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Abstract. This paper concerns the relaxation time limits for the one-dimensional steady hy-
drodynamic model of semiconductors in the form of Euler--Poisson equations with sonic or nonsonic
boundary. The sonic boundary is the critical and difficult case because of the degeneracy at the
boundary and the formation of the boundary layers. In order to avoid the degeneracy of the second
order derivatives, we technically introduce an invertible transform to the working equation. This
guarantees that the remaining one order degeneracy becomes a good term since the transform used
here is strictly increasing. Then we efficiently overcome the degenerate effect. When the relaxation
time \tau \rightarrow +\infty , we first show the strong convergence of the approximate solutions to their asymptotic

profiles in L\infty norm with the order O(\tau  - 
1
2 ). When \tau \rightarrow 0+, the boundary layer appears because the

boundary data are not equal to each other, and we further derive the uniform error estimates of the

approximate solutions to their background profiles in L\infty norm with the order O(\tau 
1
2 ) or O(\tau ) ac-

cording to the different cases of boundary data. Unlike the methods adopted in the previous studies,
we propose some altogether new techniques of the asymptotic limit analysis to successfully describe
the width of the boundary layer, which is almost the order O(\tau ) provided 0< \tau \ll 1. These original
approaches develop and improve the existing studies. Finally, some numerical simulations are carried
out, which confirm our theoretical study, in particular, the appearance of boundary layers.
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relaxation-time limit, zero-relaxation-time limit, boundary layers
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1. Introduction. The hydrodynamic model was first derived by Bl{\e}tekj{\ae}r [3]
for electrons in a semiconductor. After appropriate simplification the one-dimensional
time-dependent system in the isentropic case reads
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3453

(1.1)

\left\{       
\rho t + (\rho u)x = 0,

(\rho u)t +
\bigl( 
\rho u2 + p(\rho )

\bigr) 
x
= \rho E  - \rho u

\tau 
,

\lambda 2Ex = \rho  - d(x),

where \rho , u, and E denote the electron density, velocity, and electric field, respectively.
The function p = p(\rho ) = T\rho \gamma is the pressure, where T > 0 is Boltzmann's constant
and \gamma \geq 1 is the adiabatic exponent. The constant parameter \tau > 0 is the momentum
relaxation time. The physical parameter \lambda > 0 represents the scaled Debye length.
The given background density d(x) > 0 is called the doping profile standing for a
background fixed charge of ions in the semiconductor crystal. The hydrodynamic
model (1.1) is also called an Euler--Poisson system with semiconductor effect. For
more details we refer to treatises [36, 49] and references therein.

In this paper, we aim at investigating the zero- and infinity-relaxation-time limits
with a degenerate boundary, sonic or nonsonic, for this model in the case of one-
dimensional isothermal steady-state flows satisfying equations

(1.2)

\left\{         
J \equiv constant,\biggl( 
J2

\rho 
+ p(\rho )

\biggr) 
x

= \rho E  - J

\tau 
,

\lambda 2Ex = \rho  - d(x).

Here, J = \rho u stands for the current density, and p(\rho ) = T\rho corresponds to the isother-
mal ansatz. By the terminology from gas dynamics, we call c :=

\sqrt{} 
P \prime (\rho ) =

\surd 
T > 0

the speed of sound. The flow is referred to as subsonic, sonic, or supersonic provided
the velocity satisfies

| u| < c, | u| = c, or | u| > c, respectively.(1.3)

Without loss of generality, we set

T = 1, \lambda = 1, and J = 1,(1.4)

and then for smooth solutions with \rho > 0, we have u > 0, and (1.2) is equivalently
reduced to

(1.5)

\left\{   
\biggl( 
1

\rho 
 - 1

\rho 3

\biggr) 
\rho x =E  - 1

\tau \rho 
,

Ex = \rho  - d(x).

It follows from (1.3) and (1.4) that the flow is subsonic if \rho > 1, sonic if \rho = 1, or
supersonic if 0< \rho < 1. Throughout this paper, we are interested in the system (1.5)
on (0,1), which is subjected to the following boundary condition:

\rho (0) = a, \rho (1) = b, a, b\geq 1.(1.6)

Then the problem we consider turns into

(1.7)

\left\{   
\biggl( \biggl( 

1

\rho 
 - 1

\rho 3

\biggr) 
\rho x

\biggr) 
x

= \rho  - d(x) - 
\biggl( 

1

\tau \rho 

\biggr) 
x

, x\in (0,1),

\rho (0) = a, \rho (1) = b.
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3454 FENG, HU, MEI, PENG, AND ZHANG

Namely,

(1.8)

\left\{   
\bigl( 
\omega (\rho )

\bigr) 
xx

= \rho  - d(x) - 1

\tau 

\biggl( 
1

\rho 

\biggr) 
x

, x\in (0,1),

\rho (0) = a, \rho (1) = b,

where

\omega (\rho ) = ln\rho +
1

2\rho 2
(1.9)

is a strictly increasing function on [1,+\infty ).
It also follows from (1.5) that

(1.10)

\left\{   E =

\biggl( 
1

\rho 
 - 1

\rho 3

\biggr) 
\rho x +

1

\tau \rho 
,

Ex = \rho  - d(x).

We also assume that the doping profile d(x) is of class L\infty (0,1), satisfying the subsonic
condition d> 1, where

d := inf
x\in (0,1)

d(x) and \=d := sup
x\in (0,1)

d(x).

Regarding the relaxation time limit \tau \rightarrow +\infty or \tau \rightarrow 0+, let us denote by (\rho \tau ,E\tau )
the solution of (1.7) and (1.10) with respect to \tau . In what follows, we consider
limit problems about relaxation time \tau in (1.7). On the one hand, when \tau \rightarrow +\infty ,
let us set

\=\rho = lim
\tau \rightarrow +\infty 

\rho \tau and \=E = lim
\tau \rightarrow +\infty 

E\tau ,

which formally satisfy

(1.11)

\left\{   
\biggl( \biggl( 

1

\=\rho 
 - 1

\=\rho 3

\biggr) 
\=\rho x

\biggr) 
x

= \=\rho  - d(x), x\in (0,1),

\=\rho (0) = a, \=\rho (1) = b,

and

(1.12)

\left\{   \=E =

\biggl( 
1

\=\rho 
 - 1

\=\rho 3

\biggr) 
\=\rho x,

\=Ex = \=\rho  - d(x).

