M and Douglas A. Wolfe (1973), Nonparametric statistical inference, New York:
John Wiley & Sons. pp115-120.

Group 1 1 1 1 1 2 2 2 2 3 3 3 3 3
Y 29 3.0 25 26 32 38 27 40 24 28 34 37 22 20
Rank 8 9 4 5 10 13 6 14 3 7 11 12 2 1

Hence R = 36, Ry = 36 and R3 = 33, and the test statistic H = 0.7714. To complete the test, we compare
with the oo = 0.05 quantile of the Chisquared(k — 1) = Chisquared(2) distribution. We have

Chisq 5(2) =5.99 > H No evidence to reject H
and a p-value of p = 0.680.
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4.2 Friedman Test

In a RBD, we have k treatment groups, and a blocking factor. For example, we might have k repeated
measurements on the same b experimental units, and n = bk observations in total. To compute the test
statistic, F}., we proceed as follows.

1. Within each block separately, sort the £ data values into ascending order, and assign ranks. If
there are ties in the data, then average ranks are used.

2. Forj =1,...,k, compute the rank sum R;

R; = Sum of ranks for data from treatment ;.

To test the hypothesis
Hy : No difference between the population distributions of the k treatment groups
H, : Atleasttwo population distributions different

the test statistic is

Mw

bk + 1
k:+1 (k+1)

If Hy is true, then for large n,
F, ~ Chisq(k — 1)

Notes :

1. The test assumes that the data are drawn independently from continuous populations, with ran-
dom assignment of treatments within blocks.

2. For the approximation to be valid, it is recommended that b or £ is at least five, and the number of
ties should be small.

EXAMPLE 3: Skin potential under hypnosis

A study was conducted to investigate whether hypnosis has the same effect on skin potential for four
different emotions. Eight subjects were asked to display fear, joy, sadness and calmness under hypnosis,
and the resulting skin potential (measured in millivolts) was recorded for each emotion. Thus in this
experiment, b = 8 and k = 4.

Fear Joy Sadness Calmness

Subject y Rank | y Rank | y Rank| y  Rank
1 23.1 4227 3]225 11226 2

2 57.6 4| 532 2| 537 3 |531 1

3 10.5 3| 97 21108 4| 83 1

4 23.6 4119.6 31211 21216 1

5 11.9 11138 4137 31133 2

6 54.6 4471 31392 21370 1

7 21.0 4136 11137 2| 1438 3

8 20.3 31|236 41163 211438 1
Rank Sum 27 20 19 14

Thus the within-treatment rank sums are Ry = 27, Ry = 20, R3 = 19 and R4 = 14 and thus F, = 6.45. To
complete the test, we compare with the o = 0.05 quantile of the

Chisquared(k — 1) = Chisquared(3)
distribution. We have
Chisq 5(3) = 7.81 > F, No evidence to reject Hj
and a p-value of p = 0.092.
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RANK CORRELATION

5 SPEARMAN’S RANK CORRELATION

A measure of association for two samples z1, ..., z, and y, ..., y, is the Pearson Product Moment Cor-
relation Coefficient, , where
B 5SSy
\/SSzz SSyy
where
n n n
SS¢e = Z(% —7)? SSyy = Z(yl -7)° SSay = Z(wz —7)(yi — Y)

i=1 i=1 i=1
This quantity measures the linear association between the X and Y variables.
A measure of the potentially non-linear association between the samples z1,...,z, and y, ..., y, is the

Spearman Rank Correlation Coefficient, s, which computes the correlation between the ranks of the
data.

The Spearman Rank Correlation Coefficient is computed as follows:

1. Assign ranks uy,...,u, and vy, ..., v, to the data z1,...,z, and yi,...,y, separately by sorting
each sample into ascending order and assigning the ranks in order.

