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1. Introduction

The goal of this note is to prove a Helly-type result involving a higher-dimensional analogue
of brambles initially defined by Seymour and Thomas [ST93].

We define brambles on simplicial complexes in terms of cohomology with coefficients in
Z2. Hence from now on we work by default over Z2. We follow the algebraic topological
terminology from Munkres [Mun84], but let us recall some of the basics in the setting we are
interested in. (In particular, as some definitions simplify over Z2.)

We work exclusively with finite simplical complexes. A d-dimensional simplicial complex
K in RN is a finite collection of simplices of dimension at most d closed under taking faces
such that intersection of any two of simplices in K is a face of both of them. We denote by
K(i) the set of i-dimensional simplices of K, and by |K| the union of simplices in K.

Let Ci(K) denotes the Z2-vector space of formal linear combinations of elements of K(i),
i.e. the i-dimensional cochains of X. The coboundary map δ : Ci(K) → Ci+1(K) is defined
by

δσ =
∑

σ′∈K(i+1),σ⊂σ′

σ′

for every σ ∈ K(i) and extended linearly to Ci(K). Let Zi(K) = {C ∈ Ci(K) | δC = 0}
denote the group of cocycles and let Bi(K) = {δC | C ∈ Ci−1(K)} denote the group of
coboundaries. Then Bi(K) is a subgroup of Zi(K), as δ2 = 0. The group

H i(K) = Zi(K)/Bi(K)

is the i-th cohomology group H i(K) of K. The cohomology groups of a complex K are
topological invariants, i.e. while they are defined in terms of the abstract simplicial complex
corresponding to K, they depend only on |K| (see [Mun84, Theorem 44.2]).

By convention, we set K−1 = ∅, and so B0(K) is isomorphic to Z2 and consists of a zero
cochain and a cochain 1K :=

∑
σ∈K(0) σ.

We are now ready to define a bramble and state our main result. A collection B of
subcomplexes of a d-dimensional complex K is a (d-dimensional) bramble on K if B is
closed under unions and the cohomology of every element of B is trivial in dimensions from
0 up to d − 1. Explicitly, for every Z ∈ B, 0 ≤ i ≤ d − 1 and C ∈ Ci(Z) such that δC = 0
we have C = δ(C ′) for some C ′ ∈ Ci−1(Z). For i = 0, in particular, we have under these
conditions C = 0 or C = 1Z . Note that a collection B of subcomplexes of a simplicial
complex closed under unions is a 1-dimensional bramble if and only if every element of B
is connected, and B is a 2-dimensional bramble if and only if every element of it is simply
connected.
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Theorem 1. Let X and Y be d-dimensional simplicial complexes, such that Hd(Y ) = 0. Let
B be a d-dimensional bramble on X and let f : |X| → |Y | be continuous then

∩Z∈Bf(|Z|) 6= ∅.

Note that the condition Hd(Y ) = 0 holds, in particular when Y is contractible.
Let X and Y be simplicial complexes. A map f : X → Y is simplicial if it maps the

vertices X(0) of X to Y (0) and extends affinely from vertices of every simplex to its interior.
The simplicial approximation theorem can be used to reduce Theorem 1 to the case when
f is simplicial as we will show lates in this section and the main effort is establishing the
following version Theorem 1 for simplicial maps, which is done in the next section.

Theorem 2. Let X and Y be d-dimensional simplicial complexes, such that Hd(Y ) = 0.
Let B be a d-dimensional bramble on X and let f : X → Y be simplicial. Then there exist
y ∈ Y (0) such that y ∈ ∩Z∈Bf(Z).

A simplicial complex X ′ is a subdivision of a complex X if each simplex of X ′ is contained
in a simplex of X and each simplex of X is a union of some collection of simplices of X ′. We
use the following form of the simplicial approximation theorem.

Theorem 3 ([Mun84, Theorems 15.4 and 16.1]). Let X and Y be simplicial complexes and
and let f : |X| → |Y | be continuous. Then for every ε > 0 there exist subdivisions X ′ of X
and Y ′ of Y and a simplicial map h : X ′ → Y ′ such that d(h(x), f(x)) ≤ ε for all x ∈ |X|,
where d(·, ·) is the Euclidean metric on |Y |.

Theorem 1 is implied by Theorem 2 and Theorem 3, as follows.

Proof of Theorem 1 assuming Theorem 2. Suppose that ∩Z∈Bf(|Z|) = ∅. Then there exists
ε > 0 such that ∩Z∈BBε(f(|Z|)) = ∅, where Bε(S) = {y ∈ |Y | | d(y, S) ≤ ε} is the ε-
neighborhood of S for any S ⊆ Y . Let subdivisions X ′ of X and Y ′ of Y and a simplicial
map h : X ′ → Y ′ be chosen to satisfy the conclusion of Theorem 3, i.e. d(h(x), f(x)) < ε for
all x ∈ |X|. Note that B naturally corresponds to a bramble B′ on X ′ where every element Z ′

of B′ is a subdivision of the corresponding element Z of B, an so |Z| = |Z ′| and consequently
H(i)(Z) = H(i)(Z ′) for every i as noted above. In particular, we have ∩Z′∈B′Bε(f(|Z ′|)) = ∅.
As h(|Z ′|) ⊆ Bε(f(|Z ′|)) for every Z ′ ∈ B′, it follows that ∩Z′∈B′h(|Z ′|) = ∅, in contradiction
with Theorem 2 applied to h and B′. �

2. Proof of Theorem 2

Our proof of Theorem 2 is inspired by the proof by Dotterrer, Kaufman and Wag-
ner [DKW18] of Gromov’s Topological Overlap theorem [Gro10]. However, the proof in [DKW18]
involves working with both chains and co-chains, and the homotopy map constructed in [DKW18],
analogous to the map H constructed in Lemma 4 below, is subject to quantitative restriction
on the norm of images of simplices, while our restrictions are qualitative and related to the
position of images with respect to the bramble.