It should be pointed out that there is no boundary layer in this case.
On the other hand, when \tau \rightarrow 0+, we let \rho = lim\tau \rightarrow 0+ \rho \tau , which formally satisfies

that

\rho (x)\equiv constant, x\in (0,1),(1.13)

which implies that there might be boundary layers in this case.
Background of study. We now draw a picture of the progress on the studies of well-

posedness for a hydrodynamic model of semiconductors. There are major advances
in the mathematical theory of steady-state Euler--Poisson equations with/without the
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3455

semiconductor effect. For the subsonic steady-state flows, Degond and Markowich [8]
first proved the existence of the subsonic solution to the one-dimensional steady-
state Euler--Poisson equations with the semiconductor effect when its boundary
states belong to the subsonic region. Subsequently, Degond and Markowich [9] fur-
ther showed the existence and local uniqueness of irrotational subsonic flows to the
three-dimensional steady-state semiconductor hydrodynamic model. After that, the
steady-state subsonic flows were investigated in various physical boundary conditions
and different dimensions [2, 14, 22, 39]. As for the supersonic steady-state flows, Peng
and Violet [42] established the existence and uniqueness of the supersonic solutions
with the semiconductor effect. Lately, Donatelli and Juh\'asz [10] and Donatelli and
Marcati [11] investigated the oscillations and defect measures for the quasi-neutral
limit and the primitive equations. Regarding transonic steady states, Ascher et al. [1]
first examined the existence of the transonic solution to the one-dimensional isen-
tropic Euler--Poisson equations, and then Rosini [46] extended this work to the non-
isentropic case. When the doping profile is nonconstant, Gamba [18, 19] studied the
one-dimensional and two-dimensional transonic solutions with shocks, respectively.
Luo et al. [32] and Luo and Xin [33] further considered the one-dimensional Euler--
Poisson equations without the semiconductor effect; a comprehensive analysis on the
structure and classification of steady states was carried out in [33]. Meanwhile, both
structural and dynamical stability of steady transonic shock solutions was obtained
in [32]. And then, He and Huang [24] and Huang et al. [25] studied the nonlinear
stability of a large amplitude viscous shock wave and the stability of transonic con-
tact discontinuity for two-dimensional steady compressible Euler flows in a finitely
long nozzle. Recently, Li et al. [30, 31] explored the one-dimensional semiconductor
Euler--Poisson equations with the sonic boundary condition. Motivated by their pio-
neering works [30, 31], there is a series of interesting generalizations into the transonic
doping profile case in [4], the case of transonic C\infty -smooth steady states in [48], the
multidimensional cases in [5, 6], and even the bipolar case [38]. Later on, Feng, Mei,
and Zhang [17] demonstrated the structural stability of these smooth transonic steady
states by the local singularity analysis.

In addition to these results on the well-posedness, a series of studies were con-
cerned with the asymptotic limits in the hydrodynamic model, such as the Newtonian
limits in the speed of light for the relativistic Euler--Poisson equations [34, 35, 37],
the quasi-neutral limits [7, 12, 13, 26, 40, 41, 44, 47], the zero-electron-mass limits
[20, 21, 29], and the zero-relaxation-time limits [16, 23, 27, 28, 43, 45], for instance.
These investigations are important and amazing but do not involve the degeneracy,
to the best of our knowledge. Recently, the quasi-neutral limit for a subsonic-sonic
solution of system (1.5) with the degenerate sonic boundary was investigated by Chen
et al. in [6].

However, noting the difficulty caused by the degeneracy and boundary layers, the
relaxation time limit problem for subsonic steady states of system (1.5) with sonic or
nonsonic boundary values is still open and challenging, as we know. Hence, the goal
of this paper is to answer this question in two directions. The main results are stated
as follows.

Main results. We are going to present our main results on the convergence of
the original solutions to their asymptotic profiles as the relaxation time \tau \rightarrow \infty and
\tau \rightarrow 0+, respectively.

Theorem 1.1 (infinity-relaxation-time limit). Assume that the doping profile
d\in L\infty (0,1) is subsonic such that d> 1. Let (\rho \tau ,E\tau ) be the interior subsonic solution

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3456 FENG, HU, MEI, PENG, AND ZHANG

of system (1.7) corresponding to the doping profile d(x). Then problem (1.7) converges
to (1.11) with (1.12) as \tau \rightarrow +\infty uniformly in the sense that

\| \rho \tau  - \=\rho \| L\infty (0,1) \leq C\tau  - 
1
2 and \| E\tau  - \=E\| H1(0,1) \leq C\tau  - 

1
2 ,(1.14)

where C > 0 is a constant independent of \tau > 0.

Theorem 1.2 (zero-relaxation-time limits). Assume that the doping profile d \in 
L\infty (0,1) is subsonic such that d> 1. Let (\rho \tau ,E\tau ) be the interior subsonic solution of
system (1.7) corresponding to the doping profile d(x). Then the following two results
hold:

(I) If \rho \tau (0) = \rho \tau (1) = a\geq 1, then
\bigl( 
\rho \tau (x),E\tau (x)

\bigr) 
converges to its asymptotic state

\bigl( 
\rho (x),E(x)

\bigr) 
=

\biggl( 
a,ax - 

\int x

0

d(s)ds

\biggr) 
as \tau \rightarrow 0+, without boundary layer for the density \rho \tau , but with a huge gap 1

\tau a between
the electric field E\tau and its asymptotic state E over the entire interval [0,1]. Namely,
there exists a constant C > 0 such that for all \tau > 0 the following error estimates hold:

\| \rho \tau  - a\| L\infty (0,1) \leq C\tau 
1
2 if a= 1,(1.15)

\| \rho \tau  - a\| L\infty (0,1) \leq C\tau if a> 1,(1.16)

(1.17)

\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - E  - 1

\tau a

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (0,1)

\leq 

\Biggl\{ 
C\tau 

1
2 if a= 1,

C\tau if a> 1,

and

(1.18) \| (E\tau  - E)x\| L\infty (0,1) \leq 

\Biggl\{ 
C\tau 

1
2 if a= 1,

C\tau if a> 1.