2. Compute rg as

SSuw
" /550, 950
where
SSuu =Y _(u;i —1)° SSpw =Y _(v; =) SSuv = Y _(u; — ) (v; — 1)

i=1 =1 i=1

If there are no ties in the data, then

6§:d?
=1

-1 =
" n(n? —1)

where
d; = u; —v; 1=1,...,n
Tests for rg : If the population correlation is p, then we may test the hypothesis
Hy: p=0

against the hypotheses

(1)Hg, = p>0

(2)H, : p<0

3)H, : p#0

using the table of the null distribution in McClave and Sincich. If Spearman  is the « tail quantile of the
null distribution, we have the following rejection regions:

(1) : Reject Hyif rg > Spearman
(2) : Reject Hypif rg < —Spearman_
(3) : Reject Hy if [rs| > Spearman,, ,,
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EXAMPLE : Latitude and dizygotic twinning rates
The relationship between the geographical latitude of a country and its dizygotic twinning (DZT) rate is
to be investigated. The data are presented and plotted below.

Reference: James, W.H. (1985) Dizygotic twinning, birth weight and latitude, Annals of Human Biology,
12,5, pp. 441-447.

Country Latitude Rank DZT Rate Rank
T U Y v

Portugal 40 1.5 6.5 2.0
Greece 40 15 8.8 13.0
Spain 41 3.0 59 1.0
Bulgaria 42 4.0 7.0 3.0
Italy 44 5.0 8.6 11.5
France 47 6.5 7.1 4.0
Switzerland 47 6.5 8.1 7.5
Austria 48 8.0 7.5 6.0
Belgium 51 9.5 7.3 5.0
FR Germany 51 9.5 8.2 9.0
Holland 52 115 8.1 7.5
GDR 52 11.5 9.1 16.0
England & Wales 53 13.5 8.9 14.5
Ireland 53 13.5 11.0 18.0
Scotland 56 155 8.9 14.5
Denmark 56 155 9.6 17.0
Sweden 60 17.0 8.6 11.5
Norway 61 18.0 8.3 10.0
Finland 62 19.0 12.1 19.0

N Finl.and

- Ireland

m DenLnark

ﬁ GQR Scotland
E . Gre.ece Ita.lly England—a.nd—WaIesC0 " Swe.den
Switzerland FR—Ggrmany Nor‘Nay
© ¢ Holl.and
Augtria Beli
- Bulgaria Fra.nce %
Port.ugal
© - Sp.ain
0 5 5 55 M s
Latitude
For these data
SSuw 4.5 SS, 118.4
rg 38 =0.677 r Y =0.645

 V/SSu, SS, /567 x 5685 ~ \/58,, 5S,,  /366.105 x 38.88

indicating a strong positive association.
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RANDOMIZATION AND PERMUTATION PROCEDURES

6 THE ROLE OF RANDOMIZATION /PERMUTATION TESTS

Randomization or Permutation procedures are useful for computing exact null distributions for non-
parametric test statistics when sample sizes are small.

Suppose that two data samples z; ..., 2y, and y; ..., yn, (Where n; > ny) have been obtained, and we
wish to carry out a comparison of the two populations from which the samples are drawn. The Wilcoxon
test statistic, W, is the sum of the ranks for the second sample. The permutation test proceeds as follows:

1. Let n = n; 4+ na. Assuming that there are no ties, the pooled and ranked samples will have ranks
1 2 3 ... n

2. The test statistic is W = Ry, the rank sum for sample two items. For the observed data, W will be
the sum of ny of the ranks given in the list above.

3. If the null hypothesis
Hj : No difference between population 1 and population2

were true, then there should be no pattern in the group labels when sorted into ascending order;
the sorted data would give rise a random assortment of group 1 and group 2 labels.

4. To obtain the exact distribution of W under Hj (for the assessment of statistical significance), we
could compute W for all possible permutations of the group labels, and then form the probability
distribution of the values of W. We call this the permutation null distribution.