Given a pair of simplicial complexes X and Y simplicial map f : X → Y we define a
pullback map f ] : Ci(Y ) → Ci(X), by defining f ](σ) =

∑
σ′∈X(i),f(σ′)=σ σ

′ for every σ ∈ Y (i)

and extending linearly to Ci(X).
Crucially, the coboundary map commutes with pullbacks, i.e.

f ]δ = δf ].
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Given a subcomplex Z of X let ιZ,X : Z → X denote the inclusion map from Z to X. We

denote the corresponding pullback map ι]Z,X : Ci(X)→ Ci(Z) by ↓Z . This map has a natural

explicit definition ↓Z (σ) = σ for every σ ∈ Z(i) and ↓Z (σ) = 0 for every σ ∈ X(i)−Z(i). ??
in particular implies that

↓Z δ = δ ↓Z .
A linear map H : C∗(Y )→ C∗−1(X) is an f ]-null homotopy if f ] = δH +Hδ.

Lemma 4. Let f : X → Y be a simplicial map between d-dimensional simplicial complexes,
let B be a d-dimensional bramble in X. Suppose that Hd(Y ) is trivial, i. e. for every σ ∈ Y (d)

there exists C ∈ C(d−1)(Y ) such that σ = δ(C).
Then there exist an f ]–null homotopy H such that for every C ∈ C∗(Y ) and Z ∈ B if
↓Z C = 0 then ↓Z H(C) = 0.

Proof. Assume without loss of generality that X = ∪Z∈BZ. In particular, X ∈ B, as B is
closed under unions. We define H(σ) for σ ∈ Y (i) for 0 ≤ i ≤ d by induction on d − i, so
that

(i) f ](σ) = δH(σ) +H(δσ), and
(ii) ↓Z H(σ) = 0 for every Z ∈ B such that ↓Z C = 0 then ↓Z H(σ) = 0.

We then extend H to Ci(Y ) linearly.
For the base case consider σ ∈ Y (d). Then there exists C ∈ Cd−1(Y ) such that δ(C) = σ.

Let Z ∈ B be maximum such that σ 6∈ f(Z). Then

δ ↓Z f ](C) =↓Z f ](δ(C)) =↓Z f ](σ) = 0.

As Hd−1(Z) is trivial, there exists C ′ ∈ Cd−2(Z) such that ↓Z δ(C ′) =↓Z f ](C). Define
H(σ) = f ](C)− δ(C ′). Then ↓Z H(σ) = 0, by the above and

δH(σ) +H(δσ) = δf ](C)− δ2(C ′) = f ](δ(C)) = f ](σ).

For the induction step consider now σ ∈ Y (i). Note that we have already defined H on
Ci+1(Y ). Let C = f ](σ)−H(δ(σ)) ∈ Ci(X). We have

δH(δσ) = (δH +Hδ)(δσ) = f ](δσ) = δ(f ](σ)).

Thus δ(C) = 0. As H i(X) is trivial there exists C ′ ∈ Ci−1(X) such that C = δC ′. Again
let Z be be maximum such that σ 6∈ f(Z). Then δ(σ) is a sum of simplices σ′ ∈ Y (i+1) such
that σ ⊆ σ′ and so σ′ 6∈ f(Z). By the induction hypothesis this implies, ↓Z H(σ′) = 0 for
each such σ′, and so ↓Z H(δσ) = 0. Thus

δ(↓Z C ′) =↓Z (δC ′) =↓Z C =↓Z f ](σ)− ↓Z H(δσ) = 0.

As H i−1(Z) is trivial, there exists C ′′ ∈ Ci−2(Z) such that ↓Z δC ′′ =↓Z C ′. Finally define
H(σ) = C ′ − δC ′′. Then ↓Z H(σ) = 0, and

δH(σ) +H(δσ) = δC ′ − δδC ′′ +H(δσ) = C +H(δσ) = f ](σ),

as desired. �

Finally, Theorem 2 readily follows from Lemma 4.
3



Proof of Theorem 2. As in Lemma 4 we assume that X ∈ B.
Let H be as in Lemma 4. Consider arbitrary y ∈ Y (0). Then

δ(H(δ(y)) = f ](δ(v)) +H(δ(δ(y))) = δ(f ](y)).

Thus δ(H(δ(y)) + f ](y)) = 0. Thus either H(δ(y)) + f ](y) = 1X or H(δ(y)) + f ](y) = 0.
In the first case, if follows that ↓Z (H(δ(y)) + f ](y)) = 1Z for every Z ∈ B. We claim that
this in turn implies that y ⊆ f(Z). Indeed, suppose not, then ↓Z (f ](σ)) = 0 for every
σ ∈ Y such that y ⊆ σ. Thus as in the proof of Lemma 4 we have ↓Z (H(δ(y))) = 0 and so
↓Z (H(δ(y)) + f ](y)) = 0, a contradiction.

It follows that if H(δ(y)) + f ](y) = 1X for some y ∈ Y (0) then the theorem holds. Assume
then for a contradiction that no such y exists and H(δ(y)) + f ](y) = 0 for every y ∈ Y (0).
Summing over all such y we get

0 = H(δ(1Y )) + f ](1Y ) = 0 + 1X = 1X ,

yielding the desired contradiction. �
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