(II) If \rho \tau (0) = a and \rho \tau (1) = b with b > a\geq 1, then the density \rho \tau (x) converges to
its asymptotic state \rho (x)\equiv a outside the boundary layer, and the width of the boundary
layer becomes thiner as \tau \rightarrow 0+; the electric field E\tau (x) converges to its asymptotic
state

E(x) = ax - 
\int x

0

d(s)ds

with a huge correction 1
\tau a over the whole interval [0,1] as \tau \rightarrow 0+. Namely, there exist

two constants C > 0 and 0< \tau 0 \ll 1 such that for all 0< \tau \leq \tau 0 and 0< \varepsilon < 1/2, the
following error estimates outside the boundary layer hold:

| \rho \tau (x) - a| \leq C\tau \forall x\in [0,1 - \tau 1 - \varepsilon ] if a> 1,(1.19)

| \rho \tau (x) - a| \leq C\tau 
1
2 \forall x\in [0,1 - \tau 1 - \varepsilon ] if a= 1,(1.20)

and inside the boundary layer (1 - \tau 1 - \varepsilon ,1] the density \rho \tau starts to rapidly approach
the right boundary value b; in addition,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3457

(1.21)

\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - E  - 1

\tau a

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (0,1)

\leq 

\Biggl\{ 
C\tau 1 - \varepsilon if a> 1,

C\tau 
1
2 if a= 1,

and for 1\leq p < 2,

(1.22) \| (E\tau  - E)x\| Lp(0,1) \leq 

\Biggl\{ 
C\tau 

1 - \varepsilon 
p if a> 1,

C\tau 
\eta 
p if a= 1,

where \eta =min
\bigl\{ 
1 - \varepsilon , p2

\bigr\} 
.

Remark 1.3. It should be pointed out that we assume b > a \geq 1 in case (II) of
Theorem 1.2. For a> b\geq 1, we can use the same method here to get a similar result.
We omit it for simplicity.

Difficulties and strategies. Now, let us mention the main difficult points of the
study and outline our strategies in the proof.

In the first part, we investigate the relaxation time limit problem as \tau \rightarrow +\infty .
Due to the boundary degeneracy, the study of the infinity-relaxation-time limit of
interior subsonic solutions over [0,1] appears to be challenging. If we use the usual
method as that in [15], then we cannot remove the difficulty caused by boundary
degeneracy and therefore the uniform estimates about the error function \rho \tau  - \=\rho in
the parameter \tau cannot be established. In order to overcome this difficulty, we use
the invertible transform defined in (1.9) to reduce the two order degeneracy to the
one order degeneracy. Fortunately, this remaining one order degeneracy is a good
term since the transform used here is strictly increasing for \rho \geq 1. Then we efficiently
overcome the degenerate effect.

In the second part, we study the relaxation time limit problem as \tau \rightarrow 0+. First,
we establish the estimates for nx in Lemma 4.1 and those for n - \omega (a) and n - \omega (b)
in Lemma 4.2, where n= \omega (\rho \tau ). In the case b > a, the boundary layer must appear.
We figure out the width of the boundary layer and prove a boundary layer estimate
near the right endpoint x= 1 in Lemma 4.3 as follows:

\omega (\rho \tau (x)) - \omega (a)\leq 
\=d

M
\tau x, x\in [0,1 - \tau 1 - \varepsilon ],

where 0 < \varepsilon < 1/2 is a constant. Then, we study the zero-relaxation-time limit of
(1.7) in the two cases.

Case 1. \rho \tau (0) = \rho \tau (1) = a\geq 1. There is no boundary layer effect in this case. By
Lemma 4.2 and in view of the relation between \omega (\rho \tau (x)) - \omega (\rho \tau (0)) and \rho \tau (x) - \rho \tau (0),
we obtain the estimates for \rho \tau (x) - \rho \tau (0) according to cases in which a= 1 or a > 1
(see (4.25) and (4.26)). Finally, we study the zero-relaxation-time limit for E\tau . Based
on the Poisson equation in (1.5) and the relations between E\tau and \rho \tau (see (1.10) and
(1.12)), we show the estimates for E\tau and (E\tau )x (see (4.33) and (4.35)).

Case 2. \rho \tau (0) = a and \rho \tau (1) = b with b > a\geq 1. By Lemma 4.3 we establish the
estimates about \rho \tau (x) - \rho \tau (0) outside the boundary layer and then prove the estimates
for E\tau and (E\tau )x in (4.42) and (4.43), respectively.

We conclude this section by stating the arrangement of the rest of this paper.
In section 2, we give the important preliminaries such as the existence and reg-
ularity of subsonic solutions. In section 3, we analyze the infinity-relaxation-time
limit of subsonic steady states and prove Theorem 1.1. In section 4, we investigate
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3458 FENG, HU, MEI, PENG, AND ZHANG

zero-relaxation-time limits of subsonic steady states and finish the proof of Theo-
rem 1.2. In section 5, we carry out some numerical simulations in different cases,
which perfectly demonstrate our theoretical studies in Theorems 1.1 and 1.2. In par-
ticular, the boundary layers in Theorem 1.2 can be clearly observed in numerical
forms.

2. Preliminaries. In this section we shall give the important preliminaries for
later use. First, we recall the definition of the interior subsonic solution.

Definition 2.1. We say a pair of functions (\rho \tau ,E\tau ) is an interior subsonic solu-
tion of the boundary value problem (1.5)--(1.6) or (1.7) provided (i) (\rho \tau  - 1)2 \in H1

0 (0,1),
(ii) \rho \tau (x) > 1 for all x \in (0,1), (iii) the following equality holds for all test functions
\varphi \in H1

0 (0,1),\int 1

0

\biggl( 
1

\rho \tau 
 - 1

\rho 3\tau 

\biggr) 
(\rho \tau )x\varphi xdx+

1

\tau 

\int 1

0

\varphi x

\rho \tau 
dx+

\int 1

0

(\rho \tau  - d)\varphi dx= 0,(2.1)

and (iv) E\tau (x) is given by

E\tau (x) =E\tau (0) +

\int x

0

(\rho \tau (y) - d(y))dy.(2.2)

In addition, we continue to recall the existence and uniqueness of interior subsonic
solutions, which is excerpted from the first part of Theorem 1.3 in [30].