5. But W is a rank sum, so we can compute the permutation null distribution simply by tabulating all
possible subsets of size ns of the set of ranks {1,2,3,...,n}.

n n!
= —— N
n9 77,1!77,2!

say possible subsets of size ny; for n = 6 and no = 2, the number of subsets of size ns is

8 8!
= — = 2
(2> 6o~ 2

However, the number of subsets increases dramatically as n increases; for n; = ny = 10, so that
n = 20, the number of subsets of size ns is

20 20!
- — 14
<1o> TURTURE

6. There are

7. The exact rejection region and p-value are computed from the permutation null distribution. Let
Wi, i=1,..., N denote the value of the Wilcoxon statistic for the N possible subsets of the ranks of
size ny. The probability that the test statistic, W, is less than or equal to w is

Number of W; < w

N

We seek the values of w that give the appropriate rejection region, R, so that
Number of W, € R
N =«

It may not be possible to find critical values, and define R, so that this probability is exactly « as
the distribution of W is discrete.

PrW < w] =

Pr[W € R] =
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EXAMPLE : Simple Example
Suppose n; = 7 and ny = 3. There are

subsets of the ranks {1,2,3, ...

10\ 10!
= =120
<3> 7131

Ranks

U G G G G G G GV W G GG G
AT UIUIUIk bR bR PR PR OULWWLWWWWWNDRNNDNDDNDDNDDNDDN

W Ranks W Ranks W Ranks W |

3 6|11 7 8162 7 10194 6 7 17
4 7011 7 9|17 1|2 8 9119114 6 8| 18
5 811 7 101182 8 10|20 4 6 91 19
6 911 8 91182 9 102114 6 10| 20
71101 8 10|19 |3 4 511214 7 81 19
81111 9 10|20 3 4 61314 7 9| 20
911212 3 4 913 4 7114104 7 10| 21
10| 132 3 51103 4 811514 8 9| 21
4 812 3 611113 4 911614 8 10| 22
5 912 3 711213 4 10| 174 9 10| 23
6110|112 3 81133 5 61415 6 7| 18
711112 3 91143 5 711515 6 81| 19
811212 3 10|15{ 3 5 811615 6 91 20
911312 4 5|11|3 5 9117 |5 6 10| 21
10114 |2 4 61123 5 10| 185 7 81 20
51102 4 71133 6 711615 7 9| 21
6112 4 8114 |3 6 811715 7 10| 22
711212 4 9|15 3 6 9118 ||5 8 9| 22
8113|112 4 10|16|3 6 10195 8 10| 23
91142 5 61133 7 8185 9 10| 24
101152 5 711413 7 911916 7 81 21
611212 5 811513 7 10206 7 9| 22
711312 5 91163 8 9120|116 7 10| 23
8114112 5 10|17 3 8 10|21 6 8 9| 23
911512 6 711513 9 10|22 6 8 10| 24
10|16 |2 6 81164 5 6|15|6 9 10| 25
711412 6 9|17 4 5 711617 8 9| 24
81152 6 10184 5 8|17 7 8 10| 25
911612 7 8|17 {4 5 911817 9 10| 26
10 17 | 2 7 91184 5 101198 9 10| 27

There are 22 possible rank sums, {6,7,8, . .., 25, 26, 27}, the number of times each is observed is displayed

in the table below, with the corresponding probabilities and cumulative probabilities.

w 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 1 2 3 4 5 7 8 9 10 10
Prob. 0.008 0.008 0.017 0.025 0.033 0.042 0.058 0.067 0.075 0.083 0.083
Cumulative Prob. | 0.008 0.017 0.033 0.058 0.092 0.133 0.192 0.258 0.333 0.417 0.500
w 17 18 19 20 21 22 23 24 25 26 27
Frequency 10 10 9 8 7 5 4 3 2 1 1
Prob. 0.083 0.083 0.075 0.067 0.058 0.042 0.033 0.025 0.017 0.008 0.008
Cumulative Prob. | 0.583 0.667 0.742 0.808 0.867 0.908 0.942 0.967 0.983 0.992 1.000