Proposition 2.2 (existence [30]). Suppose that the doping profile d \in L\infty (0,1)
is subsonic such that d> 1. Then for all \tau \in (0,\infty ] the boundary value problem (1.5)--
(1.6) or (1.7) admits a unique interior subsonic solution (\rho \tau ,E\tau )\in C

1
2 [0,1]\times H1(0,1)

satisfying the bounds

1 +m sin(\pi x)\leq \rho \tau (x)\leq \=d, x\in [0,1],(2.3)

and

(2.4)

\Biggl\{ 
C1(1 - x)

1
2 \leq \rho \tau (x) - 1\leq C2(1 - x)

1
2 ,

 - C3(1 - x) - 
1
2 \leq (\rho \tau )x(x)\leq  - C4(1 - x) - 

1
2

for x near 1,

where m = m(\tau , d) > 0, C2 > C1 > 0, and C3 > C4 > 0 are certain uniform estimate
constants.

Next, from [30], the regularities of \rho \tau and n= \omega (\rho \tau ) are stated as follows.

Proposition 2.3 (regularity). For 1 \leq p < 2, the subsonic solution (\rho \tau ,E\tau )
obtained in Proposition 2.2 satisfies the following properties:

\rho \tau \in C
1
2 [0,1] and \rho \tau \in W 1,p(0,1).(2.5)

And n= \omega (\rho \tau ) obtained by the transform (1.9) satisfies

n\in C1, 12 [0,1] and n\in W 2,p(0,1).(2.6)
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3459

3. Relaxation limit as \bfittau \rightarrow +\infty . This section is devoted to proving our main
result when \tau \rightarrow +\infty . For the sake of simplicity, we only consider the case in which
a = b = 1. For all constants a \geq 1 and b \geq 1, by using the following method, we
can get similar results as (1.14) in Theorem 1.1. Then problems (1.8) and (1.11) are,
respectively, equivalent to

(3.1)

\left\{       
(\omega (\rho \tau ))xx = \rho \tau  - d(x) - 

\biggl( 
1

\tau \rho \tau 

\biggr) 
x

, x\in (0,1),

\omega (\rho \tau (0)) = \omega (\rho \tau (1)) =
1

2
,

and

(3.2)

\left\{   (\omega (\=\rho ))xx = \=\rho  - d(x), x\in (0,1),

\omega (\=\rho (0)) = \omega (\=\rho (1)) =
1

2
.

Proof of Theorem 1.1. Let us set

V = \omega (\=\rho ) - \omega (\rho ).

By taking the difference between (3.1) and (3.2), we obtain

(3.3)

\left\{   Vxx  - (\=\rho  - \rho \tau ) =

\biggl( 
1

\tau \rho \tau 

\biggr) 
x

, x\in (0,1),

V | x=0 = V | x=1 = 0.

Multiplying the first equation of (3.3) by V and integrating the resulting equation
over [0,1], we have\int 1

0

VxxV dx - 
\int 1

0

(\=\rho  - \rho \tau )V dx=

\int 1

0

\biggl( 
1

\tau \rho \tau 

\biggr) 
x

V dx.(3.4)

By integration by parts, we get\int 1

0

| Vx| 2dx+

\int 1

0

(\=\rho  - \rho \tau )V dx=

\int 1

0

1

\tau \rho \tau 
Vxdx.(3.5)

Noting the strict monotonicity of the function \omega , we obtain\int 1

0

(\=\rho  - \rho \tau )V dx=

\int 1

0

(\=\rho  - \rho \tau )(\omega (\=\rho ) - \omega (\rho \tau ))dx\geq 0.(3.6)

Then it follows from (3.5)--(3.6), (2.3), and the H\"older inequality that\int 1

0

| Vx| 2dx\leq 1

\tau 

\int 1

0

1

\rho \tau 
Vxdx\leq 1

\tau 

\int 1

0

| Vx| dx\leq 1

\tau 

\biggl( \int 1

0

| Vx| 2
\biggr) 1

2

dx.(3.7)

Hence,

\| Vx\| L2(0,1) \leq \tau  - 1.(3.8)

The Poincar\'e inequality implies that

\| V \| L2(0,1) \leq C\| Vx\| L2(0,1) \leq C\tau  - 1.(3.9)
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3460 FENG, HU, MEI, PENG, AND ZHANG

Then it follows from the Sobolev imbedding theorems that

\| V \| L\infty (0,1) \leq C\| V \| H1(0,1) \leq C\tau  - 1.(3.10)

By (1.9) and the Taylor series of \omega (\rho \tau ) and \omega (\=\rho ) at \rho \tau = 1 and \=\rho = 1, respectively,
we have

V = \omega (\=\rho ) - \omega (\rho \tau ) =

\biggl( 
ln \=\rho +

1

2\=\rho 2

\biggr) 
 - 
\biggl( 
ln\rho \tau +

1

2\rho 2\tau 

\biggr) 
= (\=\rho  - \rho \tau ) (\=\rho + \rho \tau  - 2) + \cdot \cdot \cdot .

(3.11)

Then in view of (2.3), we obtain

(3.12) | V | = | \omega (\=\rho ) - \omega (\rho \tau )| \geq 

\Biggl\{ 
C| \rho \tau  - \=\rho | 2 as \rho \tau \rightarrow 1, \=\rho \rightarrow 1,

C| \rho \tau  - \=\rho | otherwise.

Therefore, the first part of (1.14) follows by combining (3.10) and (3.12).
Next, we study the infinity-relaxation-time limit for E\tau . It follows from (1.5),

(1.12), and (1.9) that

(\omega (\rho \tau ))x =E\tau  - 
1

\tau \rho \tau 
and (\omega (\=\rho ))x = \=E.(3.13)

Then, by noting (2.3) and (3.8), we get

\| E\tau  - \=E\| L2(0,1) \leq \| (\omega (\=\rho ) - \omega (\rho \tau ))x\| L2(0,1) +
\bigm\| \bigm\| \bigm\| 1

\tau \rho \tau 

\bigm\| \bigm\| \bigm\| 
L2(0,1)

\leq \| Vx\| L2(0,1) + \tau  - 1
\bigm\| \bigm\| \bigm\| 1

\rho \tau 

\bigm\| \bigm\| \bigm\| 
L2(0,1)

\leq C\tau  - 1.(3.14)

Moreover, by the second equation of (1.5), we have

(E\tau )x(x) = \rho \tau (x) - d(x) and \=Ex(x) = \=\rho (x) - d(x).(3.15)

Then, by the first part of (1.14) and (3.12), we get

\| (E\tau  - \=E)x\| L\infty (0,1) = \| \rho \tau  - \=\rho \| L\infty (0,1) \leq C\| V \| 
1
2

L\infty (0,1) \leq C\tau  - 
1
2 .(3.16)

This, together with (3.14), implies

\| E\tau  - \=E\| H1(0,1) \leq C\tau  - 
1
2 ,(3.17)

which is the second part of (1.14). The proof of Theorem 1.1 is completed.

4. Relaxation limits as \bfittau \rightarrow 0+. The main task of this section is to prove
our main results when \tau \rightarrow 0+. From the first equation of (1.7), we obtain that
\rho = lim\tau \rightarrow 0+ \rho \tau is a constant over the entire interval [0,1]. Hence, the boundary layers
must appear if a \not = b. Here, we use a new method to look at the width of a boundary
layer.

With the invertible transform \omega defined in (1.9), the problem (1.7) is equivalent
to

(4.1)

\left\{   nxx = \rho \tau  - d(x) +
1

\tau 

1

\rho 2\tau 
f \prime (n)nx, x\in (0,1),

n(0) = \omega (a), n(1) = \omega (b),
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3461

where f is the inverse transform of \omega and satisfies f \prime (n) > 0 for n = \omega (\rho \tau ). Let us
define

\alpha =
1

\rho 2\tau 
f \prime (n), \beta = \rho \tau  - d,

which are functions of x. It follows from (1.9) and (2.3) that there exists a constant
M > 0 independent of \tau > 0 such that

\alpha \geq M on [0,1].(4.2)

First, we show the estimates of nx as follows.

Lemma 4.1. Assume that the doping profile d \in L\infty (0,1) is subsonic such that
d > 1. Let n be the solution to the initial value problem (4.1) and x0 \in [0,1) be an
initial point. We denote by \omega 0 = nx(x0). Then the following properties hold:

nx(x)\geq e
A(x,x0)

\tau 

\Bigl( 
\omega 0  - 

\=d - 1

M
\tau 
\Bigr) 
+

\=d - 1

M
\tau \forall x\in [x0,1](4.3)

and

nx(x)\leq e
A(x,x0)

\tau 

\Bigl( 
\omega 0 +

\=d - 1

M
\tau 
\Bigr) 
 - 

\=d - 1

M
\tau \forall x\in [x0,1],(4.4)

where

A(x,x0) =

\int x

x0

\alpha (y)dy.

Proof. With the definition of \alpha and \beta , nx satisfies the following initial value
problem for a linear first order differential equation:\Biggl\{ 

(nx)x  - 
\alpha 

\tau 
nx = \beta , x\in (x0,1],

nx(x0) = \omega 0.

The solution is given by formula

nx(x) = \omega 0e
A(x,x0)

\tau + r(x),(4.5)

where

r(x) = e
A(x,x0)

\tau 

\int x

x0

\beta (y)e - 
A(y,x0)

\tau dy.

Obviously,

1 - \=d\leq \beta \leq \=d - 1 on [0,1]

and

A(x,x0)\geq M(x - x0) \forall x\in [x0,1].

Since 1 - \=d< 0, we have

\beta (y)e - 
A(y,x0)

\tau \geq 
\bigl( 
1 - \=d

\bigr) 
e - 

A(y,x0)
\tau \geq 

\bigl( 
1 - \=d

\bigr) 
e - 

M(y - x0)
\tau .
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3462 FENG, HU, MEI, PENG, AND ZHANG

Therefore,

r(x)\geq 
\bigl( 
1 - \=d

\bigr) 
e

A(x,x0)
\tau 

\int x

x0

e - 
M(y - x0)

\tau dy

=
\bigl( 
1 - \=d

\bigr) 
e

A(x,x0)
\tau 

\tau 

M

\Bigl( 
1 - e - 

M(x - x0)
\tau 

\Bigr) 
= - 

\bigl( 
\=d - 1

\bigr) 
\tau 

M
e

A(x,x0)
\tau +

\=d - 1

M
\tau e

A(x,x0) - M(x - x0)
\tau .

Since

\=d - 1> 0, A(x,x0) - M(x - x0)\geq 0,

we obtain

r(x)\geq  - 
\bigl( 
\=d - 1

\bigr) 
\tau 

M
e

A(x,x0)
\tau +

\=d - 1

M
\tau .

This together with (4.5) yields (4.3).
Similarly, we have

\beta (y)e - 
A(y,x0)

\tau \leq 
\bigl( 
\=d - 1

\bigr) 
e - 

M(y - x0)
\tau .

Therefore,

r(x)\leq 
\bigl( 
\=d - 1

\bigr) 
e

A(x,x0)
\tau 

\int x

x0

e - 
M(y - x0)

\tau dy

=

\bigl( 
\=d - 1

\bigr) 
\tau 

M
e

A(x,x0)
\tau  - 

\=d - 1

M
\tau e

A(x,x0) - M(x - x0)
\tau 

\leq 
\bigl( 
\=d - 1

\bigr) 
\tau 

M
e

A(x,x0)
\tau  - 

\=d - 1

M
\tau ,

which proves (4.4).

The next result concerns the estimates for n - \omega (a) and n - \omega (b).

Lemma 4.2. Let b\geq a\geq 1. Under the assumptions of Lemma 4.1, we have

\omega (\rho \tau (x)) - \omega (a)\geq  - 
\=d - 1

M
\tau x \forall x\in [0,1](4.6)

and

\omega (\rho \tau (x)) - \omega (b)\leq 
\=d - 1

M
\tau \forall x\in [0,1].(4.7)

If furthermore, b= a, then

\omega (\rho \tau (x)) - \omega (a)\leq 
\=d - 1

M
\tau x \forall x\in [0,1].(4.8)

Proof. We prove this lemma by contradiction. If (4.6) does not hold, there exists
x1 \in (0,1] such that

\omega (\rho \tau (x1)) - \omega (a)< - 
\=d - 1

M
\tau x1.(4.9)
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3463

By the mean value theorem, there is \xi 1 \in (0, x1) such that

nx(\xi 1) =
\omega (\rho \tau (x1)) - \omega (\rho \tau (0))

x1
< - 

\=d - 1

M
\tau .(4.10)

Applying (4.4), for all x\in [\xi 1,1], we have

nx(x)\leq e
A(x,\xi 1)

\tau 

\biggl( 
nx(\xi 1) +

\=d - 1

M
\tau 

\biggr) 
 - 

\=d - 1

M
\tau < - 

\=d - 1

M
\tau < 0,(4.11)

which implies that n is strictly decreasing on [\xi 1,1]. It follows from (4.9) that

n(1)\leq n(x1) = \omega (\rho \tau (x1))<\omega (a).