Thus, for example, the probability that W = 19 is 0.075, with a frequency of 9 out of 120. From this table:

Pr[8 < W <25 =0.983 — 0.017 = 0.966

implying that the two-sided rejection region for a = 0.05 is the set R = {6, 7,26, 27}.
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1. Birthweight Data
Mann-Whitney Test

Tests for Two Independent Samples

Ranks
ap N Mean Rank | Sum of Ranks
BW A 9 5.33 48.00
B 8 13.13 105.00
Total 17
Test Statistics®
BW
Mann-Whitney U 3.000
Wilcoxon W 48.000
Y4 -3.187
Asymp. Sig. (2-tailed) .001
Exact Sig. [2*(1-tailed Sig.)] .0012
a. Not corrected for ties.
b. Grouping Variable: gp
2. Treadmill test Data
Mann-Whitney Test
Ranks
Group N Mean Rank | Sum of Ranks
Time 1 8 12.63 101.00
2 10 7.00 70.00
Total 18
Test Statistics®
Time
Mann-Whitney U 15.000
Wilcoxon W 70.000
Z -2.222
Asymp. Sig. (2-tailed) .026
Exact Sig. [2*(1-tailed Sig.)] .0272

a. Not corrected for ties.
b. Grouping Variable: Group
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Two Dependent Samples (Paired Data)

1. Haemodialysis Data

Wilcoxon Signed Ranks Test

Ranks
N Mean Rank Sum of Ranks
after - before  Negative Ranks 3@ 4.50 13.50
Positive Ranks 8b 6.56 52.50
Ties 1¢
Total 12

a. after < before
b. after > before
c. after = before

Test Statistics®

after - before
z -1.736°
Asymp. Sig. (2-tailed) .083
a. Based on negative ranks.
b. Wilcoxon Signed Ranks Test

2. PEFR/Asthma Data

Wilcoxon Signed Ranks Test

Ranks
N Mean Rank Sum of Ranks
PERF after - PEFR before  Negative Ranks 82 5.50 44.00
Positive Ranks 1b 1.00 1.00
Ties 0°
Total 9

a. PERF after < PEFR before
b. PERF after > PEFR before
c. PERF after = PEFR before

Test Statistics®

PERF after - PEFR before
Z -2.5492

Asymp. Sig. (2-tailed) .011
a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test
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K Independent Samples

1. Mucociliary efficiency data

Kruskal-Wallis Test

Ranks
group N Mean Rank
y Healthy 5 7.20
Obstructive
airway disease 4 9.00
Asbestosis 5 6.60
Total 14
Test Statistics®P
y
Chi-Square T71
df 2
Asymp. Sig. .680
a. Kruskal Wallis Test
b. Grouping Variable: group
2. Memory Task Data
Kruskal-Wallis Test
Ranks
Memory Task N Mean Rank
Number of Words Counting 10 12.95
Rhyming 10 13.10
Adjective 10 31.50
Imagery 10 36.60
Intentional 10 33.35
Total 50

Test Statistics®?

Number of

Words
Chi-Square 25.376
df 4
Asymp. Sig. .000

a. Kruskal Wallis Test
b. Grouping Variable: Memory Task
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1. Hypnosis Data

Friedman Test

Ranks

Mean Rank
Fear 3.38
Joy 2.50
Sadness 2.38
Calmness 1.75

Test Statistics?

N 8
Chi-Square 6.450
df 3
Asymp. Sig. .092

a. Friedman Test

2. Soil sulphur content

Friedman Test

Ranks
Mean Rank
CacCl 2.60
NH40Ac 2.00
Ca(H2P04)2 2.80
Water 2.60

Test Statistics?

N
Chi-Square
df
Asymp. Sig.

1.080

.782

a. Friedman Test

K Dependent Samples
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