On the other hand, \omega is strictly increasing on [1,+\infty ) and b\geq a, and hence

n(1) = \omega (b)\geq \omega (a).

This is contradictory and (4.6) follows.
Next, we prove (4.7). If it does not hold, then there exists x2 \in (0,1) such that

\omega (\rho \tau (x2))>\omega (b) +
\=d - 1

M
\tau >\omega (b).(4.12)

Since \omega is strictly increasing on [1,+\infty ), we have \rho \tau (x2)> b. By the continuity of \rho \tau ,
there is y2 \in [0, x2) such that \rho \tau (y2) = b. It follows from the mean value theorem that
there is \xi 2 \in (y2, x2)\subset (0,1) such that

nx(\xi 2) =
\omega (\rho \tau (x2)) - \omega (b)

x2  - y2
\geq 

\=d - 1

(x2  - y2)M
\tau \geq 

\=d - 1

M
\tau .(4.13)

Applying (4.3), for all x\in [\xi 2,1], we have

nx(x)\geq e
A(x,\xi 2)

\tau 

\Bigl( 
nx(\xi 2) - 

\=d - 1

M
\tau 
\Bigr) 
+

\=d - 1

M
\tau \geq 

\=d - 1

M
\tau > 0.(4.14)

This contradicts (4.12) since x2 \in [\xi 2,1) and n(x2)>n(1) = \omega (b). Hence we get (4.7).
Now we prove (4.8) in a similar way. If it is false, there is x3 \in (0,1] such that

\omega (\rho \tau (x3)) - \omega (a)>
\=d - 1

M
\tau x3.(4.15)

By the mean value theorem, there exists \xi 3 \in (0, x3) such that

nx(\xi 3) =
\omega (\rho \tau (x3)) - \omega (\rho \tau (0))

x3
>

\=d - 1

M
\tau .(4.16)

In view of (4.3), for all x\in [\xi 3,1], we obtain

nx(x)\geq e
A(x,\xi 3)

\tau 

\biggl( 
nx(\xi 3) - 

\=d - 1

M
\tau 

\biggr) 
+

\=d - 1

M
\tau \geq 

\=d - 1

M
\tau > 0,(4.17)

which implies that n is strictly increasing on [\xi 3,1]. Since x3 \in (\xi 3,1], it follows from
(4.15) that

n(1)\geq n(x3) = \omega (\rho \tau (x3))>\omega (a).
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3464 FENG, HU, MEI, PENG, AND ZHANG

This contradicts the fact that

n(1) = \omega (b) = \omega (a),

and hence (4.8) is proved.

Now we investigate the boundary layer near the right endpoint x = 1 in case
b > a\geq 1. We assume that the width of boundary layer is \tau 1 - \varepsilon , where 0< \varepsilon < 1/2 is
a constant.

Lemma 4.3. Let b > a\geq 1. Under the assumptions of Lemma 4.1, we have

\omega (\rho \tau (x)) - \omega (a)\leq 
\=d

M
\tau x \forall x\in [0,1 - \tau 1 - \varepsilon ].(4.18)

Proof. Indeed, if (4.18) is not correct, there is x4 \in (0,1 - \tau 1 - \varepsilon ] such that

\omega (\rho \tau (x4)) - \omega (a)>
\=d

M
\tau x4.(4.19)

It follows from the mean value theorem that there exists \xi 4 \in (0, x4) such that

nx(\xi 4) =
\omega (\rho \tau (x4)) - \omega (\rho \tau (0))

x4
>

\biggl( 
1

M
+

\=d - 1

M

\biggr) 
\tau .(4.20)

In view of (4.3), for all x\in [\xi 4,1], we obtain

nx(x)\geq e
A(x,\xi 4)

\tau 

\biggl( 
nx(\xi 4) - 

\=d - 1

M
\tau 

\biggr) 
+

\=d - 1

M
\tau 

\geq \tau 

M
e

A(x,\xi 4)
\tau 

\geq \tau 

M
e

M
\tau (x - \xi 4),

(4.21)

which implies

\omega (\rho \tau (1)) - \omega (\rho \tau (\xi 4)) =

\int 1

\xi 4

nx(x)dx

\geq \tau 

M

\int 1

\xi 4

e
M
\tau (x - \xi 4)dx

=
\tau 2

M2

\Bigl( 
eM\tau  - \varepsilon 

 - 1
\Bigr) 
\rightarrow +\infty as \tau \rightarrow 0+.

(4.22)

This is impossible and then (4.18) follows.

Corollary 4.4. Let b\geq a\geq 1. Under the assumptions of Lemma 4.1, we have\bigm| \bigm| nx(0)
\bigm| \bigm| \leq \=d

M
\tau .(4.23)

Proof. From (4.6) and (4.18), we have\bigm| \bigm| \bigm| \bigm| n(x) - n(0)

x

\bigm| \bigm| \bigm| \bigm| \leq \=d

M
\tau \forall x\in (0,1 - \tau 1 - \varepsilon ],

which imlies (4.23).
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RELAXATION TIME LIMITS OF SUBSONIC STEADY STATES 3465

Proof of Theorem 1.2. We prove this theorem in two cases.
Case 1. \rho \tau (0) = \rho \tau (1) = a\geq 1, namely, \omega (\rho \tau (0)) = \omega (\rho \tau (1)) = \omega (a).
We first prove (1.15) and (1.16), which show that the limit of \rho \tau (x) is \rho (x) \equiv a

over [0,1]. Indeed, from (4.6) and (4.8), we have

\bigm| \bigm| \omega (\rho \tau (x)) - \omega (a)
\bigm| \bigm| \leq \=d - 1

M
\tau \forall x\in [0,1].(4.24)

Recalling the Taylor expansion for \omega (\=\rho )  - \omega (\rho ) in (3.11) and using (4.24), for all
x\in [0,1], we have

| \rho \tau (x) - \rho \tau (0)| \leq C
\sqrt{} 
| \omega (\rho \tau (x)) - \omega (\rho \tau (0))| \leq C\tau 

1
2 if a= 1(4.25)

and

| \rho \tau (x) - \rho \tau (0)| \leq C | \omega (\rho \tau (x)) - \omega (\rho \tau (0))| \leq C\tau if a> 1.(4.26)

Hence (1.15) and (1.16) follow.
Next, we consider the zero-relaxation-time limit for E\tau . From (1.9) and (1.10),

we have

(4.27)

\left\{   nx =E\tau  - 
1

\tau \rho \tau 
,

(E\tau )x = \rho \tau  - d(x),

which implies

E\tau (0) = nx(0) +
1

\tau \rho \tau (0)
= nx(0) +

1

\tau a
.(4.28)

It follows from the second equation of (4.27) that

E\tau (x) =E\tau (0) +

\int x

0

(\rho \tau (s) - d(s))ds=
1

\tau a
 - D(x) + nx(0) +

\int x

0

\rho \tau (s)ds,(4.29)

where

D(x) =

\int x

0

d(s)ds, x\in [0,1].(4.30)

For the last term on the right-hand side of (4.29), a straightforward computation
gives

\int x

0

\rho \tau (s)ds=

\int x

0

\rho \tau (0)ds+

\int x

0

(\rho \tau (s) - \rho \tau (0))ds= ax+

\int x

0

(\rho \tau (s) - \rho \tau (0))ds.

(4.31)

In view of (4.25)--(4.26), we obtain
(4.32)\bigm| \bigm| \bigm| \bigm| \int x

0

(\rho \tau (s) - \rho \tau (0))ds

\bigm| \bigm| \bigm| \bigm| \leq \int x

0

| \rho \tau (s) - \rho \tau (0)| ds\leq 

\Biggl\{ 
C\tau x\leq C\tau if \rho \tau (0)> 1,

C\tau 
1
2 if \rho \tau (0) = 1.
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Combining (4.29) and (4.32) together with (4.23), we have

(4.33)

\bigm| \bigm| \bigm| \bigm| E\tau (x) - 
\biggl( 

1

\tau a
 - D(x) + ax

\biggr) \bigm| \bigm| \bigm| \bigm| \leq 
\Biggl\{ 
C\tau if \rho \tau (0)> 1,

C\tau 
1
2 if \rho \tau (0) = 1,

which gives (1.17).
Furthermore, it follows from the second equation of (4.27) that

(E\tau )x(x) = \rho \tau (x) - d(x) = \rho \tau (x) - \rho \tau (0) + \rho \tau (0) - d(x).(4.34)

This, together with (4.25) and (4.26), gives

(4.35) | (E\tau )x(x) - (\rho \tau (0) - d(x))| = | \rho \tau (x) - \rho \tau (0)| \leq 

\Biggl\{ 
C\tau if \rho \tau (0)> 1,

C\tau 
1
2 if \rho \tau (0) = 1,

which is (1.18).
Case 2. \rho \tau (0) = a and \rho \tau (1) = b with b > a\geq 1.
From (4.6) and (4.18), we have

| \omega (\rho \tau (x)) - \omega (a)| \leq 
\=d

M
\tau \forall x\in [0,1 - \tau 1 - \varepsilon ] if 0< \tau \ll 1.(4.36)

When \rho \tau (0) = a> 1, by (4.36) and (3.12), we have

| \rho \tau (x) - \rho \tau (0)| \leq 
C \=d

M
\tau \forall x\in [0,1 - \tau 1 - \varepsilon ],(4.37)

which implies (1.19). When \rho \tau (0) = a= 1, by (4.36) and (3.12) again, we obtain

| \rho \tau (x) - \rho \tau (0)| \leq C\tau 
1
2 \forall x\in [0,1 - \tau 1 - \varepsilon ],(4.38)

which gives (1.20).
Next, we consider the zero-relaxation-time limit for E\tau . From (4.28) and the

second equation of (4.27), we have

E\tau (x) =E\tau (0) +

\int x

0

(\rho \tau (s) - d(s))ds

= nx(0) +
1

\tau a
+

\int x

0

(\rho \tau (s) - d(s))ds

=
1

\tau a
 - D(x) + nx(0) +

\int x

0

(\rho \tau (s) - \rho \tau (0))ds+

\int x

0

\rho \tau (0)ds,

(4.39)

where D(x) is defined by (4.30). Then it follows from (4.39) that

E\tau (x) - 
\biggl( 

1

\tau a
 - D(x) +

\int x

0

\rho \tau (0)ds

\biggr) 
= nx(0) +

\int x

0

(\rho \tau (s) - \rho \tau (0))ds.(4.40)
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From (4.37) and (4.38), we have

\bigm| \bigm| \bigm| \bigm| \int x

0

(\rho \tau (s) - \rho \tau (0))ds

\bigm| \bigm| \bigm| \bigm| \leq \int 1

0

| \rho \tau (s) - \rho \tau (0)| ds

\leq 
\int 1 - \tau 1 - \varepsilon 

0

| \rho \tau (s) - \rho \tau (0)| ds+
\int 1

1 - \tau 1 - \varepsilon 

| \rho \tau (s) - \rho \tau (0)| ds

\leq 

\left\{   
\=d

M
\tau +C( \=d,a, b)\tau 1 - \varepsilon \leq C\tau 1 - \varepsilon if a> 1,

C\tau 
1
2 +C( \=d,a, b)\tau 1 - \varepsilon \leq C\tau 

1
2 if a= 1.

(4.41)

This, together with (4.23) and (4.40), implies

(4.42)

\bigm| \bigm| \bigm| \bigm| E\tau (x) - 
\biggl( 

1

\tau a
 - D(x) + ax

\biggr) \bigm| \bigm| \bigm| \bigm| \leq 
\left\{   

\=d

M
\tau +C( \=d,a, b)\tau 1 - \varepsilon \leq C\tau 1 - \varepsilon if a> 1,

C\tau 
1
2 +C( \=d,a, b)\tau 1 - \varepsilon \leq C\tau 

1
2 if a= 1.

Then (1.21) follows.
Moreover, it follows from (4.34) and (4.41) that for 1\leq p < 2,

\| (E\tau )x  - (\rho \tau (0) - d)\| Lp(0,1)

=

\biggl( \int 1

0

| \rho \tau (x) - \rho \tau (0)| p dx
\biggr) 1

p

=

\Biggl( \int 1 - \tau 1 - \varepsilon 

0

| \rho \tau (x) - \rho \tau (0)| p dx+

\int 1

1 - \tau 1 - \varepsilon 

| \rho \tau (x) - \rho \tau (0)| p dx

\Biggr) 1
p

\leq 

\left\{           
\biggl( \int 1

0

\=dp

Mp
\tau pdx+C( \=d,a, b, p)\tau 1 - \varepsilon 

\biggr) 1
p

\leq C\tau 
1 - \varepsilon 
p if a> 1,\biggl( \int 1

0

\=d
p
2

M
p
2

\tau 
p
2 dx+C( \=d,a, b, p)\tau 1 - \varepsilon 

\biggr) 1
p

\leq C\tau 
\eta 
p if a= 1,

(4.43)

where \eta =min
\bigl\{ 
1 - \varepsilon , p2

\bigr\} 
. This is (1.22). The proof of Theorem 1.2 is finished.

5. Numerical simulations. In this section, we engage in the numerical veri-
fication of our theoretical results. For this purpose, we choose the following doping
profile in the problem (1.5) and (1.6),

d(x) = 3+ sin(\pi x), x\in [0,1],(5.1)

which is unified for the simulations of results in both Theorems 1.1 and 1.2.
First, Theorem 1.1 tells us that the subsonic solution to the problem (1.5) and

(1.6) uniformly converges toward the one to the problem (1.11) and (1.12) as the
relaxation time \tau tends to +\infty . This result holds for all boundary data a, b\geq 1, and
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

(a) \| \rho \tau  - \=\rho \| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

(b) \| E\tau  - \=E\| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

Fig. 1. Case 1 for Theorem 1.1: a= 1.5 and b= 2.

as such, we consider the three numerical cases of the boundary data a and b in (1.6)
as follows:

1. a= 1.5 and b= 2; see Figure 1.
2. a= 1 and b= 2; see Figure 2.
3. a= b= 1; see Figure 3.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

(a) \| \rho \tau  - \=\rho \| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

(b) \| E\tau  - \=E\| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

Fig. 2. Case 2 for Theorem 1.1: a= 1 and b= 2.

In all the cases above, we set up the finite approximation sequence of relaxation times
as \tau 1 = 1, \tau 2 = 2, and \tau 3 = 10; and the limiting relaxation time \tau is +\infty . It is worth
pointing out that when the relaxation time \tau takes the value which is greater than
10, the solution (\rho \tau ,E\tau ) is already in close proximity to the limiting solution (\=\rho , \=E);
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a) \| \rho \tau  - \=\rho \| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) \| E\tau  - \=E\| L\infty (0,1) \leq C\tau  - 
1
2 , as \tau \rightarrow +\infty .

Fig. 3. Case 3 for Theorem 1.1: a= b= 1.

see Figures 1, 2, and 3. Besides, we can also see, from the figures, that there are no
boundary layers when passing to the limit as \tau \rightarrow +\infty .

As far as Theorem 1.2 is concerned, we know that whether the boundary data
a and b take the same value will make the zero-relaxation-time limit results very
different. In fact, when 1\leq a= b, the boundary layer does not occur between \rho \tau and
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

(a) \| \rho \tau  - \rho \| L\infty (0,1) \leq C\tau , as \tau \rightarrow 0+.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

0

100

200

300

400

500

(b) \| E\tau  - E  - 1
\tau a

\| L\infty (0,1) \leq C\tau , as \tau \rightarrow 0+.

Fig. 4. Case 1 for part (I) of Theorem 1.2: a= b= 2.

limiting density \rho as \tau \rightarrow 0+; when 1\leq a< b, the boundary layer (1 - \tau 1 - \varepsilon ,1] appears
near the right endpoint x= 1 with a rough width \tau 1 - \varepsilon . Therefore, we next take into
account two numerical cases for part (I) of Theorem 1.2,

1. a= b= 2 (see Figure 4),
2. a= b= 1 (see Figure 5),

as well as consider two numerical cases for part (II) of Theorem 1.2,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

(a) \| \rho \tau  - \rho \| L\infty (0,1) \leq C\tau 
1
2 , as \tau \rightarrow 0+.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

0

200

400

600

800

1000

(b) \| E\tau  - E  - 1
\tau a

\| L\infty (0,1) \leq C\tau 
1
2 , as \tau \rightarrow 0+.

Fig. 5. Case 2 for part (I) of Theorem 1.2: a= b= 1.

1. a= 1.5 and b= 2 (see Figure 6),
2. a= 1 and b= 1.25 (see Figure 7).

In all the four cases for Theorem 1.2, we opt for the finite approximation sequence of
relaxation times as \tau 1 = 0.1, \tau 2 = 0.01, and \tau 3 = 0.001, and the limiting relaxation
time \tau at the moment is 0. We can easily see, in Figures 4 and 5, that there is no
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

2.1

(a) | \rho \tau (x) - a| \leq C\tau , 0 \leq x \leq 1 - \tau 1 - \varepsilon , as \tau \rightarrow 0+.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

0

100

200

300

400

500

600

700

(b) \| E\tau  - E  - 1
\tau a

\| L\infty (0,1) \leq C\tau 1 - \varepsilon , as \tau \rightarrow 0+.

Fig. 6. Case 1 for part (II) of Theorem 1.2: a= 1.5 and b= 2.

boundary layer between \rho \tau and \rho ; however, in Figures 6 and 7, we can observe from a
numerical perspective that the boundary layer occurs near the right endpoint provided
the relaxation time \tau is small enough, and the width of boundary layer gets thinner
and thinner as the relaxation time \tau goes to 0. Also, we can find, in all the four
figures for Theorem 1.2, that there is a huge gap 1

\tau a between E\tau and the asymptotic
profile E over the entire interval [0,1].
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1.3

1.35

(a) | \rho \tau (x) - a| \leq C\tau 
1
2 , 0 \leq x \leq 1 - \tau 1 - \varepsilon , as \tau \rightarrow 0+.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

0

200
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(b) \| E\tau  - E  - 1
\tau a

\| L\infty (0,1) \leq C\tau 
1
2 , as \tau \rightarrow 0+.

Fig. 7. Case 2 for part (II) of Theorem 1.2: a= 1 and b= 1.25.

All these numerical simulations conducted in this section perfectly support our
theoretical results obtained in Theorems 1.1 and 1.2.
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